-
Question 1
Correct
-
A 68 year old male presents to the emergency department complaining of dizziness and palpitations that have been occurring for the past 2 hours. An ECG confirms the presence of atrial fibrillation. The patient has no previous history of atrial fibrillation but was diagnosed with mild aortic valve stenosis 8 months ago during an echocardiogram ordered by his primary care physician. The patient reports that the echocardiogram was done because he was experiencing shortness of breath, which resolved after 2-3 months and was attributed to a recent bout of pneumonia. The decision is made to attempt pharmacological cardioversion. What is the most appropriate medication to use for this purpose in this patient?
Your Answer: Amiodarone
Explanation:According to NICE guidelines, amiodarone is recommended as the initial choice for pharmacological cardioversion of atrial fibrillation (AF) in individuals who have evidence of structural heart disease.
Further Reading:
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, affecting around 5% of patients over the age of 70-75 years and 10% of patients aged 80-85 years. While AF can cause palpitations and inefficient cardiac function, the most important aspect of managing patients with AF is reducing the increased risk of stroke.
AF can be classified as first detected episode, paroxysmal, persistent, or permanent. First detected episode refers to the initial occurrence of AF, regardless of symptoms or duration. Paroxysmal AF occurs when a patient has 2 or more self-terminating episodes lasting less than 7 days. Persistent AF refers to episodes lasting more than 7 days that do not self-terminate. Permanent AF is continuous atrial fibrillation that cannot be cardioverted or if attempts to do so are deemed inappropriate. The treatment goals for permanent AF are rate control and anticoagulation if appropriate.
Symptoms of AF include palpitations, dyspnea, and chest pain. The most common sign is an irregularly irregular pulse. An electrocardiogram (ECG) is essential for diagnosing AF, as other conditions can also cause an irregular pulse.
Managing patients with AF involves two key parts: rate/rhythm control and reducing stroke risk. Rate control involves slowing down the irregular pulse to avoid negative effects on cardiac function. This is typically achieved using beta-blockers or rate-limiting calcium channel blockers. If one drug is not effective, combination therapy may be used. Rhythm control aims to restore and maintain normal sinus rhythm through pharmacological or electrical cardioversion. However, the majority of patients are managed with a rate control strategy.
Reducing stroke risk in patients with AF is crucial. Risk stratifying tools, such as the CHA2DS2-VASc score, are used to determine the most appropriate anticoagulation strategy. Anticoagulation is recommended for patients with a score of 2 or more. Clinicians can choose between warfarin and novel oral anticoagulants (NOACs) for anticoagulation.
Before starting anticoagulation, the patient’s bleeding risk should be assessed using tools like the HAS-BLED score or the ORBIT tool. These tools evaluate factors such as hypertension, abnormal renal or liver function, history of bleeding, age, and use of drugs that predispose to bleeding.
-
This question is part of the following fields:
- Cardiology
-
-
Question 2
Incorrect
-
A 32-year-old man presents with an episode of atrial fibrillation (AF) that began a few hours ago. This is his first-ever episode, and he has no significant medical history.
Which of the following accurately characterizes the type of AF he has experienced?Your Answer: Paroxysmal
Correct Answer: Acute
Explanation:In order to gain a comprehensive understanding of AF management, it is crucial to familiarize oneself with the terminology used to describe its various subtypes. These terms help categorize different episodes of AF based on their characteristics and outcomes.
Acute AF refers to any episode that occurs within the previous 48 hours. It can manifest with or without symptoms and may or may not recur. On the other hand, paroxysmal AF describes episodes that spontaneously end within 7 days, typically within 48 hours. While these episodes are often recurrent, they can progress into a sustained form of AF.
Recurrent AF is defined as experiencing two or more episodes of AF. If the episodes self-terminate, they are classified as paroxysmal AF. However, if the episodes do not self-terminate, they are categorized as persistent AF. Persistent AF lasts longer than 7 days or has occurred after a previous cardioversion. To terminate persistent AF, electrical or pharmacological intervention is required. In some cases, persistent AF can progress into permanent AF.
