-
Question 1
Correct
-
You are requested to evaluate a teenager who is in resus with a supraventricular tachycardia. The patient is stable hemodynamically but has already received 3 doses of IV adenosine and vagal maneuvers. However, there has been no improvement in their condition.
Based on the current APLS guidelines, what would be the most suitable next course of action in managing this patient?Your Answer: Give IV amiodarone 5-10 mg/kg
Explanation:Supraventricular tachycardia (SVT) is the most common arrhythmia that occurs in children and infants, causing cardiovascular instability. According to the current APLS guidelines, if a patient with SVT shows no signs of shock and remains stable, initial attempts should be made to use vagal maneuvers. If these maneuvers are unsuccessful, the following steps are recommended:
– Administer an initial dose of 100 mcg/kg of adenosine.
– After two minutes, if the child is still in stable SVT, administer another dose of 200 mcg/kg of adenosine.
– After an additional two minutes, if the child remains in stable SVT, administer another dose of 300 mcg/kg of adenosine.If these measures do not resolve the SVT, the guidelines suggest considering the following options:
– Administer adenosine at a dose of 400-500 mcg/kg.
– Perform a synchronous DC shock.
– Administer amiodarone.When using amiodarone, the initial dose should be 5-10 mg/kg given over a period of 20 minutes to 2 hours. This should be followed by a continuous infusion of 300 mcg/kg/hour, with adjustments made based on the response, increasing by 1.5 mg/kg/hour. The total infusion rate should not exceed 1.2 g in a 24-hour period.
If defibrillation is necessary for the treatment of SVT in children, it should be performed as a DC synchronous shock at a dosage of 1-2 J/kg.
-
This question is part of the following fields:
- Cardiology
-
-
Question 2
Incorrect
-
A 25-year-old woman arrives at the emergency department with complaints of palpitations and difficulty breathing. During triage, the patient reveals that she was previously diagnosed with narrow complex tachycardia a couple of years ago after experiencing palpitations during a night out. You order an ECG. What are the specific criteria used to define narrow complex tachycardia?
Your Answer:
Correct Answer: Pulse rate greater than 100 beats per minute and QRS duration less than 0.12 seconds
Explanation:Narrow QRS complex tachycardia is a term used to describe a fast heart rhythm with a pulse rate over 100 bpm and a QRS duration shorter than 120 ms.
Further Reading:
Supraventricular tachycardia (SVT) is a type of tachyarrhythmia that originates from the atria or above the bundle of His in the heart. It includes all atrial and junctional tachycardias, although atrial fibrillation is often considered separately. SVT typically produces a narrow QRS complex tachycardia on an electrocardiogram (ECG), unless there is an underlying conduction abnormality below the atrioventricular (AV) node. Narrow complex tachycardias are considered SVTs, while some broad complex tachycardias can also be SVTs with co-existent conduction delays.
SVT can be classified into three main subtypes based on where it arises: re-entrant accessory circuits (the most common type), atrial tachycardias, and junctional tachycardias. The most common SVTs are AVNRT (AV nodal re-entry tachycardia) and AVRT (AV re-entry tachycardia), which arise from accessory circuits within the heart. AVNRT involves an accessory circuit within the AV node itself, while AVRT involves an accessory pathway between the atria and ventricles that allows additional electrical signals to trigger the AV node.
Atrial tachycardias originate from abnormal foci within the atria, except for the SA node, AV node, or accessory pathway. Junctional tachycardias arise in the AV junction. The ECG features of SVTs vary depending on the type. Atrial tachycardias may have abnormal P wave morphology, an isoelectric baseline between P waves (in atrial flutter), and inverted P waves in certain leads. AVNRT may show pseudo R waves in V1 or pseudo S waves in certain leads, with an RP interval shorter than the PR interval. AVRT (WPW) may exhibit a delta wave on a resting ECG and retrograde P waves in the ST segment, with an RP interval shorter than the PR interval. Junctional tachycardias may have retrograde P waves before, during, or after the QRS complex, with inverted P waves in certain leads and upright P waves in others.
Treatment of SVT follows the 2021 resuscitation council algorithm for tachycardia with a pulse. The algorithm provides guidelines for managing stable patients with SVT.
-
This question is part of the following fields:
- Cardiology
-
-
Question 3
Incorrect
-
You conduct a cardiovascular examination on a 62-year-old man who complains of shortness of breath. He informs you that he has a known heart valve issue. During auscultation, you observe a significantly split second heart sound (S2).
What is the most probable cause of this finding?Your Answer:
Correct Answer: Mitral regurgitation
Explanation:The second heart sound (S2) is created by vibrations produced when the aortic and pulmonary valves close. It marks the end of systole. It is normal to hear a split in the sound during inspiration.
A loud S2 can be associated with certain conditions such as systemic hypertension (resulting in a loud A2), pulmonary hypertension (resulting in a loud P2), hyperdynamic states (like tachycardia, fever, or thyrotoxicosis), and atrial septal defect (which causes a loud P2).
On the other hand, a soft S2 can be linked to decreased aortic diastolic pressure (as seen in aortic regurgitation), poorly mobile cusps (such as calcification of the aortic valve), aortic root dilatation, and pulmonary stenosis (which causes a soft P2).
A widely split S2 can occur during deep inspiration, right bundle branch block, prolonged right ventricular systole (seen in conditions like pulmonary stenosis or pulmonary embolism), and severe mitral regurgitation. However, in the case of atrial septal defect, the splitting is fixed and does not vary with respiration.
Reversed splitting of S2, where P2 occurs before A2 (paradoxical splitting), can occur during deep expiration, left bundle branch block, prolonged left ventricular systole (as seen in hypertrophic cardiomyopathy), severe aortic stenosis, and right ventricular pacing.
-
This question is part of the following fields:
- Cardiology
-
-
Question 4
Incorrect
-
You are called to a cardiac arrest in a child in the Emergency Department. Which SINGLE statement regarding resuscitation in children is true?
Your Answer:
Correct Answer: The ratio of chest compressions to ventilations is 15:2
Explanation:The ratio of chest compressions to ventilations is 15:2. This ratio has not been proven through experiments, but it has been validated through mathematical studies. When performing chest compressions on a child, it is recommended to make them at least 1/3 of the depth of the child’s chest. Additionally, the optimal compression rate is between 100 and 120 compressions per minute.
To protect the airway of an unconscious child, the oropharyngeal (Guedel) airway is the best option. However, it should not be used on awake patients as there is a risk of vomiting and aspiration.
In children, asystole is the most common arrest rhythm. This occurs when the young heart responds to prolonged hypoxia and acidosis by progressively slowing down, eventually resulting in asystole. -
This question is part of the following fields:
- Cardiology
-
-
Question 5
Incorrect
-
A 67 year old male presents to the emergency department with complaints of dizziness, difficulty breathing, and heart palpitations. The patient reports that these symptoms began six hours ago. Upon examination, the patient's vital signs are as follows:
- Blood pressure: 118/76 mmHg
- Pulse rate: 86 bpm
- Respiration rate: 15 bpm
- Oxygen saturation: 97% on room air
An electrocardiogram (ECG) is performed, confirming the presence of atrial fibrillation. As part of the treatment plan, you need to calculate the patient's CHA2DS2-VASc score.
According to NICE guidelines, what is the usual threshold score for initiating anticoagulation in this case?Your Answer:
Correct Answer: 2
Explanation:According to NICE guidelines, the usual threshold score for initiating anticoagulation in this case is 2.
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, affecting around 5% of patients over the age of 70-75 years and 10% of patients aged 80-85 years. While AF can cause palpitations and inefficient cardiac function, the most important aspect of managing patients with AF is reducing the increased risk of stroke.
AF can be classified as first detected episode, paroxysmal, persistent, or permanent. First detected episode refers to the initial occurrence of AF, regardless of symptoms or duration. Paroxysmal AF occurs when a patient has 2 or more self-terminating episodes lasting less than 7 days. Persistent AF refers to episodes lasting more than 7 days that do not self-terminate. Permanent AF is continuous atrial fibrillation that cannot be cardioverted or if attempts to do so are deemed inappropriate. The treatment goals for permanent AF are rate control and anticoagulation if appropriate.
Symptoms of AF include palpitations, dyspnea, and chest pain. The most common sign is an irregularly irregular pulse. An electrocardiogram (ECG) is essential for diagnosing AF, as other conditions can also cause an irregular pulse.
