-
Question 1
Incorrect
-
A 35-year-old male is referred to the medical assessment unit by his physician to investigate the possibility of thrombotic thrombocytopenic purpura (TTP) after presenting with a fever of 38.5ºC. His recent urea and electrolyte results indicate declining kidney function, with a creatinine level three times higher than his usual baseline. What is the pathophysiology underlying TTP?
Your Answer: A deficiency of von Willebrand factor
Correct Answer: Failure to cleave von Willebrand factor normally
Explanation:The absence of a plasma protease responsible for breaking down ultra-large multimers of von Willebrand factor (vWF) is the cause of TTP. This results in the accumulation of unusually large vWF multimers in the plasma of TTP patients. It is important to note that autoimmune destruction of red blood cells is a different form of autoimmune hemolytic anaemia and is not related to TTP. Similarly, autoimmune destruction of platelets is seen in ITP, not TTP.
Thrombotic Thrombocytopenic Purpura: Understanding its Pathogenesis, Features, and Causes
Thrombotic thrombocytopenic purpura (TTP) is a rare condition that typically affects adult females. Its pathogenesis involves the abnormal formation of large and sticky multimers of von Willebrand’s factor, which causes platelets to clump within vessels. In TTP, there is a deficiency of ADAMTS13, a metalloprotease enzyme that breaks down these large multimers. This deficiency leads to the formation of microemboli, resulting in fluctuating neuro signs, microangiopathic haemolytic anaemia, thrombocytopenia, and renal failure. TTP overlaps with haemolytic uraemic syndrome (HUS).
TTP can be caused by various factors, including post-infection (e.g., urinary, gastrointestinal), pregnancy, drugs (such as ciclosporin, oral contraceptive pill, penicillin, clopidogrel, and acyclovir), tumours, SLE, and HIV. It is essential to identify the underlying cause of TTP to provide appropriate treatment and prevent further complications.
In summary, TTP is a rare condition that affects adult females and is caused by the abnormal formation of large and sticky multimers of von Willebrand’s factor. Its features include fluctuating neuro signs, microangiopathic haemolytic anaemia, thrombocytopenia, and renal failure. TTP can be caused by various factors, and identifying the underlying cause is crucial for proper treatment.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 2
Correct
-
Which of the following is a primary lymphatic organ?
Your Answer: Thymus
Explanation:The lymphatic system is composed of lymph vessels, primary lymphatic organs, and secondary lymphatic organs. The thymus and red bone marrow, which are responsible for lymphocyte formation and maturation, are considered primary lymphatic organs. These organs contain pluripotent cells that give rise to mature immunocompetent B cells and pre-T cells. To become mature T cells, pre-T cells must migrate to the thymus.
Secondary lymphatic organs include lymph nodes, the spleen, tonsils (adenoids), mucosa-associated lymphoid tissue (MALT), and Peyer’s patches. These organs filter lymphocytes and activate them to mount an immune response.
The Thymus Gland: Development, Structure, and Function
The thymus gland is an encapsulated organ that develops from the third and fourth pharyngeal pouches. It descends to the anterior superior mediastinum and is subdivided into lobules, each consisting of a cortex and a medulla. The cortex is made up of tightly packed lymphocytes, while the medulla is mostly composed of epithelial cells. Hassall’s corpuscles, which are concentrically arranged medullary epithelial cells that may surround a keratinized center, are also present.
The inferior parathyroid glands, which also develop from the third pharyngeal pouch, may be located with the thymus gland. The thymus gland’s arterial supply comes from the internal mammary artery or pericardiophrenic arteries, while its venous drainage is to the left brachiocephalic vein. The thymus gland plays a crucial role in the development and maturation of T-cells, which are essential for the immune system’s proper functioning.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 3
Correct
-
A 28-year-old man comes to the hospital after experiencing two instances of bright red urine in the morning. He is extremely anxious and informs the doctor that he has never had such an occurrence before. The man has recently started working at an engineering firm and is preparing to get married in a few months. He has been feeling fatigued for the past few months but attributed it to his job, which requires him to travel to construction sites daily. He has no significant medical history except for an appendectomy during childhood. A blood test shows a hemoglobin concentration of 11.5 g/dL and a reticulocyte count of 14% of red blood cells. What is the most probable finding that will be reported after flow cytometry of a blood sample from this patient?