Permanent AF, also known as Accepted AF, refers to episodes that cannot be successfully terminated, have relapsed after termination, or where cardioversion is not pursued. This subtype signifies a more chronic and ongoing form of AF.
By understanding and utilizing these terms, healthcare professionals can effectively communicate and manage the different subtypes of AF.
-
This question is part of the following fields:
- Cardiology
-
-
Question 3
Correct
-
A 42-year-old woman comes in with retrosternal central chest discomfort that has been ongoing for the past 48 hours. The discomfort intensifies with deep breaths and when lying flat, but eases when she sits upright. Additionally, the discomfort radiates to both of her shoulders. Her ECG reveals widespread concave ST elevation and PR depression. You strongly suspect a diagnosis of pericarditis.
Which nerve is accountable for the pattern of her discomfort?Your Answer: Phrenic nerve
Explanation:Pericarditis refers to the inflammation of the pericardium, which can be caused by various factors such as infections (typically viral, like coxsackie virus), drug-induced reactions (e.g. isoniazid, cyclosporine), trauma, autoimmune conditions (e.g. SLE), paraneoplastic syndromes, uraemia, post myocardial infarction (known as Dressler’s syndrome), post radiotherapy, and post cardiac surgery.
The clinical presentation of pericarditis often includes retrosternal chest pain that is pleuritic in nature. This pain is typically relieved by sitting forwards and worsened when lying flat. It may also radiate to the shoulders. Other symptoms may include shortness of breath, tachycardia, and the presence of a pericardial friction rub.
The pericardium receives sensory supply from the phrenic nerve, which also provides sensory innervation to the diaphragm, various mediastinal structures, and certain abdominal structures such as the superior peritoneum, liver, and gallbladder. Since the phrenic nerve originates from the 4th cervical nerve, which also provides cutaneous innervation to the front of the shoulder girdle, pain from pericarditis can also radiate to the shoulders.
-
This question is part of the following fields:
- Cardiology
-
-
Question 4
Incorrect
-
A 45 year old man comes to the emergency department after intentionally overdosing on his digoxin medication. He informs you that he consumed approximately 50 tablets of digoxin shortly after discovering that his wife wants to end their marriage and file for divorce. Which of the following symptoms is commonly seen in cases of digoxin toxicity?
Your Answer: Upsloping ST segment on ECG
Correct Answer: Yellow-green vision
Explanation:One of the signs of digoxin toxicity is yellow-green vision. Other clinical features include feeling generally unwell, lethargy, nausea and vomiting, loss of appetite, confusion, and the development of arrhythmias such as AV block and bradycardia.
Further Reading:
Digoxin is a medication used for rate control in atrial fibrillation and for improving symptoms in heart failure. It works by decreasing conduction through the atrioventricular node and increasing the force of cardiac muscle contraction. However, digoxin toxicity can occur, and plasma concentration alone does not determine if a patient has developed toxicity. Symptoms of digoxin toxicity include feeling generally unwell, lethargy, nausea and vomiting, anorexia, confusion, yellow-green vision, arrhythmias, and gynaecomastia.
ECG changes seen in digoxin toxicity include downsloping ST depression with a characteristic Salvador Dali sagging appearance, flattened, inverted, or biphasic T waves, shortened QT interval, mild PR interval prolongation, and prominent U waves. There are several precipitating factors for digoxin toxicity, including hypokalaemia, increasing age, renal failure, myocardial ischaemia, electrolyte imbalances, hypoalbuminaemia, hypothermia, hypothyroidism, and certain medications such as amiodarone, quinidine, verapamil, and diltiazem.
Management of digoxin toxicity involves the use of digoxin specific antibody fragments, also known as Digibind or digifab. Arrhythmias should be treated, and electrolyte disturbances should be corrected with close monitoring of potassium levels. It is important to note that digoxin toxicity can be precipitated by hypokalaemia, and toxicity can then lead to hyperkalaemia.
-
This question is part of the following fields:
- Cardiology
-
-
Question 5
Incorrect
-
A 72-year-old woman presents with severe central chest pain. An ECG is performed, which shows ST elevation in the anterolateral leads. She was given aspirin and morphine upon arrival. Her observations are as follows: SaO2 99% on air, HR 89 bpm, and BP 149/87 mmHg. Upon discussion with the cardiology team, a decision is made to perform an urgent percutaneous coronary intervention (PCI).