Managing patients with AF involves two key parts: rate/rhythm control and reducing stroke risk. Rate control involves slowing down the irregular pulse to avoid negative effects on cardiac function. This is typically achieved using beta-blockers or rate-limiting calcium channel blockers. If one drug is not effective, combination therapy may be used. Rhythm control aims to restore and maintain normal sinus rhythm through pharmacological or electrical cardioversion. However, the majority of patients are managed with a rate control strategy.
Reducing stroke risk in patients with AF is crucial. Risk stratifying tools, such as the CHA2DS2-VASc score, are used to determine the most appropriate anticoagulation strategy. Anticoagulation is recommended for patients with a score of 2 or more. Clinicians can choose between warfarin and novel oral anticoagulants (NOACs) for anticoagulation.
Before starting anticoagulation, the patient’s bleeding risk should be assessed using tools like the HAS-BLED score or the ORBIT tool. These tools evaluate factors such as hypertension, abnormal renal or liver function, history of bleeding, age, and use of drugs that predispose to bleeding.
-
This question is part of the following fields:
- Cardiology
-
-
Question 6
Incorrect
-
You evaluate a 70 year old male who complains of chest tightness during physical activity. The patient reports a gradual increase in shortness of breath during exertion over the past half year. During the examination, you observe a murmur and suspect aortic stenosis. Which of the following characteristics is commonly seen in symptomatic individuals with aortic stenosis?
Your Answer:
Correct Answer: Slow rising pulse
Explanation:Severe aortic stenosis is characterized by several distinct features. These include a narrow pulse pressure, which refers to the difference between the systolic and diastolic blood pressure readings. Additionally, individuals with severe aortic stenosis may exhibit a slow rising pulse, meaning that the pulse wave takes longer to reach its peak. Another common feature is a delayed ejection systolic murmur, which is a heart sound that occurs during the ejection phase of the cardiac cycle. The second heart sound (S2) may also be soft or absent in individuals with severe aortic stenosis. Another potential finding is the presence of an S4 heart sound, which occurs during the filling phase of the cardiac cycle. A thrill, which is a palpable vibration, may also be felt in severe cases. The duration of the murmur, as well as the presence of left ventricular hypertrophy or failure, are additional features that may be observed in individuals with severe aortic stenosis.
Further Reading:
Valvular heart disease refers to conditions that affect the valves of the heart. In the case of aortic valve disease, there are two main conditions: aortic regurgitation and aortic stenosis.
Aortic regurgitation is characterized by an early diastolic murmur, a collapsing pulse (also known as a water hammer pulse), and a wide pulse pressure. In severe cases, there may be a mid-diastolic Austin-Flint murmur due to partial closure of the anterior mitral valve cusps caused by the regurgitation streams. The first and second heart sounds (S1 and S2) may be soft, and S2 may even be absent. Additionally, there may be a hyperdynamic apical pulse. Causes of aortic regurgitation include rheumatic fever, infective endocarditis, connective tissue diseases like rheumatoid arthritis and systemic lupus erythematosus, and a bicuspid aortic valve. Aortic root diseases such as aortic dissection, spondyloarthropathies like ankylosing spondylitis, hypertension, syphilis, and genetic conditions like Marfan’s syndrome and Ehler-Danlos syndrome can also lead to aortic regurgitation.
Aortic stenosis, on the other hand, is characterized by a narrow pulse pressure, a slow rising pulse, and a delayed ESM (ejection systolic murmur). The second heart sound (S2) may be soft or absent, and there may be an S4 (atrial gallop) that occurs just before S1. A thrill may also be felt. The duration of the murmur is an important factor in determining the severity of aortic stenosis. Causes of aortic stenosis include degenerative calcification (most common in older patients), a bicuspid aortic valve (most common in younger patients), William’s syndrome (supravalvular aortic stenosis), post-rheumatic disease, and subvalvular conditions like hypertrophic obstructive cardiomyopathy (HOCM).
Management of aortic valve disease depends on the severity of symptoms. Asymptomatic patients are generally observed, while symptomatic patients may require valve replacement. Surgery may also be considered for asymptomatic patients with a valvular gradient greater than 40 mmHg and features such as left ventricular systolic dysfunction. Balloon valvuloplasty is limited to patients with critical aortic stenosis who are not fit for valve replacement.
-
This question is part of the following fields:
- Cardiology
-
-
Question 7
Incorrect
-
A 62 year old male arrives at the emergency department complaining of abrupt tearing chest pain that extends to the throat and back. The possibility of aortic dissection is being considered. What is the primary location for dissection?
Your Answer:
Correct Answer: Ascending aorta
Explanation:The primary location for aortic dissection, which is being considered in this case, is the ascending aorta.
Aortic dissection is a life-threatening condition in which blood flows through a tear in the innermost layer of the aorta, creating a false lumen. Prompt treatment is necessary as the mortality rate increases by 1-2% per hour. There are different classifications of aortic dissection, with the majority of cases being proximal. Risk factors for aortic dissection include hypertension, atherosclerosis, connective tissue disorders, family history, and certain medical procedures.
The presentation of aortic dissection typically includes sudden onset sharp chest pain, often described as tearing or ripping. Back pain and abdominal pain are also common, and the pain may radiate to the neck and arms. The clinical picture can vary depending on which aortic branches are affected, and complications such as organ ischemia, limb ischemia, stroke, myocardial infarction, and cardiac tamponade may occur. Common signs and symptoms include a blood pressure differential between limbs, pulse deficit, and a diastolic murmur.
Various investigations can be done to diagnose aortic dissection, including ECG, CXR, and CT with arterial contrast enhancement (CTA). CT is the investigation of choice due to its accuracy in diagnosis and classification. Other imaging techniques such as transoesophageal echocardiography (TOE), magnetic resonance imaging/angiography (MRI/MRA), and digital subtraction angiography (DSA) are less commonly used.
Management of aortic dissection involves pain relief, resuscitation measures, blood pressure control, and referral to a vascular or cardiothoracic team. Opioid analgesia should be given for pain relief, and resuscitation measures such as high flow oxygen and large bore IV access should be performed. Blood pressure control is crucial, and medications such as labetalol may be used to reduce systolic blood pressure. Hypotension carries a poor prognosis and may require careful fluid resuscitation. Treatment options depend on the type of dissection, with type A dissections typically requiring urgent surgery and type B dissections managed by thoracic endovascular aortic repair (TEVAR) and blood pressure control optimization.
-
This question is part of the following fields:
- Cardiology
-
-
Question 8
Incorrect
-
A 58 year old male presents to the emergency department after experiencing dizziness and fainting. An ECG reveals bradycardia with a pulse rate of 44 bpm. His blood pressure is 90/60. The resident physician administers atropine. Which of the following conditions would be a contraindication for giving atropine?
Your Answer:
Correct Answer: Paralytic ileus
Explanation:Atropine is a medication that slows down the movement of the digestive system and is not recommended for use in individuals with intestinal blockage. It works by blocking the effects of a neurotransmitter called acetylcholine, which is responsible for promoting gastrointestinal motility and the emptying of the stomach. Therefore, atropine should not be given to patients with gastrointestinal obstruction as it can further hinder the movement of the intestines.
Further Reading:
Types of Heart Block:
1. Atrioventricular (AV) Blocks:
– Disrupt electrical conduction between the atria and ventricles at the AV node.
– Three degrees of AV block: first degree, second degree (type 1 and type 2), and third degree (complete) AV block.– First degree AV block: PR interval > 0.2 seconds.
– Second degree AV block:
– Type 1 (Mobitz I, Wenckebach): progressive prolongation of the PR interval until a dropped beat occurs.
– Type 2 (Mobitz II): PR interval is constant, but the P wave is often not followed by a QRS complex.
– Third degree (complete) AV block: no association between the P waves and QRS complexes.Features of complete heart block: syncope, heart failure, regular bradycardia (30-50 bpm), wide pulse pressure, JVP (jugular venous pressure) cannon waves in neck, variable intensity of S1.
2. Bundle Branch Blocks:
– Electrical conduction travels from the bundle of His to the left and right bundle branches.
– Diagnosed when the duration of the QRS complex on the ECG exceeds 120 ms.– Right bundle branch block (RBBB).
