-
Question 1
Incorrect
-
You conduct a cardiovascular examination on a 62-year-old man who complains of shortness of breath. He informs you that he has a known heart valve issue. During auscultation, you observe reversed splitting of the second heart sound (S2).
What is the most probable cause of this finding?Your Answer: Mitral stenosis
Correct Answer: Aortic stenosis
Explanation:The second heart sound (S2) is created by vibrations produced when the aortic and pulmonary valves close. It marks the end of systole. It is normal to hear a split in the sound during inspiration.
A loud S2 can be associated with certain conditions such as systemic hypertension (resulting in a loud A2), pulmonary hypertension (resulting in a loud P2), hyperdynamic states (like tachycardia, fever, or thyrotoxicosis), and atrial septal defect (which causes a loud P2).
On the other hand, a soft S2 can be linked to decreased aortic diastolic pressure (as seen in aortic regurgitation), poorly mobile cusps (such as calcification of the aortic valve), aortic root dilatation, and pulmonary stenosis (which causes a soft P2).
A widely split S2 can occur during deep inspiration, right bundle branch block, prolonged right ventricular systole (seen in conditions like pulmonary stenosis or pulmonary embolism), and severe mitral regurgitation. However, in the case of atrial septal defect, the splitting is fixed and does not vary with respiration.
Reversed splitting of S2, where P2 occurs before A2 (paradoxical splitting), can occur during deep expiration, left bundle branch block, prolonged left ventricular systole (as seen in hypertrophic cardiomyopathy), severe aortic stenosis, and right ventricular pacing.
-
This question is part of the following fields:
- Cardiology
-
-
Question 2
Incorrect
-
A 72 year old male attends the emergency department complaining of feeling lightheaded, experiencing shortness of breath, and having irregular heartbeats. He states that these symptoms started six hours ago. Upon listening to his chest, clear lung fields are detected but an irregularly irregular pulse is observed. The patient has type 2 diabetes, which is currently controlled through diet. The only medications he takes are:
- Lisinopril 2.5 mg once daily
- Simvastatin 20 mg once daily
There is no history of heart disease, vascular disease, or stroke. The recorded observations are as follows:
- Blood pressure: 148/92 mmHg
- Pulse rate: 86 bpm
- Respiration rate: 15 bpm
- Oxygen saturation: 97% on room air
An ECG is performed, confirming atrial fibrillation. As part of the management, you need to calculate the patient's CHA2DS2-VASc score.
What is this patient's score?Your Answer: 2
Correct Answer: 4
Explanation:The patient is currently taking 20 mg of Atorvastatin once daily. They do not have a history of heart disease, vascular disease, or stroke. Their blood pressure is 148/92 mmHg, pulse rate is 86 bpm, and respiration rate is 1.
Further Reading:
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, affecting around 5% of patients over the age of 70-75 years and 10% of patients aged 80-85 years. While AF can cause palpitations and inefficient cardiac function, the most important aspect of managing patients with AF is reducing the increased risk of stroke.
AF can be classified as first detected episode, paroxysmal, persistent, or permanent. First detected episode refers to the initial occurrence of AF, regardless of symptoms or duration. Paroxysmal AF occurs when a patient has 2 or more self-terminating episodes lasting less than 7 days. Persistent AF refers to episodes lasting more than 7 days that do not self-terminate. Permanent AF is continuous atrial fibrillation that cannot be cardioverted or if attempts to do so are deemed inappropriate. The treatment goals for permanent AF are rate control and anticoagulation if appropriate.
Symptoms of AF include palpitations, dyspnea, and chest pain. The most common sign is an irregularly irregular pulse. An electrocardiogram (ECG) is essential for diagnosing AF, as other conditions can also cause an irregular pulse.
Managing patients with AF involves two key parts: rate/rhythm control and reducing stroke risk. Rate control involves slowing down the irregular pulse to avoid negative effects on cardiac function. This is typically achieved using beta-blockers or rate-limiting calcium channel blockers. If one drug is not effective, combination therapy may be used. Rhythm control aims to restore and maintain normal sinus rhythm through pharmacological or electrical cardioversion. However, the majority of patients are managed with a rate control strategy.
Reducing stroke risk in patients with AF is crucial. Risk stratifying tools, such as the CHA2DS2-VASc score, are used to determine the most appropriate anticoagulation strategy. Anticoagulation is recommended for patients with a score of 2 or more. Clinicians can choose between warfarin and novel oral anticoagulants (NOACs) for anticoagulation.
Before starting anticoagulation, the patient’s bleeding risk should be assessed using tools like the HAS-BLED score or the ORBIT tool. These tools evaluate factors such as hypertension, abnormal renal or liver function, history of bleeding, age, and use of drugs that predispose to bleeding.
-
This question is part of the following fields:
- Cardiology
-
-
Question 3
Incorrect
-
A 32-year-old woman comes to the Emergency Department complaining of dizziness and palpitations. She informs you that she was recently diagnosed with Wolff-Parkinson-White syndrome. She is connected to an ECG monitor, and you observe the presence of an arrhythmia.
What is the most frequently encountered type of arrhythmia in Wolff-Parkinson-White syndrome?Your Answer: Atrioventricular nodal re-entrant tachycardia
Correct Answer: Atrioventricular re-entrant tachycardia
Explanation:Wolff-Parkinson-White (WPW) syndrome is a condition that affects the electrical system of the heart. It occurs when there is an abnormal pathway, known as the bundle of Kent, between the atria and the ventricles. This pathway can cause premature contractions of the ventricles, leading to a type of rapid heartbeat called atrioventricular re-entrant tachycardia (AVRT).
In a normal heart rhythm, the electrical signals travel through the bundle of Kent and stimulate the ventricles. However, in WPW syndrome, these signals can cause the ventricles to contract prematurely. This can be seen on an electrocardiogram (ECG) as a shortened PR interval, a slurring of the initial rise in the QRS complex (known as a delta wave), and a widening of the QRS complex.
There are two distinct types of WPW syndrome that can be identified on an ECG. Type A is characterized by predominantly positive delta waves and QRS complexes in the praecordial leads, with a dominant R wave in V1. This can sometimes be mistaken for right bundle branch block (RBBB). Type B, on the other hand, shows predominantly negative delta waves and QRS complexes in leads V1 and V2, and positive in the other praecordial leads, resembling left bundle branch block (LBBB).
Overall, WPW syndrome is a condition that affects the electrical conduction system of the heart, leading to abnormal heart rhythms. It can be identified on an ECG by specific features such as shortened PR interval, delta waves, and widened QRS complex.
-
This question is part of the following fields:
- Cardiology
-
-
Question 4
Correct
-
You are called to a VF cardiac arrest in the resus area of your Pediatric Emergency Department.
Epinephrine should be administered at which of the following points during a pediatric VF arrest?Your Answer: After the 3rd shock once chest compressions have been resumed
Explanation:Adrenaline is recommended to be administered after the third shock in a shockable cardiac arrest (Vf/pVT) once chest compressions have been resumed. The recommended dose is 1 mg, which can be administered as either 10 mL of a 1:10,000 solution or 1 mL of a 1:1000 solution.
Subsequently, adrenaline should be given every 3-5 minutes, alternating with chest compressions. It is important to administer adrenaline without interrupting chest compressions to ensure continuous circulation and maximize the chances of successful resuscitation.