Which of the following medications could you also consider administering to this patient?Your Answer: Bisoprolol
Correct Answer: Bivalirudin
Explanation:This patient is displaying symptoms consistent with a diagnosis of an acute myocardial infarction. It is important to provide pain relief as soon as possible. One option for pain relief is GTN, which can be taken sublingually or buccally. However, if there is suspicion of an acute myocardial infarction, it is recommended to offer intravenous opioids such as morphine.
Aspirin should be offered to all patients with unstable angina or NSTEMI as soon as possible and should be continued indefinitely, unless there are contraindications such as a bleeding risk or aspirin hypersensitivity. A loading dose of 300 mg should be administered promptly after presentation.
For patients without a high bleeding risk who do not have coronary angiography planned within 24 hours of admission, fondaparinux should be administered. However, for patients who are likely to undergo coronary angiography within 24 hours, unfractionated heparin can be offered as an alternative to fondaparinux. In cases of significant renal impairment (creatinine above 265 micromoles per litre), unfractionated heparin with dose adjustment guided by clotting function monitoring can also be considered as an alternative to fondaparinux.
Routine administration of oxygen is no longer recommended, but it is important to monitor oxygen saturation using pulse oximetry as soon as possible, preferably before hospital admission. Supplemental oxygen should only be offered to individuals with an oxygen saturation (SpO2) of less than 94% who are not at risk of hypercapnic respiratory failure, with a target SpO2 range of 94-98%. For individuals with chronic obstructive pulmonary disease who are at risk of hypercapnic respiratory failure, a target SpO2 range of 88-92% should be aimed for until blood gas analysis is available.
Bivalirudin, a specific and reversible direct thrombin inhibitor (DTI), is recommended by NICE as a possible treatment for adults with STEMI who are undergoing percutaneous coronary intervention.
For more information, please refer to the NICE guidelines on the assessment and diagnosis of chest pain of recent onset.
-
This question is part of the following fields:
- Cardiology
-
-
Question 6
Incorrect
-
You are asked to assess a 68-year-old male in the resuscitation room due to bradycardia. The patient complained of increased shortness of breath, dizziness, and chest discomfort. The recorded vital signs are as follows:
Parameter Result
Blood pressure 80/52 mmHg
Pulse rate 40 bpm
Respiration rate 18 rpm
SpO2 98% on 12 liters Oxygen
You are concerned about the possibility of this patient progressing to asystole. Which of the following indicators would suggest that this patient is at a high risk of developing asystole?Your Answer: Prolonged PR interval
Correct Answer: Ventricular pause of 3.5 seconds
Explanation:Patients who have bradycardia and show ventricular pauses longer than 3 seconds on an electrocardiogram (ECG) are at a high risk of developing asystole. The following characteristics are indicators of a high risk for asystole: recent episodes of asystole, Mobitz II AV block, third-degree AV block (also known as complete heart block) with a broad QRS complex, and ventricular pauses longer than 3 seconds.
Further Reading:
Causes of Bradycardia:
– Physiological: Athletes, sleeping
– Cardiac conduction dysfunction: Atrioventricular block, sinus node disease
– Vasovagal & autonomic mediated: Vasovagal episodes, carotid sinus hypersensitivity
– Hypothermia
– Metabolic & electrolyte disturbances: Hypothyroidism, hyperkalaemia, hypermagnesemia
– Drugs: Beta-blockers, calcium channel blockers, digoxin, amiodarone
– Head injury: Cushing’s response
– Infections: Endocarditis
– Other: Sarcoidosis, amyloidosisPresenting symptoms of Bradycardia:
– Presyncope (dizziness, lightheadedness)
– Syncope
– Breathlessness
– Weakness
– Chest pain
– NauseaManagement of Bradycardia:
– Assess and monitor for adverse features (shock, syncope, myocardial ischaemia, heart failure)
– Treat reversible causes of bradycardia
– Pharmacological treatment: Atropine is first-line, adrenaline and isoprenaline are second-line
– Transcutaneous pacing if atropine is ineffective
– Other drugs that may be used: Aminophylline, dopamine, glucagon, glycopyrrolateBradycardia Algorithm:
– Follow the algorithm for management of bradycardia, which includes assessing and monitoring for adverse features, treating reversible causes, and using appropriate medications or pacing as needed.