– Left bundle branch block (LBBB).
– Left anterior fascicular block (LAFB).
– Left posterior fascicular block (LPFB).
– Bifascicular block.
– Trifascicular block.ECG features of bundle branch blocks:
– RBBB: QRS duration > 120 ms, RSR’ pattern in V1-3 (M-shaped QRS complex), wide S wave in lateral leads (I, aVL, V5-6).
– LBBB: QRS duration > 120 ms, dominant S wave in V1, broad, notched (‘M’-shaped) R wave in V6, broad monophasic R wave in lateral leads (I, aVL, V5-6), absence of Q waves in lateral leads, prolonged R wave peak time > 60 ms in leads V5-6.WiLLiaM MaRROW is a useful mnemonic for remembering the morphology of the QRS in leads V1 and V6 for LBBB.
-
This question is part of the following fields:
- Cardiology
-
-
Question 9
Incorrect
-
A 68 year old male is brought to the emergency department by a concerned coworker who noticed that the patient seemed unsteady on his feet and very short of breath when walking to his car. The patient tells you they usually feel a bit short of breath when doing things like walking to their car or going up the stairs. On examination you note a regular pulse, rate 88 bpm, but an audible ejection systolic murmur loudest at the left sternal edge. Blood pressure is 148/94 mmHg. What is the likely diagnosis?
Your Answer:
Correct Answer: Aortic stenosis
Explanation:Severe aortic stenosis (AS) is characterized by several distinct features. These include a slow rising pulse, an ejection systolic murmur that is heard loudest in the aortic area and may radiate to the carotids, and a soft or absent S2 heart sound. Additionally, patients with severe AS often have a narrow pulse pressure and may exhibit an S4 heart sound.
AS is commonly caused by hypertension, although blood pressure findings can vary. In severe cases, patients may actually be hypotensive due to impaired cardiac output. Symptoms of severe AS typically include Presyncope or syncope, exertional chest pain, and shortness of breath. These symptoms can be remembered using the acronym SAD (Syncope, Angina, Dyspnoea).
It is important to note that aortic stenosis primarily affects older individuals, as it is a result of scarring and calcium buildup in the valve. Age-related AS typically begins after the age of 60, but symptoms may not appear until patients are in their 70s or 80s.
Diastolic murmurs, on the other hand, are associated with conditions such as aortic regurgitation, pulmonary regurgitation, and mitral stenosis.
Further Reading:
Valvular heart disease refers to conditions that affect the valves of the heart. In the case of aortic valve disease, there are two main conditions: aortic regurgitation and aortic stenosis.
Aortic regurgitation is characterized by an early diastolic murmur, a collapsing pulse (also known as a water hammer pulse), and a wide pulse pressure. In severe cases, there may be a mid-diastolic Austin-Flint murmur due to partial closure of the anterior mitral valve cusps caused by the regurgitation streams. The first and second heart sounds (S1 and S2) may be soft, and S2 may even be absent. Additionally, there may be a hyperdynamic apical pulse. Causes of aortic regurgitation include rheumatic fever, infective endocarditis, connective tissue diseases like rheumatoid arthritis and systemic lupus erythematosus, and a bicuspid aortic valve. Aortic root diseases such as aortic dissection, spondyloarthropathies like ankylosing spondylitis, hypertension, syphilis, and genetic conditions like Marfan’s syndrome and Ehler-Danlos syndrome can also lead to aortic regurgitation.
Aortic stenosis, on the other hand, is characterized by a narrow pulse pressure, a slow rising pulse, and a delayed ESM (ejection systolic murmur). The second heart sound (S2) may be soft or absent, and there may be an S4 (atrial gallop) that occurs just before S1. A thrill may also be felt. The duration of the murmur is an important factor in determining the severity of aortic stenosis. Causes of aortic stenosis include degenerative calcification (most common in older patients), a bicuspid aortic valve (most common in younger patients), William’s syndrome (supravalvular aortic stenosis), post-rheumatic disease, and subvalvular conditions like hypertrophic obstructive cardiomyopathy (HOCM).
Management of aortic valve disease depends on the severity of symptoms. Asymptomatic patients are generally observed, while symptomatic patients may require valve replacement. Surgery may also be considered for asymptomatic patients with a valvular gradient greater than 40 mmHg and features such as left ventricular systolic dysfunction. Balloon valvuloplasty is limited to patients with critical aortic stenosis who are not fit for valve replacement.
-
This question is part of the following fields:
- Cardiology
-
-
Question 10
Incorrect
-
A 70-year-old male smoker presents with intense chest discomfort. His electrocardiogram (ECG) indicates an acute myocardial infarction, and he is immediately taken to the catheterization laboratory. Angiography reveals a blockage in the left anterior descending artery.
Which area of the heart is most likely affected in this scenario?Your Answer:
Correct Answer: Anteroseptal
Explanation:A summary of the vessels involved in different types of myocardial infarction, along with the corresponding ECG leads and the location of the infarction.
For instance, an anteroseptal infarction involving the left anterior descending artery is indicated by ECG leads V1-V3. Similarly, an anterior infarction involving the left anterior descending artery is indicated by leads V3-V4.
In cases of anterolateral infarctions, both the left anterior descending artery and the left circumflex artery are involved, and this is reflected in ECG leads V5-V6. An extensive anterior infarction involving the left anterior descending artery is indicated by leads V1-V6.
Lateral infarcts involving the left circumflex artery are indicated by leads I, II, aVL, and V6. Inferior infarctions, on the other hand, involve either the right coronary artery (in 80% of cases) or the left circumflex artery (in 20% of cases), and this is shown by leads II, III, and aVF.
In the case of a right ventricular infarction, the right coronary artery is involved, and this is indicated by leads V1 and V4R. Lastly, a posterior infarction involving the right coronary artery is shown by leads V7-V9.
-
This question is part of the following fields:
- Cardiology
-
-
Question 11
Incorrect
-
A 25-year-old is brought into the emergency department after being discovered unresponsive in a neighbor's backyard. It is suspected that the patient had consumed alcohol at a nearby bar and opted to walk home in the snowy conditions. The patient's temperature is documented as 27.8ºC. The nurse connects leads to conduct a 12-lead ECG. Which of the subsequent ECG alterations is most closely linked to hypothermia?
Your Answer:
Correct Answer: Osborne Waves (J waves)
Explanation:Hypothermia can cause various changes in an electrocardiogram (ECG). These changes include a slower heart rate (bradycardia), the presence of Osborn waves (also known as J waves), a prolonged PR interval, a widened QRS complex, and a prolonged QT interval. Additionally, shivering artifact, ventricular ectopics (abnormal heartbeats originating from the ventricles), and even cardiac arrest (ventricular tachycardia, ventricular fibrillation, or asystole) may occur.
Further Reading:
Hypothermic cardiac arrest is a rare situation that requires a tailored approach. Resuscitation is typically prolonged, but the prognosis for young, previously healthy individuals can be good. Hypothermic cardiac arrest may be associated with drowning. Hypothermia is defined as a core temperature below 35ºC and can be graded as mild, moderate, severe, or profound based on the core temperature. When the core temperature drops, basal metabolic rate falls and cell signaling between neurons decreases, leading to reduced tissue perfusion. Signs and symptoms of hypothermia progress as the core temperature drops, initially presenting as compensatory increases in heart rate and shivering, but eventually ceasing as the temperature drops into moderate hypothermia territory.
ECG changes associated with hypothermia include bradyarrhythmias, Osborn waves, prolonged PR, QRS, and QT intervals, shivering artifact, ventricular ectopics, and cardiac arrest. When managing hypothermic cardiac arrest, ALS should be initiated as per the standard ALS algorithm, but with modifications. It is important to check for signs of life, re-warm the patient, consider mechanical ventilation due to chest wall stiffness, adjust dosing or withhold drugs due to slowed drug metabolism, and correct electrolyte disturbances. The resuscitation of hypothermic patients is often prolonged and may continue for a number of hours.
Pulse checks during CPR may be difficult due to low blood pressure, and the pulse check is prolonged to 1 minute for this reason. Drug metabolism is slowed in hypothermic patients, leading to a build-up of potentially toxic plasma concentrations of administered drugs. Current guidance advises withholding drugs if the core temperature is below 30ºC and doubling the drug interval at core temperatures between 30 and 35ºC. Electrolyte disturbances are common in hypothermic patients, and it is important to interpret results keeping the setting in mind. Hypoglycemia should be treated, hypokalemia will often correct as the patient re-warms, ABG analyzers may not reflect the reality of the hypothermic patient, and severe hyperkalemia is a poor prognostic indicator.