-
This question is part of the following fields:
- Cardiology
-
-
Question 5
Incorrect
-
A 42-year-old woman presents with central chest pain that has been intermittent for the past few weeks. She reports that it tends to occur when she is climbing stairs or walking uphill but subsides quickly when she rests. Her medical history includes type 2 diabetes mellitus, which is managed with metformin, and gastroesophageal reflux disease (GERD), for which she takes lansoprazole. On examination, her heart sounds are normal, and her chest is clear.
What is the SINGLE most probable diagnosis?Your Answer: Unstable angina
Correct Answer: Stable angina
Explanation:Stable angina is characterized by chest pain in the center of the chest that is triggered by activities such as exercise and emotional stress. The pain may spread to the jaw or left arm and can be relieved by resting for a few minutes. Typically, the pain is brought on by a predictable amount of exertion.
On the other hand, unstable angina is defined by the presence of one or more of the following: angina of effort occurring over a few days with increasing frequency, episodes of angina occurring recurrently and predictably without specific provocation, or an unprovoked and prolonged episode of cardiac chest pain. In unstable angina, the ECG may appear normal or show T wave / ST segment changes, and cardiac enzymes are usually normal.
Prinzmetal angina is a rare form of angina that typically occurs at rest between midnight and early morning. These attacks can be severe and happen in clusters. It is caused by spasms in the coronary arteries, and patients with this condition often have normal coronary arteries.
It is important to note that gastro-esophageal reflux (GORD) is not relevant to this question and is included in the patient’s history to distract the candidate. Typical symptoms of GORD include heartburn and acid regurgitation, and it can also present with non-cardiac chest pain, dyspepsia, and difficulty swallowing.
Lastly, Ludwig’s angina is a serious and potentially life-threatening infection in the submandibular area. It most commonly occurs due to an infection in the floor of the mouth that spreads into the submandibular space.
-
This question is part of the following fields:
- Cardiology
-
-
Question 6
Correct
-
A 32-year-old woman comes to the Emergency Department complaining of dizziness and palpitations. She informs you that she was recently diagnosed with type B Wolff-Parkinson-White syndrome. You conduct an ECG.
Which of the following ECG characteristics is NOT observed in type B Wolff-Parkinson-White (WPW) syndrome?Your Answer: Dominant R wave in V1
Explanation:Wolff-Parkinson-White (WPW) syndrome is a condition that affects the electrical system of the heart. It occurs when there is an abnormal pathway, known as the bundle of Kent, between the atria and the ventricles. This pathway can cause premature contractions of the ventricles, leading to a type of rapid heartbeat called atrioventricular re-entrant tachycardia (AVRT).
In a normal heart rhythm, the electrical signals travel through the bundle of Kent and stimulate the ventricles. However, in WPW syndrome, these signals can cause the ventricles to contract prematurely. This can be seen on an electrocardiogram (ECG) as a shortened PR interval, a slurring of the initial rise in the QRS complex (known as a delta wave), and a widening of the QRS complex.
There are two distinct types of WPW syndrome that can be identified on an ECG. Type A is characterized by predominantly positive delta waves and QRS complexes in the praecordial leads, with a dominant R wave in V1. This can sometimes be mistaken for right bundle branch block (RBBB). Type B, on the other hand, shows predominantly negative delta waves and QRS complexes in leads V1 and V2, and positive in the other praecordial leads, resembling left bundle branch block (LBBB).
Overall, WPW syndrome is a condition that affects the electrical conduction system of the heart, leading to abnormal heart rhythms. It can be identified on an ECG by specific features such as shortened PR interval, delta waves, and widened QRS complex.
-
This question is part of the following fields:
- Cardiology
-
-
Question 7
Incorrect
-
You are asked to evaluate a 62-year-old patient who has come in with complaints of chest discomfort. The nurse has handed you the ECG report, which states 'unspecified age septal infarction' in the comments section.
Which leads would you anticipate observing ST elevation in an acute septal STEMI?Your Answer: V3, V4
Correct Answer: V1, V2
Explanation:The septum, which is a part of the heart, can be best identified by examining leads V1 and V2. The septum receives its blood supply from the proximal left anterior descending artery (LAD). The LAD is responsible for supplying blood to the anterior myocardium and also contributes to the blood supply of the lateral myocardium. If the LAD becomes blocked, it can result in ST elevation in all the chest leads.
Further Reading:
Acute Coronary Syndromes (ACS) is a term used to describe a group of conditions that involve the sudden reduction or blockage of blood flow to the heart. This can lead to a heart attack or unstable angina. ACS includes ST segment elevation myocardial infarction (STEMI), non-ST segment elevation myocardial infarction (NSTEMI), and unstable angina (UA).
The development of ACS is usually seen in patients who already have underlying coronary heart disease. This disease is characterized by the buildup of fatty plaques in the walls of the coronary arteries, which can gradually narrow the arteries and reduce blood flow to the heart. This can cause chest pain, known as angina, during physical exertion. In some cases, the fatty plaques can rupture, leading to a complete blockage of the artery and a heart attack.
There are both non modifiable and modifiable risk factors for ACS. non modifiable risk factors include increasing age, male gender, and family history. Modifiable risk factors include smoking, diabetes mellitus, hypertension, hypercholesterolemia, and obesity.
The symptoms of ACS typically include chest pain, which is often described as a heavy or constricting sensation in the central or left side of the chest. The pain may also radiate to the jaw or left arm. Other symptoms can include shortness of breath, sweating, and nausea/vomiting. However, it’s important to note that some patients, especially diabetics or the elderly, may not experience chest pain.
The diagnosis of ACS is typically made based on the patient’s history, electrocardiogram (ECG), and blood tests for cardiac enzymes, specifically troponin. The ECG can show changes consistent with a heart attack, such as ST segment elevation or depression, T wave inversion, or the presence of a new left bundle branch block. Elevated troponin levels confirm the diagnosis of a heart attack.
The management of ACS depends on the specific condition and the patient’s risk factors. For STEMI, immediate coronary reperfusion therapy, either through primary percutaneous coronary intervention (PCI) or fibrinolysis, is recommended. In addition to aspirin, a second antiplatelet agent is usually given. For NSTEMI or unstable angina, the treatment approach may involve reperfusion therapy or medical management, depending on the patient’s risk of future cardiovascular events.
-
This question is part of the following fields:
- Cardiology
-
-
Question 8
Correct
-
A 68 year old is brought to the emergency department by his son. The patient complained of feeling sick. On checking the patient's medication the son believes he may have taken an excessive amount of digoxin tablets over the past few days. You are worried about digoxin toxicity. What ECG characteristics are linked to digoxin toxicity?
Your Answer: Downsloping ST depression
Explanation:One way to assess for digoxin toxicity is by examining the patient’s electrocardiogram (ECG) for specific characteristics. In the case of digoxin toxicity, ECG findings may include downsloping ST depression, prolonged QT interval, tall tented T-waves, and possibly delta waves. However, a short PR interval (< 120ms) is not typically associated with digoxin toxicity. Further Reading: Digoxin is a medication used for rate control in atrial fibrillation and for improving symptoms in heart failure. It works by decreasing conduction through the atrioventricular node and increasing the force of cardiac muscle contraction. However, digoxin toxicity can occur, and plasma concentration alone does not determine if a patient has developed toxicity. Symptoms of digoxin toxicity include feeling generally unwell, lethargy, nausea and vomiting, anorexia, confusion, yellow-green vision, arrhythmias, and gynaecomastia. ECG changes seen in digoxin toxicity include downsloping ST depression with a characteristic Salvador Dali sagging appearance, flattened, inverted, or biphasic T waves, shortened QT interval, mild PR interval prolongation, and prominent U waves. There are several precipitating factors for digoxin toxicity, including hypokalaemia, increasing age, renal failure, myocardial ischaemia, electrolyte imbalances, hypoalbuminaemia, hypothermia, hypothyroidism, and certain medications such as amiodarone, quinidine, verapamil, and diltiazem. Management of digoxin toxicity involves the use of digoxin specific antibody fragments, also known as Digibind or digifab. Arrhythmias should be treated, and electrolyte disturbances should be corrected with close monitoring of potassium levels. It is important to note that digoxin toxicity can be precipitated by hypokalaemia, and toxicity can then lead to hyperkalaemia.