https://acls-algorithms.com/wp-content/uploads/2020/12/Website-Bradycardia-Algorithm-Diagram.pdf -
This question is part of the following fields:
- Cardiology
-
-
Question 7
Incorrect
-
You conduct a cardiovascular examination on a 62-year-old man who complains of palpitations. He informs you that he has a known heart valve issue. During auscultation, you observe a faint second heart sound (S2).
What is the most probable cause of this finding?Your Answer: Atrial septal defect
Correct Answer: Pulmonary stenosis
Explanation:The second heart sound (S2) is created by vibrations produced when the aortic and pulmonary valves close. It marks the end of systole. It is normal to hear a split in the sound during inspiration.
A loud S2 can be associated with certain conditions such as systemic hypertension (resulting in a loud A2), pulmonary hypertension (resulting in a loud P2), hyperdynamic states (like tachycardia, fever, or thyrotoxicosis), and atrial septal defect (which causes a loud P2).
On the other hand, a soft S2 can be linked to decreased aortic diastolic pressure (as seen in aortic regurgitation), poorly mobile cusps (such as calcification of the aortic valve), aortic root dilatation, and pulmonary stenosis (which causes a soft P2).
A widely split S2 can occur during deep inspiration, right bundle branch block, prolonged right ventricular systole (seen in conditions like pulmonary stenosis or pulmonary embolism), and severe mitral regurgitation. However, in the case of atrial septal defect, the splitting is fixed and does not vary with respiration.
Reversed splitting of S2, where P2 occurs before A2 (paradoxical splitting), can occur during deep expiration, left bundle branch block, prolonged left ventricular systole (as seen in hypertrophic cardiomyopathy), severe aortic stenosis, and right ventricular pacing.
-
This question is part of the following fields:
- Cardiology
-
-
Question 8
Incorrect
-
You are summoned to the resuscitation room to assess a 38-year-old female patient who became pale and restless while having a wound stitched by one of the nurse practitioners. The nurse practitioner informs you that the patient's blood pressure dropped to 92/66 mmHg and the ECG reveals bradycardia with a heart rate of 52 bpm. Concerned about potential local anesthetic toxicity, the nurse practitioner promptly transferred the patient to the resuscitation room. Upon reviewing the cardiac monitor, you observe ectopic beats. Which anti-arrhythmic medication should be avoided in this patient?
Your Answer: Verapamil
Correct Answer: Lidocaine
Explanation:Lidocaine is commonly used as both an anti-arrhythmic medication and a local anesthetic. However, it is important to note that it should not be used as an anti-arrhythmic therapy in patients with Local Anesthetic Systemic Toxicity (LAST). This is because lidocaine can potentially worsen the toxicity symptoms in these patients.
Further Reading:
Local anaesthetics, such as lidocaine, bupivacaine, and prilocaine, are commonly used in the emergency department for topical or local infiltration to establish a field block. Lidocaine is often the first choice for field block prior to central line insertion. These anaesthetics work by blocking sodium channels, preventing the propagation of action potentials.
However, local anaesthetics can enter the systemic circulation and cause toxic side effects if administered in high doses. Clinicians must be aware of the signs and symptoms of local anaesthetic systemic toxicity (LAST) and know how to respond. Early signs of LAST include numbness around the mouth or tongue, metallic taste, dizziness, visual and auditory disturbances, disorientation, and drowsiness. If not addressed, LAST can progress to more severe symptoms such as seizures, coma, respiratory depression, and cardiovascular dysfunction.
The management of LAST is largely supportive. Immediate steps include stopping the administration of local anaesthetic, calling for help, providing 100% oxygen and securing the airway, establishing IV access, and controlling seizures with benzodiazepines or other medications. Cardiovascular status should be continuously assessed, and conventional therapies may be used to treat hypotension or arrhythmias. Intravenous lipid emulsion (intralipid) may also be considered as a treatment option.