Different warming measures can be used to increase the core body temperature, including external passive measures such as removal of wet clothes and insulation with blankets, external active measures such as forced heated air or hot-water immersion, and internal active measures such as inhalation of warm air, warmed intravenous fluids, gastric, bladder, peritoneal and/or pleural lavage and high volume renal haemofilter.
-
This question is part of the following fields:
- Cardiology
-
-
Question 12
Incorrect
-
A 70-year-old diabetic smoker presents with central chest pain that radiates to his left shoulder and jaw. He is given 300 mg aspirin and morphine, and his pain subsides. The pain lasted approximately 90 minutes in total. His ECG shows normal sinus rhythm. He is referred to the on-call medical team for admission, and a troponin test is scheduled at the appropriate time. His blood tests today reveal a creatinine level of 298 micromoles per litre.
Which of the following medications should you also consider administering to this patient?Your Answer:
Correct Answer: Unfractionated heparin
Explanation:This patient’s medical history suggests a diagnosis of acute coronary syndrome. It is important to provide pain relief as soon as possible. This can be achieved by administering GTN (sublingual or buccal), but if there is suspicion of an acute myocardial infarction (MI), intravenous opioids such as morphine should be offered.
Aspirin should be given to all patients with unstable angina or NSTEMI as soon as possible and should be continued indefinitely, unless there are contraindications such as a high risk of bleeding or aspirin hypersensitivity. A single loading dose of 300 mg should be given immediately after presentation.
For patients without a high risk of bleeding and no planned coronary angiography within 24 hours of admission, fondaparinux should be administered. However, if coronary angiography is planned within 24 hours, unfractionated heparin can be offered as an alternative to fondaparinux. For patients with significant renal impairment (creatinine above 265 micromoles per litre), unfractionated heparin should be considered, with dose adjustment based on clotting function monitoring.
Routine administration of oxygen is no longer recommended, but oxygen saturation should be monitored using pulse oximetry as soon as possible, preferably before hospital admission. Supplemental oxygen should only be given to individuals with an oxygen saturation (SpO2) below 94% who are not at risk of hypercapnic respiratory failure, aiming for an SpO2 of 94-98%. For individuals with chronic obstructive pulmonary disease at risk of hypercapnic respiratory failure, a target SpO2 of 88-92% should be achieved until blood gas analysis is available.
Bivalirudin, a specific and reversible direct thrombin inhibitor (DTI), is recommended by NICE as a potential treatment for adults with STEMI undergoing percutaneous coronary intervention.
For more information, refer to the NICE guidelines on the assessment and diagnosis of chest pain of recent onset.
-
This question is part of the following fields:
- Cardiology
-
-
Question 13
Incorrect
-
You are summoned to the resuscitation room to assess a 38-year-old female patient who became pale and restless while having a wound stitched by one of the nurse practitioners. The nurse practitioner informs you that the patient's blood pressure dropped to 92/66 mmHg and the ECG reveals bradycardia with a heart rate of 52 bpm. Concerned about potential local anesthetic toxicity, the nurse practitioner promptly transferred the patient to the resuscitation room. Upon reviewing the cardiac monitor, you observe ectopic beats. Which anti-arrhythmic medication should be avoided in this patient?
Your Answer:
Correct Answer: Lidocaine
Explanation:Lidocaine is commonly used as both an anti-arrhythmic medication and a local anesthetic. However, it is important to note that it should not be used as an anti-arrhythmic therapy in patients with Local Anesthetic Systemic Toxicity (LAST). This is because lidocaine can potentially worsen the toxicity symptoms in these patients.
Further Reading:
Local anaesthetics, such as lidocaine, bupivacaine, and prilocaine, are commonly used in the emergency department for topical or local infiltration to establish a field block. Lidocaine is often the first choice for field block prior to central line insertion. These anaesthetics work by blocking sodium channels, preventing the propagation of action potentials.
However, local anaesthetics can enter the systemic circulation and cause toxic side effects if administered in high doses. Clinicians must be aware of the signs and symptoms of local anaesthetic systemic toxicity (LAST) and know how to respond. Early signs of LAST include numbness around the mouth or tongue, metallic taste, dizziness, visual and auditory disturbances, disorientation, and drowsiness. If not addressed, LAST can progress to more severe symptoms such as seizures, coma, respiratory depression, and cardiovascular dysfunction.
The management of LAST is largely supportive. Immediate steps include stopping the administration of local anaesthetic, calling for help, providing 100% oxygen and securing the airway, establishing IV access, and controlling seizures with benzodiazepines or other medications. Cardiovascular status should be continuously assessed, and conventional therapies may be used to treat hypotension or arrhythmias. Intravenous lipid emulsion (intralipid) may also be considered as a treatment option.
If the patient goes into cardiac arrest, CPR should be initiated following ALS arrest algorithms, but lidocaine should not be used as an anti-arrhythmic therapy. Prolonged resuscitation may be necessary, and intravenous lipid emulsion should be administered. After the acute episode, the patient should be transferred to a clinical area with appropriate equipment and staff for further monitoring and care.
It is important to report cases of local anaesthetic toxicity to the appropriate authorities, such as the National Patient Safety Agency in the UK or the Irish Medicines Board in the Republic of Ireland. Additionally, regular clinical review should be conducted to exclude pancreatitis, as intravenous lipid emulsion can interfere with amylase or lipase assays.
-
This question is part of the following fields:
- Cardiology
-
-
Question 14
Incorrect
-
You are summoned to a cardiac arrest in the resuscitation area of your Emergency Department.
Which ONE statement about the utilization of amiodarone in cardiac arrest is accurate?Your Answer:
Correct Answer: It increases the duration of the action potential
Explanation:Amiodarone is a medication that is recommended to be administered after the third shock in a shockable cardiac arrest (Vf/pVT) while chest compressions are being performed. The prescribed dose is 300 mg, given as an intravenous bolus that is diluted in 5% dextrose to a volume of 20 mL. It is important to note that amiodarone is not suitable for treating PEA or asystole.
In cases where VF/pVT persists after five defibrillation attempts, an additional dose of 150 mg of amiodarone should be given. However, if amiodarone is not available, lidocaine can be used as an alternative. The recommended dose of lidocaine is 1 mg/kg. It is crucial to avoid administering lidocaine if amiodarone has already been given.
Amiodarone is classified as a membrane-stabilizing antiarrhythmic drug. It works by prolonging the duration of the action potential and the refractory period in both the atrial and ventricular myocardium. This medication also slows down atrioventricular conduction and has a similar effect on accessory pathways.
Additionally, amiodarone has a mild negative inotropic action, meaning it weakens the force of heart contractions. It also causes peripheral vasodilation through non-competitive alpha-blocking effects.
It is important to note that while there is no evidence of long-term benefits from using amiodarone, it may improve short-term survival rates, which justifies its continued use.
-
This question is part of the following fields:
- Cardiology
-
-
Question 15
Incorrect
-
A 42-year-old Caucasian man presents with gradually worsening shortness of breath on exertion that has been ongoing for the past four weeks. The breathlessness is worse when lying flat, and he has noticed his ankles have become swollen. This morning he had a small amount of blood in his sputum. He is currently 32 weeks pregnant, and his pregnancy is progressing normally. On examination, you note that he has a tapping apex beat and a low-volume pulse. On auscultation, you note a loud first heart sound and a mid-diastolic murmur at the apex.
What is the SINGLE most likely diagnosis?Your Answer:
Correct Answer: Mitral stenosis
Explanation:The clinical symptoms of mitral stenosis include shortness of breath, which tends to worsen during exercise and when lying flat. Tiredness, palpitations, ankle swelling, cough, and haemoptysis are also common symptoms. Chest discomfort is rarely reported.
The clinical signs of mitral stenosis can include a malar flush, an irregular pulse if atrial fibrillation is present, a tapping apex beat that can be felt as the first heart sound, and a left parasternal heave if there is pulmonary hypertension. The first heart sound is often loud, and a mid-diastolic murmur can be heard best at the apex in the left lateral position during expiration using the bell of the stethoscope.