-
This question is part of the following fields:
- Cardiology
-
-
Question 9
Incorrect
-
A 28-year-old woman comes in with a one-week history of occasional dizzy spells and feeling generally under the weather. She experienced one brief episode where she fainted. She was diagnosed with systemic lupus erythematosus four months ago and has been prescribed high-dose ibuprofen. During the examination, she has swelling in her hands and feet but no other notable findings. Her EKG shows broad QRS complexes and tall peaked T waves.
Which ONE blood test will confirm the diagnosis?Your Answer: Rheumatoid factor
Correct Answer: Urea and electrolytes
Explanation:This patient’s ECG shows signs consistent with hyperkalemia, including broad QRS complexes, tall-peaked T waves, and bizarre p waves. It is estimated that around 10% of patients with SLE have hyperkalemia, which is believed to be caused by hyporeninemic hypoaldosteronism. Additionally, the patient has been taking a high dose of ibuprofen, which can also contribute to the development of hyperkalemia. NSAIDs are thought to induce hyperkalemia by reducing renin secretion, leading to decreased potassium excretion.
-
This question is part of the following fields:
- Cardiology
-
-
Question 10
Incorrect
-
A 60 year old female presents to the emergency department complaining of increasing shortness of breath. The patient reports feeling more fatigued and breathless with minimal exertion over the past few months, but in the past few days, she has been experiencing breathlessness even at rest. She informs you that she has been taking aspirin, ramipril, bisoprolol, and rosuvastatin for the past 5 years since she had a minor heart attack. Upon examination, you observe prominent neck veins, bilateral lung crepitations that are worse at the bases, faint heart sounds, and pitting edema below the knee. The patient's vital signs are as follows:
Blood pressure: 130/84 mmHg
Pulse rate: 90 bpm
Respiration rate: 23 bpm
Temperature: 37.0ºC
Oxygen saturation: 93% on room air
What would be the most appropriate initial treatment for this patient?Your Answer: Glyceryl trinitrate IV infusion (10 mcg/min initially, adjust dose according to response)
Correct Answer: Furosemide 40 mg IV
Explanation:Given the patient’s symptoms and physical findings, the most appropriate initial treatment would be to administer Furosemide 40 mg intravenously. Furosemide is a loop diuretic that helps remove excess fluid from the body, which can alleviate symptoms of fluid overload such as shortness of breath and edema. By reducing fluid volume, Furosemide can help improve the patient’s breathing and relieve the strain on the heart.
Further Reading:
Cardiac failure, also known as heart failure, is a clinical syndrome characterized by symptoms and signs resulting from abnormalities in the structure or function of the heart. This can lead to reduced cardiac output or high filling pressures at rest or with stress. Heart failure can be caused by various problems such as myocardial, valvular, pericardial, endocardial, or arrhythmic issues.
The most common causes of heart failure in the UK are coronary heart disease and hypertension. However, there are many other possible causes, including valvular heart disease, structural heart disease, cardiomyopathies, certain drugs or toxins, endocrine disorders, nutritional deficiencies, infiltrative diseases, infections, and arrhythmias. Conditions that increase peripheral demand on the heart, such as anemia, pregnancy, sepsis, hyperthyroidism, Paget’s disease of bone, arteriovenous malformations, and beriberi, can also lead to high-output cardiac failure.
Signs and symptoms of heart failure include edema, lung crepitations, tachycardia, tachypnea, hypotension, displaced apex beat, right ventricular heave, elevated jugular venous pressure, cyanosis, hepatomegaly, ascites, pleural effusions, breathlessness, fatigue, orthopnea, paroxysmal nocturnal dyspnea, nocturnal cough or wheeze, and Presyncope.
To diagnose heart failure, NICE recommends three key tests: N-terminal pro-B-type natriuretic peptide (NT‑proBNP), transthoracic echocardiography, and ECG. Additional tests may include chest X-ray, blood tests (U&Es, thyroid function, LFT’s, lipid profile, HbA1C, FBC), urinalysis, and peak flow or spirometry.
Management of cardiogenic pulmonary edema, a complication of heart failure, involves ensuring a patent airway, optimizing breathing with supplemental oxygen and non-invasive ventilation if necessary, and addressing circulation with loop diuretics to reduce preload, vasodilators to reduce preload and afterload, and inotropes if hypotension or signs of end organ hypoperfusion persist.
In summary, cardiac failure is a clinical syndrome resulting from abnormalities in cardiac function. It can have various causes and is characterized by specific signs and symptoms. Diagnosis involves specific tests, and management focuses on addressing
-
This question is part of the following fields:
- Cardiology
-
-
Question 11
Incorrect
-
A 72-year-old woman is evaluated in the cardiac care unit 2 days after experiencing a heart attack. She complains of significant shortness of breath. During the physical examination, a pansystolic murmur is audible and is most prominent at the lower left sternal border.
What is the SINGLE most probable diagnosis?Your Answer: Mitral regurgitation
Correct Answer: Ventricular septal defect
Explanation:Post myocardial infarction ventricular septal defect (VSD) is a rare but serious complication that occurs when the cardiac wall ruptures. It typically develops 2-3 days after a heart attack, and if left untreated, 85% of patients will die within two months. The murmur associated with VSD is a continuous sound throughout systole, and it is loudest at the lower left sternal edge. A palpable vibration, known as a thrill, is often felt along with the murmur.
Dressler’s syndrome, on the other hand, is a type of pericarditis that occurs 2-10 weeks after a heart attack or cardiac surgery. It is characterized by sharp chest pain that is relieved by sitting forwards. Other signs of Dressler’s syndrome include a rubbing sound heard when listening to the heart, pulsus paradoxus (an abnormal drop in blood pressure during inspiration), and signs of right ventricular failure.
Mitral regurgitation also causes a continuous murmur throughout systole, but it is best heard at the apex of the heart and may radiate to the axilla (armpit).
Tricuspid stenosis, on the other hand, causes an early diastolic murmur that is best heard at the lower left sternal edge during inspiration.
Lastly, mitral stenosis causes a rumbling mid-diastolic murmur that is best heard at the apex of the heart. To listen for this murmur, the patient should be in the left lateral position, and the stethoscope bell should be used during expiration.
-
This question is part of the following fields:
- Cardiology
-
-
Question 12
Incorrect
-
Your hospital’s oncology department is currently evaluating the utility of a triple marker test for use in risk stratification of patients with suspected breast cancer. The test will use estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2).
How long after tumor formation do ER levels start to increase?Your Answer: 12 hours
Correct Answer: 1.5 hours
Explanation:The timing of the initial rise, peak, and return to normality of various cardiac enzymes can serve as a helpful guide. Creatine kinase, the main cardiac isoenzyme, typically experiences an initial rise within 4-8 hours, reaches its peak at 18 hours, and returns to normal within 2-3 days. Myoglobin, which lacks specificity due to its association with skeletal muscle damage, shows an initial rise within 1-4 hours, peaks at 6-7 hours, and returns to normal within 24 hours. Troponin I, known for its sensitivity and specificity, exhibits an initial rise within 3-12 hours, reaches its peak at 24 hours, and returns to normal within 3-10 days. HFABP, or heart fatty acid binding protein, experiences an initial rise within 1.5 hours, peaks at 5-10 hours, and returns to normal within 24 hours. Lastly, LDH, predominantly found in cardiac muscle, shows an initial rise at 10 hours, peaks at 24-48 hours, and returns to normal within 14 days.