If the patient goes into cardiac arrest, CPR should be initiated following ALS arrest algorithms, but lidocaine should not be used as an anti-arrhythmic therapy. Prolonged resuscitation may be necessary, and intravenous lipid emulsion should be administered. After the acute episode, the patient should be transferred to a clinical area with appropriate equipment and staff for further monitoring and care.
It is important to report cases of local anaesthetic toxicity to the appropriate authorities, such as the National Patient Safety Agency in the UK or the Irish Medicines Board in the Republic of Ireland. Additionally, regular clinical review should be conducted to exclude pancreatitis, as intravenous lipid emulsion can interfere with amylase or lipase assays.
-
This question is part of the following fields:
- Cardiology
-
-
Question 9
Correct
-
A 60-year-old man presents with worsening symptoms of shortness of breath. You examine his cardiovascular system and discover a slow-rising, low-volume pulse. His apex beat is sustained, and you can auscultate an ejection systolic murmur that is loudest in the aortic area that radiates to the carotids.
What is the SINGLE most likely diagnosis?Your Answer: Aortic stenosis
Explanation:Aortic stenosis is a common condition where the valve in the heart becomes narrowed due to the progressive calcification that occurs with age. This typically occurs around the age of 70. Other causes of aortic stenosis include calcification of a congenital bicuspid aortic valve and rheumatic fever.
The symptoms of aortic stenosis can vary but commonly include difficulty breathing during physical activity, fainting, dizziness, chest pain (angina), and in severe cases, sudden death. However, it is also possible for aortic stenosis to be asymptomatic, meaning that there are no noticeable symptoms.
When examining a patient with aortic stenosis, there are several signs that may be present. These include a slow-rising and low-volume pulse, a narrow pulse pressure, a sustained apex beat, a thrill (a vibrating sensation) in the area of the aorta, and an ejection click if the valve is pliable. Additionally, there is typically an ejection systolic murmur, which is a specific type of heart murmur, that can be heard loudest in the aortic area (located at the right sternal edge, 2nd intercostal space) and may radiate to the carotid arteries.
It is important to differentiate aortic stenosis from aortic sclerosis, which is a degeneration of the aortic valve but does not cause obstruction of the left ventricular outflow tract. Aortic sclerosis can be distinguished by the presence of a normal pulse character and the absence of radiation of the murmur.
-
This question is part of the following fields:
- Cardiology
-
-
Question 10
Incorrect
-
A 35-year-old woman with a previous diagnosis of paroxysmal supraventricular tachycardia is found to have Lown-Ganong-Levine (LGL) syndrome.
Which of the following statements about LGL syndrome is correct?Your Answer: It predisposes to atrial flutter
Correct Answer: The QRS duration is typically normal
Explanation:Lown-Ganong-Levine (LGL) syndrome is a condition that affects the electrical conducting system of the heart. It is classified as a pre-excitation syndrome, similar to the more well-known Wolff-Parkinson-White (WPW) syndrome. However, unlike WPW syndrome, LGL syndrome does not involve an accessory pathway for conduction. Instead, it is believed that there may be accessory fibers present that bypass all or part of the atrioventricular node.
When looking at an electrocardiogram (ECG) of a patient with LGL syndrome in sinus rhythm, there are several characteristic features to observe. The PR interval, which represents the time it takes for the electrical signal to travel from the atria to the ventricles, is typically shortened and measures less than 120 milliseconds. The QRS duration, which represents the time it takes for the ventricles to contract, is normal. The P wave, which represents the electrical activity of the atria, may be normal or inverted. However, what distinguishes LGL syndrome from other pre-excitation syndromes is the absence of a delta wave, which is a slurring of the initial rise in the QRS complex.
It is important to note that LGL syndrome predisposes individuals to paroxysmal supraventricular tachycardia (SVT), a rapid heart rhythm that originates above the ventricles. However, it does not increase the risk of developing atrial fibrillation or flutter, which are other types of abnormal heart rhythms.