Your Answer: CD55 and CD59 negative cells
Explanation:Paroxysmal nocturnal hemoglobinuria (PNH) is a chronic form of intrinsic hemolytic anemia that can present with symptoms such as hematuria, anemia, and venous thrombosis. The classic triad of PNH includes hemolytic anemia, pancytopenia, and venous thrombosis. The gold standard test for PNH is flow cytometry for CD59 and CD55, which shows a deficiency of these proteins on red and white blood cells.
A deficiency of C3 is a complement deficiency disorder that increases the risk of recurrent bacterial infections. While a deficiency of CD59 or CD55 may be present in this patient, PNH patients typically have a deficiency of both proteins. Terminal complement deficiency, indicated by a deficiency of complements forming the membrane attack membrane, confers a high risk of infection with Neisseria organisms. Eculizumab, a humanized monoclonal antibody, is approved for the treatment of PNH and works by inhibiting the terminal complement cascade.
Understanding Paroxysmal Nocturnal Haemoglobinuria
Paroxysmal nocturnal haemoglobinuria (PNH) is a condition that causes the breakdown of haematological cells, mainly intravascular haemolysis. It is believed to be caused by a lack of glycoprotein glycosyl-phosphatidylinositol (GPI), which acts as an anchor that attaches surface proteins to the cell membrane. This leads to the improper binding of complement-regulating surface proteins, such as decay-accelerating factor (DAF), to the cell membrane. As a result, patients with PNH are more prone to venous thrombosis.
PNH can affect red blood cells, white blood cells, platelets, or stem cells, leading to pancytopenia. Patients may also experience haemoglobinuria, which is characterized by dark-coloured urine in the morning. Thrombosis, such as Budd-Chiari syndrome, is also a common feature of PNH. In some cases, patients may develop aplastic anaemia.
To diagnose PNH, flow cytometry of blood is used to detect low levels of CD59 and CD55. This has replaced Ham’s test as the gold standard investigation for PNH. Ham’s test involves acid-induced haemolysis, which normal red cells would not undergo.
Management of PNH involves blood product replacement, anticoagulation, and stem cell transplantation. Eculizumab, a monoclonal antibody directed against terminal protein C5, is currently being trialled and is showing promise in reducing intravascular haemolysis. Understanding PNH is crucial in managing this condition and improving patient outcomes.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 4
Incorrect
-
A 28-year-old female arrives at the emergency department with an abrupt onset of pain in the right upper quadrant. Upon examination, the doctor observes hepatomegaly and ascites, and diagnoses the patient with Budd-Chiari syndrome. The doctor prescribes anticoagulants and conducts a thrombophilia screening, which reveals the presence of a Factor V Leiden mutation.
What is the mechanism by which this mutation causes hypercoagulability?Your Answer: Antithrombin deficiency
Correct Answer: Activated protein C resistance
Explanation:The presence of a Factor V Leiden mutation can lead to activated protein C resistance, which is a common cause of thrombophilia. Budd-Chiari syndrome, characterized by abdominal pain, ascites, and hepatomegaly, may require a thrombophilia screen to identify potential causes. Antithrombin deficiency, caused by a mutation in the SERPINC1 gene, is another type of thrombophilia. Antiphospholipid syndrome, an immunological disorder that increases the risk of thrombosis, is not related to Factor V Leiden mutations. Protein C deficiency, caused by mutations in the PROC gene, is another type of thrombophilia.