-
This question is part of the following fields:
- Cardiology
-
-
Question 13
Incorrect
-
You are overseeing the care of a 68-year-old man who has presented to the ER after experiencing a sudden onset of dizziness and difficulty breathing. Upon examination, the patient's heart rate is found to be 44 beats per minute, indicating bradycardia. Which of the following factors increases the risk of developing asystole?
Your Answer: Ventricular pauses of 2s duration
Correct Answer: Mobitz II AV block
Explanation:Having Mobitz II AV block increases the risk of developing asystole. Other risk factors for asystole include recent asystole, third degree AV block (complete heart block) with a broad QRS complex, and a ventricular pause lasting longer than 3 seconds.
Further Reading:
Causes of Bradycardia:
– Physiological: Athletes, sleeping
– Cardiac conduction dysfunction: Atrioventricular block, sinus node disease
– Vasovagal & autonomic mediated: Vasovagal episodes, carotid sinus hypersensitivity
– Hypothermia
– Metabolic & electrolyte disturbances: Hypothyroidism, hyperkalaemia, hypermagnesemia
– Drugs: Beta-blockers, calcium channel blockers, digoxin, amiodarone
– Head injury: Cushing’s response
– Infections: Endocarditis
– Other: Sarcoidosis, amyloidosisPresenting symptoms of Bradycardia:
– Presyncope (dizziness, lightheadedness)
– Syncope
– Breathlessness
– Weakness
– Chest pain
– NauseaManagement of Bradycardia:
– Assess and monitor for adverse features (shock, syncope, myocardial ischaemia, heart failure)
– Treat reversible causes of bradycardia
– Pharmacological treatment: Atropine is first-line, adrenaline and isoprenaline are second-line
– Transcutaneous pacing if atropine is ineffective
– Other drugs that may be used: Aminophylline, dopamine, glucagon, glycopyrrolateBradycardia Algorithm:
– Follow the algorithm for management of bradycardia, which includes assessing and monitoring for adverse features, treating reversible causes, and using appropriate medications or pacing as needed.
https://acls-algorithms.com/wp-content/uploads/2020/12/Website-Bradycardia-Algorithm-Diagram.pdf -
This question is part of the following fields:
- Cardiology
-
-
Question 14
Incorrect
-
Whilst assessing a patient in the Emergency Department, you observe a diastolic murmur.
Which of the following is NOT a potential cause of a diastolic murmur?Your Answer: Left anterior descending artery stenosis
Correct Answer: Tricuspid regurgitation
Explanation:Tricuspid regurgitation leads to a pansystolic murmur that is most pronounced in the tricuspid area during inhalation. The primary cause of tricuspid regurgitation is right ventricular failure.
Other clinical signs that may be present in tricuspid regurgitation include a raised jugular venous pressure (JVP) and giant C-V waves. Additionally, features of increased right atrial pressure, such as ascites and dependent edema, may be observed. Pulsatile hepatomegaly and a thrill at the left sternal edge are also possible indicators. Reverse splitting of the second heart sound, due to early closure of the pulmonary valve, and a third heart sound, caused by rapid right ventricular filling, may be heard as well.
Aortic regurgitation, on the other hand, produces an early diastolic murmur that is most audible at the lower left sternal edge when the patient is sitting forward and exhaling.
In the case of mitral stenosis, a rumbling mid-diastolic murmur is best heard at the apex while the patient is in the left lateral position and exhaling, using the bell of the stethoscope.
Atrial myxomas are benign tumors that can develop in the heart. Most commonly found on the left side, they may obstruct the mitral valve, resulting in a mid-diastolic murmur similar to that of mitral stenosis.
Lastly, left anterior descending artery stenosis can cause an early diastolic murmur, also known as Dock’s murmur. This murmur is similar to that of aortic regurgitation and is best heard at the left 2nd or 3rd intercostal space.
-
This question is part of the following fields:
- Cardiology
-
-
Question 15
Incorrect
-
You are called to cardiac arrest in the resus area of your Emergency Department. As part of your management, a dose of amiodarone is administered.
Amiodarone should be administered at which of the following points during a pediatric VF arrest?Your Answer: After the 1st shock
Correct Answer: After the 3rd shock
Explanation:Amiodarone is recommended to be administered after the third shock in a shockable cardiac arrest (Vf/pVT) while performing chest compressions. The prescribed dose is 300 mg, which should be given as an intravenous bolus. To ensure proper administration, the medication should be diluted in 20 mL of 5% dextrose solution.
In cases where VF/pVT continues after five defibrillation attempts, an additional dose of 150 mg of Amiodarone should be administered. It is important to note that Amiodarone is not suitable for treating PEA or asystole, and its use is specifically indicated for shockable cardiac arrest situations.
-
This question is part of the following fields:
- Cardiology
-
-
Question 16
Incorrect
-
A 32-year-old man is brought to the Emergency Department by ambulance due to 'severe palpitations.' His heart rate is 180 bpm, and his rhythm strip is suggestive of supraventricular tachycardia. You plan to administer adenosine.
Which of the following is a contraindication to the use of adenosine?Your Answer: 1st degree heart block
Correct Answer: Recent severe asthma exacerbation
Explanation:Adenosine is a type of purine nucleoside that is primarily utilized in the diagnosis and treatment of paroxysmal supraventricular tachycardia. Its main mechanism of action involves stimulating A1-adenosine receptors and opening acetylcholine-sensitive potassium channels. This leads to hyperpolarization of the cell membrane in the atrioventricular (AV) node and slows down conduction in the AV node by inhibiting calcium channels.
When administering adenosine, it is given rapidly through an intravenous bolus, followed by a saline flush. The initial dose for adults is 6 mg, and if necessary, additional doses of 12 mg or 18 mg can be given at 1-2 minute intervals until the desired effect is observed. It is important to note that the latest ALS guidelines recommend 18 mg for the third dose, while the BNF/NICE guidelines suggest 12 mg.
One of the advantages of adenosine is its very short half-life, which is less than 10 seconds. This means that its effects are rapid, typically occurring within 10 seconds. However, the duration of action is also short, lasting only 10-20 seconds. Due to its short half-life, any side effects experienced are usually brief. These side effects may include a sense of impending doom, facial flushing, dyspnea, chest discomfort, and a metallic taste.
There are certain contraindications to the use of adenosine. These include 2nd or 3rd degree AV block, sick sinus syndrome, long QT syndrome, severe hypotension, decompensated heart failure, chronic obstructive lung disease, and asthma. It is important to exercise caution when administering adenosine to patients with a heart transplant, as they are particularly sensitive to its effects. In these cases, a reduced initial dose of 3 mg is recommended, followed by 6 mg and then 12 mg.
It is worth noting that the effects of adenosine can be potentiated by dipyridamole, a medication commonly used in combination with adenosine. Therefore, the dose of adenosine should be adjusted and reduced in patients who are also taking dipyridamole.