-
This question is part of the following fields:
- Cardiology
-
-
Question 11
Incorrect
-
A 32-year-old woman comes to the Emergency Department complaining of dizziness and palpitations. She informs you that she was recently diagnosed with type A Wolff-Parkinson-White syndrome. You proceed to perform an ECG.
Which of the following ECG characteristics is NOT observed in type A Wolff-Parkinson-White (WPW) syndrome?Your Answer: QRS duration longer than 110 ms
Correct Answer: Predominantly negative QRS complexes in leads V1 and V2
Explanation:Wolff-Parkinson-White (WPW) syndrome is a condition that affects the electrical system of the heart. It occurs when there is an abnormal pathway, known as the bundle of Kent, between the atria and the ventricles. This pathway can cause premature contractions of the ventricles, leading to a type of rapid heartbeat called atrioventricular re-entrant tachycardia (AVRT).
In a normal heart rhythm, the electrical signals travel through the bundle of Kent and stimulate the ventricles. However, in WPW syndrome, these signals can cause the ventricles to contract prematurely. This can be seen on an electrocardiogram (ECG) as a shortened PR interval, a slurring of the initial rise in the QRS complex (known as a delta wave), and a widening of the QRS complex.
There are two distinct types of WPW syndrome that can be identified on an ECG. Type A is characterized by predominantly positive delta waves and QRS complexes in the praecordial leads, with a dominant R wave in V1. This can sometimes be mistaken for right bundle branch block (RBBB). Type B, on the other hand, shows predominantly negative delta waves and QRS complexes in leads V1 and V2, and positive in the other praecordial leads, resembling left bundle branch block (LBBB).
Overall, WPW syndrome is a condition that affects the electrical conduction system of the heart, leading to abnormal heart rhythms. It can be identified on an ECG by specific features such as shortened PR interval, delta waves, and widened QRS complex.
-
This question is part of the following fields:
- Cardiology
-
-
Question 12
Incorrect
-
A 72-year-old woman with a history of type II diabetes and hypertension presents with central chest discomfort. Her ECG showed ST depression in the inferior leads, but her discomfort subsides, and ECG returns to normal after receiving GTN spray and IV morphine. She was also given 300 mg of aspirin in the ambulance en route to the hospital. Her vital signs are as follows: SaO2 99% on room air, HR 89 bpm, and BP 139/82 mmHg. A troponin test has been scheduled and she is scheduled for an urgent coronary angiography.
Which of the following medications should you also consider administering to this patient?Your Answer: Alteplase
Correct Answer: Unfractionated heparin
Explanation:This patient is likely experiencing an acute coronary syndrome, possibly a non-ST-elevation myocardial infarction (NSTEMI) or unstable angina. The troponin test will help confirm the diagnosis. The patient’s ECG showed ST depression in the inferior leads, but this normalized after treatment with GTN and morphine, ruling out a ST-elevation myocardial infarction (STEMI).
Immediate pain relief should be provided. GTN (sublingual or buccal) can be used, but intravenous opioids like morphine should be considered, especially if a heart attack is suspected.
Aspirin should be given to all patients with unstable angina or NSTEMI as soon as possible and continued indefinitely, unless there are contraindications like bleeding risk or aspirin hypersensitivity. A loading dose of 300 mg should be administered right after presentation.
Fondaparinux should be given to patients without a high bleeding risk, unless coronary angiography is planned within 24 hours of admission. Unfractionated heparin can be an alternative to fondaparinux for patients who will undergo coronary angiography within 24 hours. For patients with significant renal impairment, unfractionated heparin can also be considered, with dose adjustment based on clotting function monitoring.
Routine administration of oxygen is no longer recommended, but oxygen saturation should be monitored using pulse oximetry as soon as possible, preferably before hospital admission. Supplemental oxygen should only be offered to individuals with oxygen saturation (SpO2) below 94% who are not at risk of hypercapnic respiratory failure, aiming for a SpO2 of 94-98%. For individuals with chronic obstructive pulmonary disease at risk of hypercapnic respiratory failure, a target SpO2 of 88-92% should be achieved until blood gas analysis is available.