Mitral stenosis is typically caused by rheumatic heart disease, with about two-thirds of patients being female. During pregnancy, the increase in plasma volume can lead to elevated left atrial and pulmonary venous pressures. This can exacerbate any symptoms related to mitral stenosis and potentially result in pulmonary edema, as seen in this case.
-
This question is part of the following fields:
- Cardiology
-
-
Question 16
Incorrect
-
A 72 year old male presents to the emergency department with central chest pain. After evaluating the patient and reviewing the tests, your consultant determines that the patient has unstable angina. Your consultant instructs you to contact the bed manager and arrange for the patient's admission. What crucial finding is necessary to establish the diagnosis of unstable angina?
Your Answer:
Correct Answer: Normal troponin assay
Explanation:Distinguishing between unstable angina and other acute coronary syndromes can be determined by normal troponin results. Unstable angina is characterized by new onset angina or a sudden worsening of previously stable angina, often occurring at rest. This condition typically requires hospital admission. On the other hand, stable angina is predictable and occurs during physical exertion or emotional stress, lasting for a short duration of no more than 10 minutes and relieved within minutes of rest or sublingual nitrates.
To diagnose unstable angina, it is crucial to consider the nature of the chest pain and negative cardiac enzyme testing. The presence or absence of chest pain at rest and the response to rest and treatment with GTN are the most useful descriptors in distinguishing between stable and unstable angina. It is important to note that patients with unstable angina may not exhibit any changes on an electrocardiogram (ECG).
If troponin results are abnormal, it indicates a myocardial infarction rather than unstable angina.
Further Reading:
Acute Coronary Syndromes (ACS) is a term used to describe a group of conditions that involve the sudden reduction or blockage of blood flow to the heart. This can lead to a heart attack or unstable angina. ACS includes ST segment elevation myocardial infarction (STEMI), non-ST segment elevation myocardial infarction (NSTEMI), and unstable angina (UA).
The development of ACS is usually seen in patients who already have underlying coronary heart disease. This disease is characterized by the buildup of fatty plaques in the walls of the coronary arteries, which can gradually narrow the arteries and reduce blood flow to the heart. This can cause chest pain, known as angina, during physical exertion. In some cases, the fatty plaques can rupture, leading to a complete blockage of the artery and a heart attack.
There are both non modifiable and modifiable risk factors for ACS. non modifiable risk factors include increasing age, male gender, and family history. Modifiable risk factors include smoking, diabetes mellitus, hypertension, hypercholesterolemia, and obesity.
The symptoms of ACS typically include chest pain, which is often described as a heavy or constricting sensation in the central or left side of the chest. The pain may also radiate to the jaw or left arm. Other symptoms can include shortness of breath, sweating, and nausea/vomiting. However, it’s important to note that some patients, especially diabetics or the elderly, may not experience chest pain.
The diagnosis of ACS is typically made based on the patient’s history, electrocardiogram (ECG), and blood tests for cardiac enzymes, specifically troponin. The ECG can show changes consistent with a heart attack, such as ST segment elevation or depression, T wave inversion, or the presence of a new left bundle branch block. Elevated troponin levels confirm the diagnosis of a heart attack.
The management of ACS depends on the specific condition and the patient’s risk factors. For STEMI, immediate coronary reperfusion therapy, either through primary percutaneous coronary intervention (PCI) or fibrinolysis, is recommended. In addition to aspirin, a second antiplatelet agent is usually given. For NSTEMI or unstable angina, the treatment approach may involve reperfusion therapy or medical management, depending on the patient’s risk of future cardiovascular events.
-
This question is part of the following fields:
- Cardiology
-
-
Question 17
Incorrect
-
You are requested to evaluate a 60-year-old male in the emergency department who has arrived with complaints of dizziness and difficulty breathing. Following an ECG examination, the patient is diagnosed with Torsades de pointes. What are the two electrolyte imbalances most frequently linked to this cardiac rhythm disorder?
Your Answer:
Correct Answer: Hypokalaemia and hypomagnesaemia
Explanation:Torsades de pointes is a condition that is linked to low levels of potassium (hypokalaemia) and magnesium (hypomagnesaemia). When potassium and magnesium levels are low, it can cause the QT interval to become prolonged, which increases the risk of developing Torsades de pointes.
Further Reading:
Torsades de pointes is an irregular broad-complex tachycardia that can be life-threatening. It is a polymorphic ventricular tachycardia that can lead to sudden cardiac death. It is characterized by distinct features on the electrocardiogram (ECG).
The causes of irregular broad-complex tachycardia include atrial fibrillation with bundle branch block, atrial fibrillation with ventricular pre-excitation (in patients with Wolff-Parkinson-White syndrome), and polymorphic ventricular tachycardia such as torsades de pointes. However, sustained polymorphic ventricular tachycardia is unlikely to be present without adverse features, so it is important to seek expert help for the assessment and treatment of this condition.
Torsades de pointes can be caused by drug-induced QT prolongation, diarrhea, hypomagnesemia, hypokalemia, and congenital long QT syndrome. It may also be seen in malnourished individuals due to low potassium and/or low magnesium levels. Additionally, it can occur in individuals taking drugs that prolong the QT interval or inhibit their metabolism.
The management of torsades de pointes involves immediate action. All drugs known to prolong the QT interval should be stopped. Amiodarone should not be given for definite torsades de pointes. Electrolyte abnormalities, especially hypokalemia, should be corrected. Magnesium sulfate should be administered intravenously. If adverse features are present, immediate synchronized cardioversion should be arranged. sought, as other treatments such as overdrive pacing may be necessary to prevent relapse once the arrhythmia has been corrected. If the patient becomes pulseless, defibrillation should be attempted immediately.
In summary, torsades de pointes is a dangerous arrhythmia that requires prompt management. It is important to identify and address the underlying causes, correct electrolyte abnormalities, and seek expert help for appropriate treatment.
-
This question is part of the following fields:
- Cardiology
-
-
Question 18
Incorrect
-
A 75 year old female is brought to the hospital by paramedics after experiencing a cardiac arrest at home during a family gathering. The patient is pronounced deceased shortly after being admitted to the hospital. The family informs you that the patient had been feeling unwell for the past few days but chose not to seek medical attention due to concerns about the Coronavirus. The family inquires about the likelihood of the patient surviving if the cardiac arrest had occurred within the hospital?
Your Answer:
Correct Answer: 20%
Explanation:For the exam, it is important to be familiar with the statistics regarding the outcomes of outpatient and inpatient cardiac arrest in the UK.
Further Reading:
Cardiopulmonary arrest is a serious event with low survival rates. In non-traumatic cardiac arrest, only about 20% of patients who arrest as an in-patient survive to hospital discharge, while the survival rate for out-of-hospital cardiac arrest is approximately 8%. The Resus Council BLS/AED Algorithm for 2015 recommends chest compressions at a rate of 100-120 per minute with a compression depth of 5-6 cm. The ratio of chest compressions to rescue breaths is 30:2.
After a cardiac arrest, the goal of patient care is to minimize the impact of post cardiac arrest syndrome, which includes brain injury, myocardial dysfunction, the ischaemic/reperfusion response, and the underlying pathology that caused the arrest. The ABCDE approach is used for clinical assessment and general management. Intubation may be necessary if the airway cannot be maintained by simple measures or if it is immediately threatened. Controlled ventilation is aimed at maintaining oxygen saturation levels between 94-98% and normocarbia. Fluid status may be difficult to judge, but a target mean arterial pressure (MAP) between 65 and 100 mmHg is recommended. Inotropes may be administered to maintain blood pressure. Sedation should be adequate to gain control of ventilation, and short-acting sedating agents like propofol are preferred. Blood glucose levels should be maintained below 8 mmol/l. Pyrexia should be avoided, and there is some evidence for controlled mild hypothermia but no consensus on this.
Post ROSC investigations may include a chest X-ray, ECG monitoring, serial potassium and lactate measurements, and other imaging modalities like ultrasonography, echocardiography, CTPA, and CT head, depending on availability and skills in the local department. Treatment should be directed towards the underlying cause, and PCI or thrombolysis may be considered for acute coronary syndrome or suspected pulmonary embolism, respectively.