-
This question is part of the following fields:
- Cardiology
-
-
Question 17
Incorrect
-
You assess a 60-year-old individual who has arrived at the emergency department with a progressive increase in difficulty breathing. Upon reviewing the patient's medical history, you discover that they underwent an echocardiogram a year ago, which revealed moderate tricuspid regurgitation. Which of the following physical indications is linked to tricuspid regurgitation?
Your Answer: Torsades de pointes
Correct Answer: Positive Carvallo's sign
Explanation:Carvallo’s sign is a term used to describe the phenomenon where the systolic murmur of tricuspid regurgitation becomes louder when taking a deep breath in. Tricuspid regurgitation is characterized by a continuous murmur that starts in systole and continues throughout the entire cardiac cycle. This murmur is best heard at the lower left sternal edge and has a low frequency. In addition to Carvallo’s sign, other features of tricuspid regurgitation include the presence of an S3 heart sound, the possibility of atrial arrhythmias such as flutter or fibrillation, the presence of giant C-V waves in the jugular pulse, hepatomegaly (often with a pulsatile nature), and the development of edema, which may be accompanied by lung crepitations or pleural effusions.
Further Reading:
Tricuspid regurgitation (TR) is a condition where blood flows backwards through the tricuspid valve in the heart. It is classified as either primary or secondary, with primary TR being caused by abnormalities in the tricuspid valve itself and secondary TR being the result of other conditions outside of the valve. Mild TR is common, especially in young adults, and often does not cause symptoms. However, severe TR can lead to right-sided heart failure and the development of symptoms such as ascites, peripheral edema, and hepatomegaly.
The causes of TR can vary. Primary TR can be caused by conditions such as rheumatic heart disease, myxomatous valve disease, or Ebstein anomaly. Secondary TR is often the result of right ventricular dilatation due to left heart failure or pulmonary hypertension. Other causes include endocarditis, traumatic chest injury, left ventricular systolic dysfunction, chronic lung disease, pulmonary thromboembolism, myocardial disease, left to right shunts, and carcinoid heart disease. In some cases, TR can occur as a result of infective endocarditis in IV drug abusers.
Clinical features of TR can include a pansystolic murmur that is best heard at the lower left sternal edge, Carvallo’s sign (murmur increases with inspiration and decreases with expiration), an S3 heart sound, and the presence of atrial arrhythmias such as flutter or fibrillation. Other signs can include giant C-V waves in the jugular pulse, hepatomegaly (often pulsatile), and edema with lung crepitations or pleural effusions.
The management of TR depends on the underlying cause and the severity of the condition. In severe cases, valve repair or replacement surgery may be necessary. Treatment may also involve addressing the underlying conditions contributing to TR, such as managing left heart failure or pulmonary hypertension.
-
This question is part of the following fields:
- Cardiology
-
-
Question 18
Incorrect
-
A 72 year old male comes to the emergency department complaining of central chest pain. An ECG is performed to check for signs of ischemic changes. Which of the following results is most indicative of a non ST elevation myocardial infarction (NSTEMI)?
Your Answer: T wave inversion in lead AVR
Correct Answer: Q wave in lead V2
Explanation:Q waves in V2 and V3 are typically abnormal and indicate a pathological condition. Q waves are negative deflections that occur before an R wave. They can be either normal or abnormal. Small normal Q waves, which are less than 1mm deep, may be present in most leads. Deeper normal Q waves are commonly seen in lead III, as long as they are not present in the adjacent leads II and AVF. On the other hand, pathological Q waves are usually deeper and wider. In particular, Q waves should not be observed in V2 and V3. The specific criteria for identifying pathological Q waves are as follows: any Q wave in leads V2-V3 that is greater than 0.02s in duration or a QS complex in leads V2-V3; a Q wave that is greater than 0.03s in duration and deeper than 1mm, or a QS complex, in leads I, II, aVL, aVF, or V4-V6 in any two leads of a contiguous lead grouping; an R wave that is greater than 0.04s in duration in V1-V2 and has an R/S ratio greater than 1, along with a concordant positive T wave, in the absence of a conduction defect. In healthy individuals, the T-wave is normally inverted in aVR and inverted or flat in V1. T-wave inversion in III is also considered a normal variation. If there is ST elevation in lead V1, it would suggest a ST-elevation myocardial infarction (STEMI) rather than a non-ST-elevation myocardial infarction (NSTEMI).
Further Reading:
Acute Coronary Syndromes (ACS) is a term used to describe a group of conditions that involve the sudden reduction or blockage of blood flow to the heart. This can lead to a heart attack or unstable angina. ACS includes ST segment elevation myocardial infarction (STEMI), non-ST segment elevation myocardial infarction (NSTEMI), and unstable angina (UA).
The development of ACS is usually seen in patients who already have underlying coronary heart disease. This disease is characterized by the buildup of fatty plaques in the walls of the coronary arteries, which can gradually narrow the arteries and reduce blood flow to the heart. This can cause chest pain, known as angina, during physical exertion. In some cases, the fatty plaques can rupture, leading to a complete blockage of the artery and a heart attack.
There are both non modifiable and modifiable risk factors for ACS. non modifiable risk factors include increasing age, male gender, and family history. Modifiable risk factors include smoking, diabetes mellitus, hypertension, hypercholesterolemia, and obesity.
The symptoms of ACS typically include chest pain, which is often described as a heavy or constricting sensation in the central or left side of the chest. The pain may also radiate to the jaw or left arm. Other symptoms can include shortness of breath, sweating, and nausea/vomiting. However, it’s important to note that some patients, especially diabetics or the elderly, may not experience chest pain.
The diagnosis of ACS is typically made based on the patient’s history, electrocardiogram (ECG), and blood tests for cardiac enzymes, specifically troponin. The ECG can show changes consistent with a heart attack, such as ST segment elevation or depression, T wave inversion, or the presence of a new left bundle branch block. Elevated troponin levels confirm the diagnosis of a heart attack.
The management of ACS depends on the specific condition and the patient’s risk factors. For STEMI, immediate coronary reperfusion therapy, either through primary percutaneous coronary intervention (PCI) or fibrinolysis, is recommended. In addition to aspirin, a second antiplatelet agent is usually given. For NSTEMI or unstable angina, the treatment approach may involve reperfusion therapy or medical management, depending on the patient’s risk of future cardiovascular events.
-
This question is part of the following fields:
- Cardiology
-
-
Question 19
Incorrect
-
A 45-year-old man presents with palpitations and is found to have atrial fibrillation. You are requested to evaluate his ECG.
Which of the following statements is NOT true regarding the ECG in atrial fibrillation?Your Answer: The rhythm is usually irregularly irregular
Correct Answer: Ashman beats have a poor prognosis
Explanation:The classic ECG features of atrial fibrillation include an irregularly irregular rhythm, the absence of p-waves, an irregular ventricular rate, and the presence of fibrillation waves. This irregular rhythm occurs because the atrial impulses are filtered out by the AV node.
In addition, Ashman beats may be observed in atrial fibrillation. These beats are characterized by wide complex QRS complexes, often with a morphology resembling right bundle branch block. They occur after a short R-R interval that is preceded by a prolonged R-R interval. Fortunately, Ashman beats are generally considered harmless.
The disorganized electrical activity in atrial fibrillation typically originates at the root of the pulmonary veins.
-
This question is part of the following fields:
- Cardiology
-
-
Question 20
Incorrect
-
A 35 year old male presents to the emergency department with complaints of palpitations. An ECG is conducted, revealing a regular narrow complex supraventricular tachycardia with a rate of around 160 bpm. There are no signs of ST elevation or depression. The patient's vital signs are as follows:
Blood pressure: 128/76 mmHg
Pulse rate: 166
Respiration rate: 19
Oxygen saturations: 97% on room air
What would be the most appropriate initial treatment for this patient?Your Answer: Adenosine 6 mg IV
Correct Answer: Vagal manoeuvres
Explanation:In stable patients with SVT, it is recommended to first try vagal manoeuvres before resorting to drug treatment. This approach is particularly applicable to patients who do not exhibit any adverse features, as mentioned in the case above.