Bivalirudin, a specific and reversible direct thrombin inhibitor (DTI), is recommended by NICE as a possible treatment for adults with STEMI undergoing percutaneous coronary intervention.
For more information, refer to the NICE guidelines on the assessment and diagnosis of chest pain of recent onset.
-
This question is part of the following fields:
- Cardiology
-
-
Question 13
Incorrect
-
Your hospital’s pediatrics department is currently evaluating the utility of a triple marker test for use in risk stratification of patients with a suspected heart condition. The test will use troponin I, myoglobin, and heart-type fatty acid-binding protein (HFABP).
How long after a heart event do troponin I levels reach their highest point?Your Answer: 12 hours
Correct Answer: 24 hours
Explanation:The timing of the initial rise, peak, and return to normality of various cardiac enzymes can serve as a helpful guide. Creatine kinase, the main cardiac isoenzyme, typically experiences an initial rise within 4-8 hours, reaches its peak at 18 hours, and returns to normal within 2-3 days. Myoglobin, which lacks specificity due to its association with skeletal muscle damage, shows an initial rise within 1-4 hours, peaks at 6-7 hours, and returns to normal within 24 hours. Troponin I, known for its sensitivity and specificity, exhibits an initial rise within 3-12 hours, reaches its peak at 24 hours, and returns to normal within 3-10 days. HFABP, or heart fatty acid binding protein, experiences an initial rise within 1.5 hours, peaks at 5-10 hours, and returns to normal within 24 hours. Lastly, LDH, predominantly found in cardiac muscle, shows an initial rise at 10 hours, peaks at 24-48 hours, and returns to normal within 14 days.
-
This question is part of the following fields:
- Cardiology
-
-
Question 14
Incorrect
-
You are managing a 62-year-old male patient presenting with symptomatic bradycardia. Despite multiple administrations of atropine, there has been no improvement in the patient's condition. Which two medications would be the most suitable options to consider next for treating this rhythm?
Your Answer:
Correct Answer: Adrenaline/Isoprenaline
Explanation:Adrenaline and isoprenaline are considered as second-line medications for the treatment of bradycardia. If atropine fails to improve the condition, transcutaneous pacing is recommended. However, if pacing is not available, the administration of second-line drugs becomes necessary. Adrenaline is typically given intravenously at a dosage of 2-10 mcg/minute, while isoprenaline is given at a dosage of 5 mcg/minute. It is important to note that glucagon is not mentioned as a treatment option for this patient’s bradycardia, as the cause of the condition is not specified as a beta-blocker overdose.
Further Reading:
Causes of Bradycardia:
– Physiological: Athletes, sleeping
– Cardiac conduction dysfunction: Atrioventricular block, sinus node disease
– Vasovagal & autonomic mediated: Vasovagal episodes, carotid sinus hypersensitivity
– Hypothermia
– Metabolic & electrolyte disturbances: Hypothyroidism, hyperkalaemia, hypermagnesemia
– Drugs: Beta-blockers, calcium channel blockers, digoxin, amiodarone
– Head injury: Cushing’s response
– Infections: Endocarditis
– Other: Sarcoidosis, amyloidosisPresenting symptoms of Bradycardia:
– Presyncope (dizziness, lightheadedness)
– Syncope
– Breathlessness
– Weakness
– Chest pain
– NauseaManagement of Bradycardia:
– Assess and monitor for adverse features (shock, syncope, myocardial ischaemia, heart failure)
– Treat reversible causes of bradycardia
– Pharmacological treatment: Atropine is first-line, adrenaline and isoprenaline are second-line
– Transcutaneous pacing if atropine is ineffective
– Other drugs that may be used: Aminophylline, dopamine, glucagon, glycopyrrolateBradycardia Algorithm:
– Follow the algorithm for management of bradycardia, which includes assessing and monitoring for adverse features, treating reversible causes, and using appropriate medications or pacing as needed.
https://acls-algorithms.com/wp-content/uploads/2020/12/Website-Bradycardia-Algorithm-Diagram.pdf -
This question is part of the following fields:
- Cardiology
-
-
Question 15
Incorrect
-
A 72 year old male patient presents to the emergency department complaining of worsening shortness of breath. You observe moderate mitral stenosis on the patient's most recent echocardiogram 10 months ago.