Patients who are comatose after ROSC without significant pre-arrest comorbidities should be transferred to the ICU for supportive care. Neurological outcome at 72 hours is the best prognostic indicator of outcome.
-
This question is part of the following fields:
- Cardiology
-
-
Question 19
Incorrect
-
A 45 year old female comes to the emergency department with abrupt onset tearing chest pain that spreads to the throat and back. You contemplate the likelihood of aortic dissection. What is the predominant risk factor observed in individuals with aortic dissection?
Your Answer:
Correct Answer: Hypertension
Explanation:Aortic dissection is a condition that occurs when the middle layer of the aorta, known as the tunica media, becomes weakened. This weakening leads to the development of cases of aortic dissection.
Further Reading:
Aortic dissection is a life-threatening condition in which blood flows through a tear in the innermost layer of the aorta, creating a false lumen. Prompt treatment is necessary as the mortality rate increases by 1-2% per hour. There are different classifications of aortic dissection, with the majority of cases being proximal. Risk factors for aortic dissection include hypertension, atherosclerosis, connective tissue disorders, family history, and certain medical procedures.
The presentation of aortic dissection typically includes sudden onset sharp chest pain, often described as tearing or ripping. Back pain and abdominal pain are also common, and the pain may radiate to the neck and arms. The clinical picture can vary depending on which aortic branches are affected, and complications such as organ ischemia, limb ischemia, stroke, myocardial infarction, and cardiac tamponade may occur. Common signs and symptoms include a blood pressure differential between limbs, pulse deficit, and a diastolic murmur.
Various investigations can be done to diagnose aortic dissection, including ECG, CXR, and CT with arterial contrast enhancement (CTA). CT is the investigation of choice due to its accuracy in diagnosis and classification. Other imaging techniques such as transoesophageal echocardiography (TOE), magnetic resonance imaging/angiography (MRI/MRA), and digital subtraction angiography (DSA) are less commonly used.
Management of aortic dissection involves pain relief, resuscitation measures, blood pressure control, and referral to a vascular or cardiothoracic team. Opioid analgesia should be given for pain relief, and resuscitation measures such as high flow oxygen and large bore IV access should be performed. Blood pressure control is crucial, and medications such as labetalol may be used to reduce systolic blood pressure. Hypotension carries a poor prognosis and may require careful fluid resuscitation. Treatment options depend on the type of dissection, with type A dissections typically requiring urgent surgery and type B dissections managed by thoracic endovascular aortic repair (TEVAR) and blood pressure control optimization.
-
This question is part of the following fields:
- Cardiology
-
-
Question 20
Incorrect
-
A 25-year-old woman comes in with a complaint of palpitations that occur during her regular jogging routine. Her mother passed away at a young age from an unknown cause. During the examination, her pulse feels irregular and there is a presence of a double apical impulse. A systolic murmur can be heard at the left sternal edge that spreads throughout the praecordium.
What is the SINGLE most probable diagnosis?Your Answer:
Correct Answer: Hypertrophic obstructive cardiomyopathy (HOCM)
Explanation:Hypertrophic obstructive cardiomyopathy (HOCM) is a primary heart disease characterized by the enlargement of the myocardium in the left and right ventricles. It is the most common reason for sudden cardiac death in young individuals and athletes. HOCM can be inherited in an autosomal dominant manner, and a family history of unexplained sudden death is often present.
Symptoms that may be experienced in HOCM include palpitations, breathlessness, chest pain, and syncope. Clinical signs that can be observed in HOCM include a jerky pulse character, a double apical impulse (where both atrial and ventricular contractions can be felt), a thrill at the left sternal edge, and an ejection systolic murmur at the left sternal edge that radiates throughout the praecordium. Additionally, a 4th heart sound may be present due to blood hitting a stiff and enlarged left ventricle during atrial systole.
On the other hand, Brugada syndrome is another cause of sudden cardiac death, but patients with this condition are typically asymptomatic and have a normal clinical examination.
-
This question is part of the following fields:
- Cardiology
-
-
Question 21
Incorrect
-
A 68 year old man is brought to the emergency department due to sudden difficulty breathing. During auscultation, you detect a murmur. The patient then undergoes a bedside echocardiogram which reveals mitral regurgitation. What murmur is commonly associated with mitral regurgitation?
Your Answer:
Correct Answer: pansystolic murmur
Explanation:Mitral regurgitation is characterized by a continuous murmur throughout systole that is often heard loudest at the apex and can be heard radiating to the left axilla.
Further Reading:
Mitral Stenosis:
– Causes: Rheumatic fever, Mucopolysaccharidoses, Carcinoid, Endocardial fibroelastosis
– Features: Mid-late diastolic murmur, loud S1, opening snap, low volume pulse, malar flush, atrial fibrillation, signs of pulmonary edema, tapping apex beat
– Features of severe mitral stenosis: Length of murmur increases, opening snap becomes closer to S2
– Investigation findings: CXR may show left atrial enlargement, echocardiography may show reduced cross-sectional area of the mitral valveMitral Regurgitation:
– Causes: Mitral valve prolapse, Myxomatous degeneration, Ischemic heart disease, Rheumatic fever, Connective tissue disorders, Endocarditis, Dilated cardiomyopathy
– Features: pansystolic murmur radiating to left axilla, soft S1, S3, laterally displaced apex beat with heave
– Signs of acute MR: Decompensated congestive heart failure symptoms
– Signs of chronic MR: Leg edema, fatigue, arrhythmia (atrial fibrillation)
– Investigation findings: Doppler echocardiography to detect regurgitant flow and pulmonary hypertension, ECG may show signs of LA enlargement and LV hypertrophy, CXR may show LA and LV enlargement in chronic MR and pulmonary edema in acute MR. -
This question is part of the following fields:
- Cardiology
-
-
Question 22
Incorrect
-
A 48 year old woman comes to the emergency department complaining of episodes of lightheadedness. She mentions that she is an avid jogger and noticed on her fitness tracker that her heart rate had dropped to 48 beats per minute. Which of the following characteristics would warrant drug intervention or transcutaneous pacing in a patient with bradycardia?
Your Answer:
Correct Answer: Myocardial ischaemia
Explanation:Indications for drug treatment or pacing in patients with bradycardia include shock, syncope, myocardial ischemia, heart failure, and the presence of risk factors for asystole. If any of these adverse features are present, it is important to consider drug treatment or pacing. However, even if none of these adverse features are present, patients may still require drug treatment or pacing if they have risk factors for developing asystole, such as recent asystole, Mobitz II AV block, complete heart block with broad QRS, or a ventricular pause longer than 3 seconds.
Further Reading:
Causes of Bradycardia:
– Physiological: Athletes, sleeping
– Cardiac conduction dysfunction: Atrioventricular block, sinus node disease
– Vasovagal & autonomic mediated: Vasovagal episodes, carotid sinus hypersensitivity
– Hypothermia
– Metabolic & electrolyte disturbances: Hypothyroidism, hyperkalaemia, hypermagnesemia
– Drugs: Beta-blockers, calcium channel blockers, digoxin, amiodarone
– Head injury: Cushing’s response
– Infections: Endocarditis
– Other: Sarcoidosis, amyloidosisPresenting symptoms of Bradycardia:
– Presyncope (dizziness, lightheadedness)
– Syncope
– Breathlessness
– Weakness
– Chest pain
– NauseaManagement of Bradycardia:
– Assess and monitor for adverse features (shock, syncope, myocardial ischaemia, heart failure)
– Treat reversible causes of bradycardia
– Pharmacological treatment: Atropine is first-line, adrenaline and isoprenaline are second-line
– Transcutaneous pacing if atropine is ineffective
– Other drugs that may be used: Aminophylline, dopamine, glucagon, glycopyrrolateBradycardia Algorithm:
– Follow the algorithm for management of bradycardia, which includes assessing and monitoring for adverse features, treating reversible causes, and using appropriate medications or pacing as needed.
https://acls-algorithms.com/wp-content/uploads/2020/12/Website-Bradycardia-Algorithm-Diagram.pdf -
This question is part of the following fields:
- Cardiology
-
-
Question 23
Incorrect
-
A 32 year old with a documented peanut allergy is currently receiving treatment for an anaphylactic reaction. What are the most likely cardiovascular manifestations that you would observe in a patient experiencing an episode of anaphylaxis?