Understanding Factor V Leiden
Factor V Leiden is a common inherited thrombophilia, affecting around 5% of the UK population. It is caused by a mutation in the Factor V Leiden protein, resulting in activated factor V being inactivated 10 times more slowly by activated protein C than normal. This leads to activated protein C resistance, which increases the risk of venous thrombosis. Heterozygotes have a 4-5 fold risk of venous thrombosis, while homozygotes have a 10 fold risk, although the prevalence of homozygotes is much lower at 0.05%.
Despite its prevalence, screening for Factor V Leiden is not recommended, even after a venous thromboembolism. This is because a previous thromboembolism itself is a risk factor for further events, and specific management should be based on this rather than the particular thrombophilia identified.
Other inherited thrombophilias include Prothrombin gene mutation, Protein C deficiency, Protein S deficiency, and Antithrombin III deficiency. The table below shows the prevalence and relative risk of venous thromboembolism for each of these conditions.
Overall, understanding Factor V Leiden and other inherited thrombophilias can help healthcare professionals identify individuals at higher risk of venous thrombosis and provide appropriate management to prevent future events.
Condition | Prevalence | Relative risk of VTE
— | — | —
Factor V Leiden (heterozygous) | 5% | 4
Factor V Leiden (homozygous) | 0.05% | 10
Prothrombin gene mutation (heterozygous) | 1.5% | 3
Protein C deficiency | 0.3% | 10
Protein S deficiency | 0.1% | 5-10
Antithrombin III deficiency | 0.02% | 10-20 -
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 5
Incorrect
-
Which of the following statements regarding chronic inflammation is accurate?
Your Answer: Neutrophils are the predominant cells involved
Correct Answer: Fibrosis is a macroscopic feature
Explanation:The macroscopic features of this condition typically involve ulcers, fibrosis, and a granulomatous process. It is more commonly a primary occurrence rather than a consequence of acute inflammation.
Chronic inflammation can occur as a result of acute inflammation or as a primary process. There are three main processes that can lead to chronic inflammation: persisting infection with certain organisms, prolonged exposure to non-biodegradable substances, and autoimmune conditions involving antibodies formed against host antigens. Acute inflammation involves changes to existing vascular structure and increased permeability of endothelial cells, as well as infiltration of neutrophils. In contrast, chronic inflammation is characterized by angiogenesis and the predominance of macrophages, plasma cells, and lymphocytes. The process may resolve with suppuration, complete resolution, abscess formation, or progression to chronic inflammation. Healing by fibrosis is the main result of chronic inflammation. Granulomas, which consist of a microscopic aggregation of macrophages, are pathognomonic of chronic inflammation and can be found in conditions such as colonic Crohn’s disease. Growth factors released by activated macrophages, such as interferon and fibroblast growth factor, may have systemic features resulting in systemic symptoms and signs in individuals with long-standing chronic inflammation.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 6
Incorrect
-
An 80-year-old woman visits her GP complaining of abdominal bloating, reduced appetite, and fatigue that have been worsening for four months. The GP refers her to gynaecology on a two-week-wait pathway for an ultrasound-guided biopsy, which confirms ovarian cancer. A staging CT scan reveals the spread of cancer to nearby lymph nodes.
Which lymph nodes are the most probable to be affected?Your Answer: Deep inguinal nodes
Correct Answer: Para-aortic nodes
Explanation:Metastatic ovarian cancer is often first detected in the para-aortic lymph nodes, as this is where the ovaries drain. The fundus of the uterus drains to the deep inguinal nodes through lymphatics that follow the round ligament. The inferior mesenteric nodes receive drainage from the upper part of the rectum, sigmoid colon, and descending colon. The body of the uterus drains to the iliac nodes through lymphatics that follow the broad ligament, while parts of the cervix may drain to the presacral nodes via lymphatics that follow the uterosacral fold.