Further Reading:
Supraventricular tachycardia (SVT) is a type of tachyarrhythmia that originates from the atria or above the bundle of His in the heart. It includes all atrial and junctional tachycardias, although atrial fibrillation is often considered separately. SVT typically produces a narrow QRS complex tachycardia on an electrocardiogram (ECG), unless there is an underlying conduction abnormality below the atrioventricular (AV) node. Narrow complex tachycardias are considered SVTs, while some broad complex tachycardias can also be SVTs with co-existent conduction delays.
SVT can be classified into three main subtypes based on where it arises: re-entrant accessory circuits (the most common type), atrial tachycardias, and junctional tachycardias. The most common SVTs are AVNRT (AV nodal re-entry tachycardia) and AVRT (AV re-entry tachycardia), which arise from accessory circuits within the heart. AVNRT involves an accessory circuit within the AV node itself, while AVRT involves an accessory pathway between the atria and ventricles that allows additional electrical signals to trigger the AV node.
Atrial tachycardias originate from abnormal foci within the atria, except for the SA node, AV node, or accessory pathway. Junctional tachycardias arise in the AV junction. The ECG features of SVTs vary depending on the type. Atrial tachycardias may have abnormal P wave morphology, an isoelectric baseline between P waves (in atrial flutter), and inverted P waves in certain leads. AVNRT may show pseudo R waves in V1 or pseudo S waves in certain leads, with an RP interval shorter than the PR interval. AVRT (WPW) may exhibit a delta wave on a resting ECG and retrograde P waves in the ST segment, with an RP interval shorter than the PR interval. Junctional tachycardias may have retrograde P waves before, during, or after the QRS complex, with inverted P waves in certain leads and upright P waves in others.
Treatment of SVT follows the 2021 resuscitation council algorithm for tachycardia with a pulse. The algorithm provides guidelines for managing stable patients with SVT.
-
This question is part of the following fields:
- Cardiology
-
-
Question 21
Incorrect
-
A 30-year-old woman presents with a severe 'tearing' abdominal pain that radiates to her lower back. A diagnosis of aortic dissection is suspected.
Which of the following would be the LEAST likely risk factor for aortic dissection?Your Answer: Ehlers-Danlos syndrome
Correct Answer: Cannabis usage
Explanation:There is no known connection between the use of cannabis and aortic dissection. Some factors that are recognized as increasing the risk of aortic dissection include hypertension, atherosclerosis, aortic coarctation, the use of sympathomimetic drugs like cocaine, Marfan syndrome, Ehlers-Danlos syndrome, Turner’s syndrome, tertiary syphilis, and pre-existing aortic aneurysm.
-
This question is part of the following fields:
- Cardiology
-
-
Question 22
Incorrect
-
A 68 year old man is brought to the emergency department due to sudden difficulty breathing. Bedside echocardiography reveals significant mitral regurgitation. What is a common clinical characteristic of mitral regurgitation?
Your Answer: Mid-diastolic murmur
Correct Answer: A 3rd heart sound
Explanation:Mitral regurgitation is characterized by several clinical features. One of the main signs is a pansystolic murmur that can be heard throughout the entire systolic phase of the cardiac cycle. This murmur often radiates to the left axilla. Another notable feature is a soft S1 heart sound, which is the first heart sound heard during the cardiac cycle. Additionally, a 3rd heart sound, also known as an added sound, can be detected in patients with mitral regurgitation. As the condition progresses to moderate to severe levels, signs such as a laterally displaced apex beat with a heave may become apparent.
Further Reading:
Mitral Stenosis:
– Causes: Rheumatic fever, Mucopolysaccharidoses, Carcinoid, Endocardial fibroelastosis
– Features: Mid-late diastolic murmur, loud S1, opening snap, low volume pulse, malar flush, atrial fibrillation, signs of pulmonary edema, tapping apex beat
– Features of severe mitral stenosis: Length of murmur increases, opening snap becomes closer to S2
– Investigation findings: CXR may show left atrial enlargement, echocardiography may show reduced cross-sectional area of the mitral valveMitral Regurgitation:
– Causes: Mitral valve prolapse, Myxomatous degeneration, Ischemic heart disease, Rheumatic fever, Connective tissue disorders, Endocarditis, Dilated cardiomyopathy
– Features: pansystolic murmur radiating to left axilla, soft S1, S3, laterally displaced apex beat with heave
– Signs of acute MR: Decompensated congestive heart failure symptoms
– Signs of chronic MR: Leg edema, fatigue, arrhythmia (atrial fibrillation)
– Investigation findings: Doppler echocardiography to detect regurgitant flow and pulmonary hypertension, ECG may show signs of LA enlargement and LV hypertrophy, CXR may show LA and LV enlargement in chronic MR and pulmonary edema in acute MR. -
This question is part of the following fields:
- Cardiology
-
-
Question 23
Incorrect
-
A 60-year-old woman presents with complaints of fatigue and difficulty breathing. During the examination, you observe a pansystolic murmur that is most prominent at the apex and radiates to the axilla. The murmur is more pronounced during expiration.
What is the SINGLE most probable diagnosis?Your Answer: Tricuspid stenosis
Correct Answer: Mitral regurgitation
Explanation:Patients with mitral regurgitation can go for extended periods without experiencing any symptoms. They may have a normal exercise tolerance and show no signs of congestive cardiac failure. However, when cardiac failure does occur, patients often complain of breathlessness, especially during physical exertion. They may also experience fatigue, difficulty breathing while lying flat (orthopnoea), and sudden episodes of difficulty breathing at night (paroxysmal nocturnal dyspnoea).
In terms of clinical signs, mitral regurgitation can be identified through various indicators. These include a displaced and volume loaded apex beat, which can be felt during a physical examination. A palpable thrill may also be detected at the apex. Additionally, a pansystolic murmur, which is loudest at the apex and radiates to the axilla, can be heard. This murmur is typically most pronounced when the patient holds their breath during expiration. Furthermore, a soft first heart sound and signs of left ventricular failure may be present.
-
This question is part of the following fields:
- Cardiology
-
-
Question 24
Incorrect
-
A 25 year old female is brought to the emergency department with a gunshot wound to the abdomen. You observe that the patient is breathing rapidly and her neck veins are distended. The trachea is centrally located. Her vital signs are as follows:
Blood pressure: 88/56 mmHg
Heart rate: 127 bpm
Respiration rate: 28 rpm
SpO2: 99% on 15L oxygen
What is the probable diagnosis?Your Answer: Superior vena cava puncture
Correct Answer: Cardiac tamponade
Explanation:Cardiac tamponade is characterized by several classical signs, including distended neck veins, muffled heart sounds, and hypotension. When neck veins are distended, it suggests that the right ventricle is not filling properly. In cases of trauma, this is often caused by the compression of air (tension pneumothorax) or fluid (blood in the pericardial space). One important distinguishing feature is the deviation of the trachea.
Further Reading:
Cardiac tamponade, also known as pericardial tamponade, occurs when fluid accumulates in the pericardial sac and compresses the heart, leading to compromised blood flow. Classic clinical signs of cardiac tamponade include distended neck veins, hypotension, muffled heart sounds, and pulseless electrical activity (PEA). Diagnosis is typically done through a FAST scan or an echocardiogram.