Your Answer:
Correct Answer: Hypotension and tachycardia
Explanation:Anaphylaxis, also known as anaphylactic shock, is characterized by certain symptoms similar to other types of shock. These symptoms include low blood pressure (hypotension), rapid heart rate (tachycardia), irregular heart rhythm (arrhythmia), changes in the electrocardiogram (ECG) indicating reduced blood flow to the heart (myocardial ischemia), such as ST elevation, and in severe cases, cardiac arrest.
Further Reading:
Anaphylaxis is a severe and life-threatening hypersensitivity reaction that can have sudden onset and progression. It is characterized by skin or mucosal changes and can lead to life-threatening airway, breathing, or circulatory problems. Anaphylaxis can be allergic or non-allergic in nature.
In allergic anaphylaxis, there is an immediate hypersensitivity reaction where an antigen stimulates the production of IgE antibodies. These antibodies bind to mast cells and basophils. Upon re-exposure to the antigen, the IgE-covered cells release histamine and other inflammatory mediators, causing smooth muscle contraction and vasodilation.
Non-allergic anaphylaxis occurs when mast cells degrade due to a non-immune mediator. The clinical outcome is the same as in allergic anaphylaxis.
The management of anaphylaxis is the same regardless of the cause. Adrenaline is the most important drug and should be administered as soon as possible. The recommended doses for adrenaline vary based on age. Other treatments include high flow oxygen and an IV fluid challenge. Corticosteroids and chlorpheniramine are no longer recommended, while non-sedating antihistamines may be considered as third-line treatment after initial stabilization of airway, breathing, and circulation.
Common causes of anaphylaxis include food (such as nuts, which is the most common cause in children), drugs, and venom (such as wasp stings). Sometimes it can be challenging to determine if a patient had a true episode of anaphylaxis. In such cases, serum tryptase levels may be measured, as they remain elevated for up to 12 hours following an acute episode of anaphylaxis.
The Resuscitation Council (UK) provides guidelines for the management of anaphylaxis, including a visual algorithm that outlines the recommended steps for treatment.
https://www.resus.org.uk/sites/default/files/2021-05/Emergency%20Treatment%20of%20Anaphylaxis%20May%202021_0.pdf -
This question is part of the following fields:
- Cardiology
-
-
Question 24
Incorrect
-
A 60-year-old woman presents with worsening symptoms of shortness of breath. Upon examination of her cardiovascular system, you find a collapsing pulse. Her apex beat is hyperkinetic and displaced to the side. During auscultation, you detect an early diastolic murmur that is most pronounced when the patient is sitting forward and exhaling.
What is the SINGLE most probable diagnosis?Your Answer:
Correct Answer: Aortic regurgitation
Explanation:Aortic regurgitation is a condition where the aortic valve fails to close tightly, resulting in the backflow of blood from the aorta into the left ventricle during ventricular diastole. This valvular lesion presents with various clinical symptoms and signs.
The clinical symptoms of aortic regurgitation include exertional dyspnea, orthopnea, and paroxysmal nocturnal dyspnea. These symptoms are experienced by patients during physical activity, while lying flat, and during episodes of sudden nighttime breathlessness, respectively.
On the other hand, the clinical signs of aortic regurgitation can be observed during physical examination. These signs include a collapsing pulse, widened pulse pressure, hyperkinetic laterally displaced apex beat, and a thrill in the aortic area. Additionally, an early diastolic murmur can be heard, which is loudest at the lower left sternal edge when the patient is sitting forward and exhaling.
Aortic regurgitation is also associated with several eponymous signs, which are named after the physicians who first described them. These signs include Corrigan’s sign, which is characterized by visible and forceful neck pulsation. De Musset’s sign refers to head nodding in time with the heartbeat. Quincke’s sign is the observation of visible nail bed capillary pulsation. Duroziez’s sign is the presence of a diastolic murmur heard proximal to femoral artery compression. Traube’s sign is the perception of a pistol shot sound over the femoral arteries. The Lighthouse sign is the blanching and flushing of the forehead. Becker’s sign is the pulsation seen in retinal vessels. Rosenbach’s sign is the presence of a pulsatile liver. Lastly, Muller’s sign refers to pulsations of the uvula.
In summary, aortic regurgitation is a valvular lesion that leads to the incomplete closure of the aortic valve. It manifests with various clinical symptoms, signs, and eponymous findings, which can be identified through careful examination and observation.
-
This question is part of the following fields:
- Cardiology
-
-
Question 25
Incorrect
-
You evaluate the ECG of a 62-year-old male who has come in with episodes of Presyncope. What is the most suitable threshold to utilize in differentiating between a normal and prolonged QTc?
Your Answer:
Correct Answer: 450 ms
Explanation:An abnormal QTc, which is the measurement of the time it takes for the heart to recharge between beats, is generally considered to be greater than 450 ms in males. However, some sources may use a cutoff of greater than 440 ms as abnormal in males. To further categorize the QTc, a measurement of 430ms or less is considered normal, 431-450 ms is borderline, and 450 ms or more is considered abnormal in males. Females typically have a longer QTc, so the categories for them are often quoted as less than 450 ms being normal, 451-470 ms being borderline, and greater than 470ms being abnormal.
Further Reading:
Long QT syndrome (LQTS) is a condition characterized by a prolonged QT interval on an electrocardiogram (ECG), which represents abnormal repolarization of the heart. LQTS can be either acquired or congenital. Congenital LQTS is typically caused by gene abnormalities that affect ion channels responsible for potassium or sodium flow in the heart. There are 15 identified genes associated with congenital LQTS, with three genes accounting for the majority of cases. Acquired LQTS can be caused by various factors such as certain medications, electrolyte imbalances, hypothermia, hypothyroidism, and bradycardia from other causes.
The normal QTc values, which represent the corrected QT interval for heart rate, are typically less than 450 ms for men and less than 460ms for women. Prolonged QTc intervals are considered to be greater than these values. It is important to be aware of drugs that can cause QT prolongation, as this can lead to potentially fatal arrhythmias. Some commonly used drugs that can cause QT prolongation include antimicrobials, antiarrhythmics, antipsychotics, antidepressants, antiemetics, and others.
Management of long QT syndrome involves addressing any underlying causes and using beta blockers. In some cases, an implantable cardiac defibrillator (ICD) may be recommended for patients who have experienced recurrent arrhythmic syncope, documented torsades de pointes, previous ventricular tachyarrhythmias or torsades de pointes, previous cardiac arrest, or persistent syncope. Permanent pacing may be used in patients with bradycardia or atrioventricular nodal block and prolonged QT. Mexiletine is a treatment option for those with LQT3. Cervicothoracic sympathetic denervation may be considered in patients with recurrent syncope despite beta-blockade or in those who are not ideal candidates for an ICD. The specific treatment options for LQTS depend on the type and severity of the condition.
-
This question is part of the following fields:
- Cardiology
-
-
Question 26
Incorrect
-
You are summoned to a cardiac arrest in the resuscitation area of your Emergency Department.
Which ONE statement about the utilization of amiodarone in cardiac arrest is NOT true?Your Answer:
Correct Answer: It should be administered as an infusion of 300 mg over 20-60 minutes
Explanation:Amiodarone is a medication that is recommended to be administered after the third shock in a shockable cardiac arrest (Vf/pVT) while chest compressions are being performed. The prescribed dose is 300 mg, given as an intravenous bolus that is diluted in 5% dextrose to a volume of 20 mL. It is important to note that amiodarone is not suitable for treating PEA or asystole.
In cases where VF/pVT persists after five defibrillation attempts, an additional dose of 150 mg of amiodarone should be given. However, if amiodarone is not available, lidocaine can be used as an alternative. The recommended dose of lidocaine is 1 mg/kg. It is crucial to avoid administering lidocaine if amiodarone has already been given.
Amiodarone is classified as a membrane-stabilizing antiarrhythmic drug. It works by prolonging the duration of the action potential and the refractory period in both the atrial and ventricular myocardium. This medication also slows down atrioventricular conduction and has a similar effect on accessory pathways.
Additionally, amiodarone has a mild negative inotropic action, meaning it weakens the force of heart contractions. It also causes peripheral vasodilation through non-competitive alpha-blocking effects.
It is important to note that while there is no evidence of long-term benefits from using amiodarone, it may improve short-term survival rates, which justifies its continued use.