Lymphatic Drainage of Female Reproductive Organs
The lymphatic drainage of the female reproductive organs is a complex system that involves multiple nodal stations. The ovaries drain to the para-aortic lymphatics via the gonadal vessels. The uterine fundus has a lymphatic drainage that runs with the ovarian vessels and may thus drain to the para-aortic nodes. Some drainage may also pass along the round ligament to the inguinal nodes. The body of the uterus drains through lymphatics contained within the broad ligament to the iliac lymph nodes. The cervix drains into three potential nodal stations; laterally through the broad ligament to the external iliac nodes, along the lymphatics of the uterosacral fold to the presacral nodes and posterolaterally along lymphatics lying alongside the uterine vessels to the internal iliac nodes. Understanding the lymphatic drainage of the female reproductive organs is important for the diagnosis and treatment of gynecological cancers.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 7
Incorrect
-
A 13-year-old, recently-immigrated girl from Nigeria is referred to the hospital after presenting to her GP with a growth of the jaw. A number of investigations are performed, including a test for the Epstein-Barr virus which comes back positive. A biopsy is taken, which demonstrates a 'starry sky' appearance.
Based on the presented information and the probable diagnosis, which translocation is most likely involved?Your Answer: T(11:14)
Correct Answer: T(8:14)
Explanation:Understanding Burkitt’s Lymphoma
Burkitt’s lymphoma is a type of high-grade B-cell neoplasm that can occur in two major forms. The endemic or African form typically affects the maxilla or mandible, while the sporadic form is commonly found in the abdomen, particularly in patients with HIV. The development of Burkitt’s lymphoma is strongly associated with the c-myc gene translocation, usually t(8:14), and the Epstein-Barr virus (EBV) is also implicated in its development.
Microscopy findings of Burkitt’s lymphoma show a starry sky appearance, characterized by lymphocyte sheets interspersed with macrophages containing dead apoptotic tumor cells. Management of this condition involves chemotherapy, which can produce a rapid response but may also cause tumor lysis syndrome. To reduce the risk of this occurring, rasburicase, a recombinant version of urate oxidase, is often given before chemotherapy. Complications of tumor lysis syndrome include hyperkalemia, hyperphosphatemia, hypocalcemia, hyperuricemia, and acute renal failure.
In summary, Burkitt’s lymphoma is a serious condition that can occur in two major forms and is associated with c-myc gene translocation and the Epstein-Barr virus. Microscopy findings show a characteristic appearance, and management involves chemotherapy with the use of rasburicase to reduce the risk of complications.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 8
Incorrect
-
A 45-year-old man with a history of Crohn's disease complains of fatigue and a burning sensation in his mouth. His blood work shows:
Hb 11.2 g/dl
MCV 110 fl
Plt 190 * 10^9/l
WBC 6.2 * 10^9/l
What could be the possible reason for these symptoms and abnormal blood results?Your Answer: Vitamin C deficiency
Correct Answer: Vitamin B12 deficiency
Explanation:If a patient has a history of gastrectomy and is experiencing macrocytic anaemia, it is likely that they are suffering from B12 deficiency.
Vitamin B12 is essential for the development of red blood cells and the maintenance of the nervous system. It is absorbed through the binding of intrinsic factor, which is secreted by parietal cells in the stomach, and actively absorbed in the terminal ileum. A deficiency in vitamin B12 can be caused by pernicious anaemia, post gastrectomy, a vegan or poor diet, disorders or surgery of the terminal ileum, Crohn’s disease, or metformin use.
Symptoms of vitamin B12 deficiency include macrocytic anaemia, a sore tongue and mouth, neurological symptoms, and neuropsychiatric symptoms such as mood disturbances. The dorsal column is usually affected first, leading to joint position and vibration issues before distal paraesthesia.