Management of cardiac tamponade involves assessing for other injuries, administering IV fluids to reduce preload, performing pericardiocentesis (inserting a needle into the pericardial cavity to drain fluid), and potentially performing a thoracotomy. It is important to note that untreated expanding cardiac tamponade can progress to PEA cardiac arrest.
Pericardiocentesis can be done using the subxiphoid approach or by inserting a needle between the 5th and 6th intercostal spaces at the left sternal border. Echo guidance is the gold standard for pericardiocentesis, but it may not be available in a resuscitation situation. Complications of pericardiocentesis include ST elevation or ventricular ectopics, myocardial perforation, bleeding, pneumothorax, arrhythmia, acute pulmonary edema, and acute ventricular dilatation.
It is important to note that pericardiocentesis is typically used as a temporary measure until a thoracotomy can be performed. Recent articles published on the RCEM learning platform suggest that pericardiocentesis has a low success rate and may delay thoracotomy, so it is advised against unless there are no other options available.
-
This question is part of the following fields:
- Cardiology
-
-
Question 25
Correct
-
A 68 year old male presents to the emergency department by ambulance due to worsening shortness of breath over the past 6 hours. The patient's wife informs you that he had complained of chest discomfort earlier in the day but attributed it to 'indigestion'. The patient is visibly breathing rapidly from the end of the bed and examination reveals crackling sounds throughout both lungs with no breath sounds and dullness when tapping the lower parts of the lungs. The following observations are noted:
Blood pressure 100/60 mmHg
Pulse rate 110 bpm
Respiration rate 26 bpm
Oxygen saturation 95% on 15L O2
Temperature 37.2ºC
You diagnose pulmonary edema as a result of acute heart failure secondary to cardiogenic shock. What is the mortality rate associated with this condition during hospitalization?Your Answer: 50%
Explanation:The mortality rate associated with pulmonary edema as a result of acute heart failure secondary to cardiogenic shock during hospitalization is 50%.
Further Reading:
Cardiac failure, also known as heart failure, is a clinical syndrome characterized by symptoms and signs resulting from abnormalities in the structure or function of the heart. This can lead to reduced cardiac output or high filling pressures at rest or with stress. Heart failure can be caused by various problems such as myocardial, valvular, pericardial, endocardial, or arrhythmic issues.
The most common causes of heart failure in the UK are coronary heart disease and hypertension. However, there are many other possible causes, including valvular heart disease, structural heart disease, cardiomyopathies, certain drugs or toxins, endocrine disorders, nutritional deficiencies, infiltrative diseases, infections, and arrhythmias. Conditions that increase peripheral demand on the heart, such as anemia, pregnancy, sepsis, hyperthyroidism, Paget’s disease of bone, arteriovenous malformations, and beriberi, can also lead to high-output cardiac failure.
Signs and symptoms of heart failure include edema, lung crepitations, tachycardia, tachypnea, hypotension, displaced apex beat, right ventricular heave, elevated jugular venous pressure, cyanosis, hepatomegaly, ascites, pleural effusions, breathlessness, fatigue, orthopnea, paroxysmal nocturnal dyspnea, nocturnal cough or wheeze, and Presyncope.
To diagnose heart failure, NICE recommends three key tests: N-terminal pro-B-type natriuretic peptide (NT‑proBNP), transthoracic echocardiography, and ECG. Additional tests may include chest X-ray, blood tests (U&Es, thyroid function, LFT’s, lipid profile, HbA1C, FBC), urinalysis, and peak flow or spirometry.
Management of cardiogenic pulmonary edema, a complication of heart failure, involves ensuring a patent airway, optimizing breathing with supplemental oxygen and non-invasive ventilation if necessary, and addressing circulation with loop diuretics to reduce preload, vasodilators to reduce preload and afterload, and inotropes if hypotension or signs of end organ hypoperfusion persist.
-
This question is part of the following fields:
- Cardiology
-
-
Question 26
Incorrect
-
You evaluate a 55-year-old woman with chest discomfort and suspect a diagnosis of an acute coronary syndrome (ACS).
Which ONE statement about ACS is NOT TRUE?Your Answer: A positive troponin is indicative of myocyte necrosis
Correct Answer: Cardiac enzymes are usually elevated in unstable angina
Explanation:Cardiac enzymes do not increase in unstable angina. However, if cardiac markers do rise, it is classified as a non-ST elevation myocardial infarction (NSTEMI). Both unstable angina and NSTEMI can have a normal ECG. An extended ventricular activation time indicates damage to the heart muscle. This occurs because infarcting myocardium conducts electrical impulses at a slower pace, resulting in a prolonged interval between the start of the QRS complex and the apex of the R wave. A positive troponin test indicates the presence of necrosis in cardiac myocytes.
Summary:
Marker | Initial Rise | Peak | Normal at
Creatine kinase | 4-8 hours | 18 hours 2-3 days | CK-MB = main cardiac isoenzyme
Myoglobin | 1-4 hours | 6-7 hours | 24 hours | Low specificity due to skeletal muscle damage
Troponin I | 3-12 hours | 24 hours | 3-10 days | Appears to be the most sensitive and specific
HFABP | 1-2 hours | 5-10 hours | 24 hours | HFABP = heart fatty acid binding protein
LDH | 10 hours | 24-48 hours | 14 days | Cardiac muscle mainly contains LDH -
This question is part of the following fields:
- Cardiology
-
-
Question 27
Incorrect
-
You are requested to evaluate a 62-year-old individual who has arrived with complaints of chest discomfort. The nurse has handed you the ECG report, as the ECG machine has indicated 'anterior infarction' in its comments.
Which leads would you anticipate observing ST elevation in an acute anterior STEMI?Your Answer: I and AVL
Correct Answer: V3-V4
Explanation:The leads V3 and V4 represent the anterior myocardial area.
Acute Coronary Syndromes (ACS) is a term used to describe a group of conditions that involve the sudden reduction or blockage of blood flow to the heart. This can lead to a heart attack or unstable angina. ACS includes ST segment elevation myocardial infarction (STEMI), non-ST segment elevation myocardial infarction (NSTEMI), and unstable angina (UA).
The development of ACS is usually seen in patients who already have underlying coronary heart disease. This disease is characterized by the buildup of fatty plaques in the walls of the coronary arteries, which can gradually narrow the arteries and reduce blood flow to the heart. This can cause chest pain, known as angina, during physical exertion. In some cases, the fatty plaques can rupture, leading to a complete blockage of the artery and a heart attack.
There are both non modifiable and modifiable risk factors for ACS. non modifiable risk factors include increasing age, male gender, and family history. Modifiable risk factors include smoking, diabetes mellitus, hypertension, hypercholesterolemia, and obesity.
The symptoms of ACS typically include chest pain, which is often described as a heavy or constricting sensation in the central or left side of the chest. The pain may also radiate to the jaw or left arm. Other symptoms can include shortness of breath, sweating, and nausea/vomiting. However, it’s important to note that some patients, especially diabetics or the elderly, may not experience chest pain.
The diagnosis of ACS is typically made based on the patient’s history, electrocardiogram (ECG), and blood tests for cardiac enzymes, specifically troponin. The ECG can show changes consistent with a heart attack, such as ST segment elevation or depression, T wave inversion, or the presence of a new left bundle branch block. Elevated troponin levels confirm the diagnosis of a heart attack.