-
This question is part of the following fields:
- Cardiology
-
-
Question 27
Incorrect
-
You are treating a 68 year old male who has been brought into the resuscitation bay by the ambulance crew. The patient was at home when he suddenly experienced dizziness and difficulty breathing. The ambulance crew presents the patient's ECG to you. You are considering administering atropine to address the patient's bradyarrhythmia. Which of the following statements is accurate regarding the use of atropine?
Your Answer:
Correct Answer: Up to 6 doses of 500 mcg can be given every 3-5 minutes
Explanation:When treating adults with bradycardia, it is recommended to administer a maximum of 6 doses of atropine 500 mcg. These doses can be repeated every 3-5 minutes. The total cumulative dose of atropine should not exceed 3 mg in adults.
Further Reading:
Causes of Bradycardia:
– Physiological: Athletes, sleeping
– Cardiac conduction dysfunction: Atrioventricular block, sinus node disease
– Vasovagal & autonomic mediated: Vasovagal episodes, carotid sinus hypersensitivity
– Hypothermia
– Metabolic & electrolyte disturbances: Hypothyroidism, hyperkalaemia, hypermagnesemia
– Drugs: Beta-blockers, calcium channel blockers, digoxin, amiodarone
– Head injury: Cushing’s response
– Infections: Endocarditis
– Other: Sarcoidosis, amyloidosisPresenting symptoms of Bradycardia:
– Presyncope (dizziness, lightheadedness)
– Syncope
– Breathlessness
– Weakness
– Chest pain
– NauseaManagement of Bradycardia:
– Assess and monitor for adverse features (shock, syncope, myocardial ischaemia, heart failure)
– Treat reversible causes of bradycardia
– Pharmacological treatment: Atropine is first-line, adrenaline and isoprenaline are second-line
– Transcutaneous pacing if atropine is ineffective
– Other drugs that may be used: Aminophylline, dopamine, glucagon, glycopyrrolateBradycardia Algorithm:
– Follow the algorithm for management of bradycardia, which includes assessing and monitoring for adverse features, treating reversible causes, and using appropriate medications or pacing as needed.
https://acls-algorithms.com/wp-content/uploads/2020/12/Website-Bradycardia-Algorithm-Diagram.pdf -
This question is part of the following fields:
- Cardiology
-
-
Question 28
Incorrect
-
A 70-year-old male smoker comes in with intense chest pain. His ECG indicates an acute myocardial infarction and he is immediately taken to the cath lab. Angiography reveals a blockage in the left circumflex artery.
Which area of the heart is most likely affected in this scenario?Your Answer:
Correct Answer: Lateral
Explanation:A summary of the vessels involved in different types of myocardial infarction, along with the corresponding ECG leads and the location of the infarction.
For instance, an anteroseptal infarction involving the left anterior descending artery is indicated by ECG leads V1-V3. Similarly, an anterior infarction involving the left anterior descending artery is indicated by leads V3-V4.
In cases of anterolateral infarctions, both the left anterior descending artery and the left circumflex artery are involved, and this is reflected in ECG leads V5-V6. An extensive anterior infarction involving the left anterior descending artery is indicated by leads V1-V6.
Lateral infarcts involving the left circumflex artery are indicated by leads I, II, aVL, and V6. Inferior infarctions, on the other hand, involve either the right coronary artery (in 80% of cases) or the left circumflex artery (in 20% of cases), and this is shown by leads II, III, and aVF.
In the case of a right ventricular infarction, the right coronary artery is involved, and this is indicated by leads V1 and V4R. Lastly, a posterior infarction involving the right coronary artery is shown by leads V7-V9.
-
This question is part of the following fields:
- Cardiology
-
-
Question 29
Incorrect
-
A 42-year-old woman comes in with retrosternal central chest discomfort that has been ongoing for the past 48 hours. The discomfort intensifies with deep breaths and when lying flat, but eases when she sits upright. Additionally, the discomfort radiates to both of her shoulders. Her ECG reveals widespread concave ST elevation and PR depression. You strongly suspect a diagnosis of pericarditis.
Which nerve is accountable for the pattern of her discomfort?Your Answer:
Correct Answer: Phrenic nerve
Explanation:Pericarditis refers to the inflammation of the pericardium, which can be caused by various factors such as infections (typically viral, like coxsackie virus), drug-induced reactions (e.g. isoniazid, cyclosporine), trauma, autoimmune conditions (e.g. SLE), paraneoplastic syndromes, uraemia, post myocardial infarction (known as Dressler’s syndrome), post radiotherapy, and post cardiac surgery.
The clinical presentation of pericarditis often includes retrosternal chest pain that is pleuritic in nature. This pain is typically relieved by sitting forwards and worsened when lying flat. It may also radiate to the shoulders. Other symptoms may include shortness of breath, tachycardia, and the presence of a pericardial friction rub.
The pericardium receives sensory supply from the phrenic nerve, which also provides sensory innervation to the diaphragm, various mediastinal structures, and certain abdominal structures such as the superior peritoneum, liver, and gallbladder. Since the phrenic nerve originates from the 4th cervical nerve, which also provides cutaneous innervation to the front of the shoulder girdle, pain from pericarditis can also radiate to the shoulders.
-
This question is part of the following fields:
- Cardiology
-
-
Question 30
Incorrect
-
A 72 year old male presents with central chest pain radiating to the jaw and left arm. The patient is sweating profusely and appears pale. The pain began 4 hours ago. ECG reveals 2-3 mm ST elevation in leads II, III and aVF. 300 mg aspirin has been administered. Transporting the patient to the nearest coronary catheter lab for primary PCI will take 2 hours 45 minutes. What is the most suitable course of action for managing this patient?
Your Answer:
Correct Answer: Administer fibrinolysis
Explanation:Fibrinolysis is a treatment option for patients with ST-elevation myocardial infarction (STEMI) if they are unable to receive primary percutaneous coronary intervention (PCI) within 120 minutes, but fibrinolysis can be administered within that time frame. Primary PCI is the preferred treatment for STEMI patients who present within 12 hours of symptom onset. However, if primary PCI cannot be performed within 120 minutes of the time when fibrinolysis could have been given, fibrinolysis should be considered. Along with fibrinolysis, an antithrombin medication such as unfractionated heparin (UFH), low molecular weight heparin (LMWH), fondaparinux, or bivalirudin is typically administered.
Further Reading:
Acute Coronary Syndromes (ACS) is a term used to describe a group of conditions that involve the sudden reduction or blockage of blood flow to the heart. This can lead to a heart attack or unstable angina. ACS includes ST segment elevation myocardial infarction (STEMI), non-ST segment elevation myocardial infarction (NSTEMI), and unstable angina (UA).
The development of ACS is usually seen in patients who already have underlying coronary heart disease. This disease is characterized by the buildup of fatty plaques in the walls of the coronary arteries, which can gradually narrow the arteries and reduce blood flow to the heart. This can cause chest pain, known as angina, during physical exertion. In some cases, the fatty plaques can rupture, leading to a complete blockage of the artery and a heart attack.
There are both non modifiable and modifiable risk factors for ACS. non modifiable risk factors include increasing age, male gender, and family history. Modifiable risk factors include smoking, diabetes mellitus, hypertension, hypercholesterolemia, and obesity.
The symptoms of ACS typically include chest pain, which is often described as a heavy or constricting sensation in the central or left side of the chest. The pain may also radiate to the jaw or left arm. Other symptoms can include shortness of breath, sweating, and nausea/vomiting. However, it’s important to note that some patients, especially diabetics or the elderly, may not experience chest pain.
The diagnosis of ACS is typically made based on the patient’s history, electrocardiogram (ECG), and blood tests for cardiac enzymes, specifically troponin. The ECG can show changes consistent with a heart attack, such as ST segment elevation or depression, T wave inversion, or the presence of a new left bundle branch block. Elevated troponin levels confirm the diagnosis of a heart attack.
The management of ACS depends on the specific condition and the patient’s risk factors. For STEMI, immediate coronary reperfusion therapy, either through primary percutaneous coronary intervention (PCI) or fibrinolysis, is recommended. In addition to aspirin, a second antiplatelet agent is usually given. For NSTEMI or unstable angina, the treatment approach may involve reperfusion therapy or medical management, depending on the patient’s risk of future cardiovascular events.
-
This question is part of the following fields:
- Cardiology
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)