Management of vitamin B12 deficiency involves administering 1 mg of IM hydroxocobalamin three times a week for two weeks, followed by once every three months if there is no neurological involvement. If a patient is also deficient in folic acid, it is important to treat the B12 deficiency first to avoid subacute combined degeneration of the cord.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 9
Incorrect
-
A 65-year-old man visits his doctor complaining of fatigue and weight loss that has persisted for the past year. He has also been experiencing fevers and night sweats lately. During the physical examination, the doctor observes that the patient has bruises on his shins and forearms and hepatosplenomegaly. The doctor orders blood tests.
Hemoglobin: 100 g/L
White blood cells: 18.0 x 109/L
Neutrophils: 10.0 x 109/L
The patient is referred to the hospital, where a bone marrow biopsy is performed, and he is subsequently treated with imatinib.
Based on the most probable diagnosis, which of the following cell types is also likely to be elevated?Your Answer: NK cells
Correct Answer: Eosinophils
Explanation:The origin of eosinophils is from common myeloid progenitor cells. A patient with neutrophilia and low haemoglobin is likely to have chronic myeloid leukaemia (CML). CML is characterized by increased levels of all cells derived from the myeloid lineage, including basophils, monocytes, and eosinophils. The bone marrow biopsy is diagnostic for CML and typically shows the t(9;22) chromosomal translocation, also known as the Philadelphia chromosome. Imatinib, an inhibitor of the BCR-ABL fusion protein created with this translocation, is a common treatment for CML. Cells derived from common lymphoid progenitor cells are not affected in CML.
Haematopoiesis: The Generation of Immune Cells
Haematopoiesis is the process by which immune cells are produced from haematopoietic stem cells in the bone marrow. These stem cells give rise to two main types of progenitor cells: myeloid and lymphoid progenitor cells. All immune cells are derived from these progenitor cells.
The myeloid progenitor cells generate cells such as macrophages/monocytes, dendritic cells, neutrophils, eosinophils, basophils, and mast cells. On the other hand, lymphoid progenitor cells give rise to T cells, NK cells, B cells, and dendritic cells.
This process is essential for the proper functioning of the immune system. Without haematopoiesis, the body would not be able to produce the necessary immune cells to fight off infections and diseases. Understanding haematopoiesis is crucial in developing treatments for diseases that affect the immune system.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 10
Incorrect
-
A 27-year-old vegetarian male visits his GP complaining of fatigue despite getting adequate sleep. The doctor conducts a thorough examination and orders a complete blood count and thyroid function tests. The results reveal that the patient has macrocytic anemia, and the doctor suspects B12 deficiency due to his dietary habits. If the body uses up vitamin B12 at a regular rate but is not replenished, how long can the body's stores last?
Your Answer:
Correct Answer: 3 years
Explanation:Vitamin B12 can be found in animal products, including meat. In order for it to be absorbed in the body’s terminal ileum, intrinsic factor is necessary. This factor is produced by the stomach’s parietal cells. The body stores around 2-3 mg of vitamin B12, which can last for 2-4 years. As a result, signs of B12 deficiency usually do not appear until after a prolonged period of insufficient consumption.
Vitamin B12 is essential for the development of red blood cells and the maintenance of the nervous system. It is absorbed through the binding of intrinsic factor, which is secreted by parietal cells in the stomach, and actively absorbed in the terminal ileum. A deficiency in vitamin B12 can be caused by pernicious anaemia, post gastrectomy, a vegan or poor diet, disorders or surgery of the terminal ileum, Crohn’s disease, or metformin use.
Symptoms of vitamin B12 deficiency include macrocytic anaemia, a sore tongue and mouth, neurological symptoms, and neuropsychiatric symptoms such as mood disturbances. The dorsal column is usually affected first, leading to joint position and vibration issues before distal paraesthesia.
Management of vitamin B12 deficiency involves administering 1 mg of IM hydroxocobalamin three times a week for two weeks, followed by once every three months if there is no neurological involvement. If a patient is also deficient in folic acid, it is important to treat the B12 deficiency first to avoid subacute combined degeneration of the cord.
-
This question is part of the following fields:
- Haematology And Oncology
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)