The management of ACS depends on the specific condition and the patient’s risk factors. For STEMI, immediate coronary reperfusion therapy, either through primary percutaneous coronary intervention (PCI) or fibrinolysis, is recommended. In addition to aspirin, a second antiplatelet agent is usually given. For NSTEMI or unstable angina, the treatment approach may involve reperfusion therapy or medical management, depending on the patient’s risk of future cardiovascular events.
-
This question is part of the following fields:
- Cardiology
-
-
Question 28
Incorrect
-
A 72 year old male is brought to the emergency department by his daughter due to sudden confusion, severe headache, and problems with coordination. Upon initial assessment at triage, the patient's blood pressure is found to be significantly elevated at 224/126 mmHg. You suspect the presence of hypertensive encephalopathy. What is the primary treatment option for this condition?
Your Answer: Magnesium sulphate
Correct Answer: Labetalol
Explanation:The primary treatment option for hypertensive encephalopathy, a condition characterized by sudden confusion, severe headache, and coordination problems due to significantly elevated blood pressure, is labetalol.
Further Reading:
A hypertensive emergency is characterized by a significant increase in blood pressure accompanied by acute or progressive damage to organs. While there is no specific blood pressure value that defines a hypertensive emergency, systolic blood pressure is typically above 180 mmHg and/or diastolic blood pressure is above 120 mmHg. The most common presentations of hypertensive emergencies include cerebral infarction, pulmonary edema, encephalopathy, and congestive cardiac failure. Less common presentations include intracranial hemorrhage, aortic dissection, and pre-eclampsia/eclampsia.
The signs and symptoms of hypertensive emergencies can vary widely due to the potential dysfunction of every physiological system. Some common signs and symptoms include headache, nausea and/or vomiting, chest pain, arrhythmia, proteinuria, signs of acute kidney failure, epistaxis, dyspnea, dizziness, anxiety, confusion, paraesthesia or anesthesia, and blurred vision. Clinical assessment focuses on detecting acute or progressive damage to the cardiovascular, renal, and central nervous systems.
Investigations that are essential in evaluating hypertensive emergencies include U&Es (electrolyte levels), urinalysis, ECG, and CXR. Additional investigations may be considered depending on the suspected underlying cause, such as a CT head for encephalopathy or new onset confusion, CT thorax for suspected aortic dissection, and CT abdomen for suspected phaeochromocytoma. Plasma free metanephrines, urine total catecholamines, vanillylmandelic acid (VMA), and metanephrine may be tested if phaeochromocytoma is suspected. Urine screening for cocaine and/or amphetamines may be appropriate in certain cases, as well as an endocrine screen for Cushing’s syndrome.
The management of hypertensive emergencies involves cautious reduction of blood pressure to avoid precipitating renal, cerebral, or coronary ischemia. Staged blood pressure reduction is typically the goal, with an initial reduction in mean arterial pressure (MAP) by no more than 25% in the first hour. Further gradual reduction to a systolic blood pressure of 160 mmHg and diastolic blood pressure of 100 mmHg over the next 2 to 6 hours is recommended. Initial management involves treatment with intravenous antihypertensive agents in an intensive care setting with appropriate monitoring.
-
This question is part of the following fields:
- Cardiology
-
-
Question 29
Incorrect
-
Your hospital’s neurology department is currently evaluating the utility of a triple marker test for use in diagnosing patients with suspected stroke. The test will use brain natriuretic peptide (BNP), neuron-specific enolase (NSE), and S100B protein.
How long after a stroke do levels of glial fibrillary acidic protein (GFAP) start to increase?Your Answer: 12-18 hours
Correct Answer: 4-8 hours
Explanation:The timing of the initial rise, peak, and return to normality of various cardiac enzymes can serve as a helpful guide. Creatine kinase, the main cardiac isoenzyme, typically experiences an initial rise within 4-8 hours, reaches its peak at 18 hours, and returns to normal within 2-3 days. Myoglobin, which lacks specificity due to its association with skeletal muscle damage, shows an initial rise within 1-4 hours, peaks at 6-7 hours, and returns to normal within 24 hours. Troponin I, known for its sensitivity and specificity, exhibits an initial rise within 3-12 hours, reaches its peak at 24 hours, and returns to normal within 3-10 days. HFABP, or heart fatty acid binding protein, experiences an initial rise within 1.5 hours, peaks at 5-10 hours, and returns to normal within 24 hours. Lastly, LDH, predominantly found in cardiac muscle, shows an initial rise at 10 hours, peaks at 24-48 hours, and returns to normal within 14 days.
-
This question is part of the following fields:
- Cardiology
-
-
Question 30
Incorrect
-
A 25-year-old is brought into the emergency department after being discovered unresponsive in a neighbor's backyard. It is suspected that the patient had consumed alcohol at a nearby club and opted to walk home in the snowy conditions. The patient's temperature is documented as 27.8ºC. The nurse connects leads to conduct a 12-lead ECG. Which of the subsequent ECG alterations is most closely linked to hypothermia?
Your Answer:
Correct Answer: Osborn waves
Explanation:Hypothermia can cause various changes in an electrocardiogram (ECG). These changes include a slower heart rate (bradycardia), the presence of Osborn Waves (also known as J waves), a prolonged PR interval, a widened QRS complex, and a prolonged QT interval. Additionally, the ECG may show artifacts caused by shivering, as well as the presence of ventricular ectopics. In severe cases, hypothermia can lead to cardiac arrest, which may manifest as ventricular tachycardia (VT), ventricular fibrillation (VF), or asystole.
Further Reading:
Hypothermia is defined as a core temperature below 35ºC and can be graded as mild, moderate, severe, or profound based on the core temperature. When the core temperature drops, the basal metabolic rate decreases and cell signaling between neurons decreases, leading to reduced tissue perfusion. This can result in decreased myocardial contractility, vasoconstriction, ventilation-perfusion mismatch, and increased blood viscosity. Symptoms of hypothermia progress as the core temperature drops, starting with compensatory increases in heart rate and shivering, and eventually leading to bradyarrhythmias, prolonged PR, QRS, and QT intervals, and cardiac arrest.
In the management of hypothermic cardiac arrest, ALS should be initiated with some modifications. The pulse check during CPR should be prolonged to 1 minute due to difficulty in obtaining a pulse. Rewarming the patient is important, and mechanical ventilation may be necessary due to stiffness of the chest wall. Drug metabolism is slowed in hypothermic patients, so dosing of drugs should be adjusted or withheld. Electrolyte disturbances are common in hypothermic patients and should be corrected.
Frostbite refers to a freezing injury to human tissue and occurs when tissue temperature drops below 0ºC. It can be classified as superficial or deep, with superficial frostbite affecting the skin and subcutaneous tissues, and deep frostbite affecting bones, joints, and tendons. Frostbite can be classified from 1st to 4th degree based on the severity of the injury. Risk factors for frostbite include environmental factors such as cold weather exposure and medical factors such as peripheral vascular disease and diabetes.
Signs and symptoms of frostbite include skin changes, cold sensation or firmness to the affected area, stinging, burning, or numbness, clumsiness of the affected extremity, and excessive sweating, hyperemia, and tissue gangrene. Frostbite is diagnosed clinically and imaging may be used in some cases to assess perfusion or visualize occluded vessels. Management involves moving the patient to a warm environment, removing wet clothing, and rapidly rewarming the affected tissue. Analgesia should be given as reperfusion is painful, and blisters should be de-roofed and aloe vera applied. Compartment syndrome is a risk and should be monitored for. Severe cases may require surgical debridement of amputation.
-
This question is part of the following fields:
- Cardiology
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)