What is a typical finding in individuals with mitral stenosis?Your Answer:
Correct Answer: Loud 1st heart sound
Explanation:Mitral stenosis is a condition characterized by a narrowing of the mitral valve in the heart. One of the key features of this condition is a loud first heart sound, which is often described as having an opening snap. This sound is typically heard during mid-late diastole and is best heard during expiration. Other signs of mitral stenosis include a low volume pulse, a flushed appearance of the cheeks (known as malar flush), and the presence of atrial fibrillation. Additionally, patients with mitral stenosis may exhibit signs of pulmonary edema, such as crepitations (crackling sounds) in the lungs and the production of white or pink frothy sputum. It is important to note that a water hammer pulse is associated with a different condition called aortic regurgitation.
Further Reading:
Mitral Stenosis:
– Causes: Rheumatic fever, Mucopolysaccharidoses, Carcinoid, Endocardial fibroelastosis
– Features: Mid-late diastolic murmur, loud S1, opening snap, low volume pulse, malar flush, atrial fibrillation, signs of pulmonary edema, tapping apex beat
– Features of severe mitral stenosis: Length of murmur increases, opening snap becomes closer to S2
– Investigation findings: CXR may show left atrial enlargement, echocardiography may show reduced cross-sectional area of the mitral valveMitral Regurgitation:
– Causes: Mitral valve prolapse, Myxomatous degeneration, Ischemic heart disease, Rheumatic fever, Connective tissue disorders, Endocarditis, Dilated cardiomyopathy
– Features: pansystolic murmur radiating to left axilla, soft S1, S3, laterally displaced apex beat with heave
– Signs of acute MR: Decompensated congestive heart failure symptoms
– Signs of chronic MR: Leg edema, fatigue, arrhythmia (atrial fibrillation)
– Investigation findings: Doppler echocardiography to detect regurgitant flow and pulmonary hypertension, ECG may show signs of LA enlargement and LV hypertrophy, CXR may show LA and LV enlargement in chronic MR and pulmonary edema in acute MR. -
This question is part of the following fields:
- Cardiology
-
-
Question 16
Incorrect
-
A 32-year-old woman comes to the Emergency Department complaining of dizziness and palpitations. She informs you that she was recently diagnosed with Wolff-Parkinson-White syndrome. You proceed to perform an ECG.
Which ONE statement about the ECG findings in Wolff-Parkinson-White (WPW) syndrome is accurate?Your Answer:
Correct Answer: Type A WPW can resemble right bundle branch block
Explanation:Wolff-Parkinson-White (WPW) syndrome is a condition that affects the electrical system of the heart. It occurs when there is an abnormal pathway, known as the bundle of Kent, between the atria and the ventricles. This pathway can cause premature contractions of the ventricles, leading to a type of rapid heartbeat called atrioventricular re-entrant tachycardia (AVRT).
In a normal heart rhythm, the electrical signals travel through the bundle of Kent and stimulate the ventricles. However, in WPW syndrome, these signals can cause the ventricles to contract prematurely. This can be seen on an electrocardiogram (ECG) as a shortened PR interval, a slurring of the initial rise in the QRS complex (known as a delta wave), and a widening of the QRS complex.
There are two distinct types of WPW syndrome that can be identified on an ECG. Type A is characterized by predominantly positive delta waves and QRS complexes in the praecordial leads, with a dominant R wave in V1. This can sometimes be mistaken for right bundle branch block (RBBB). Type B, on the other hand, shows predominantly negative delta waves and QRS complexes in leads V1 and V2, and positive in the other praecordial leads, resembling left bundle branch block (LBBB).
Overall, WPW syndrome is a condition that affects the electrical conduction system of the heart, leading to abnormal heart rhythms. It can be identified on an ECG by specific features such as shortened PR interval, delta waves, and widened QRS complex.
-
This question is part of the following fields:
- Cardiology
-
-
Question 17
Incorrect
-
You are managing a 68-year-old woman who has been brought to the resuscitation bay by the ambulance team. The patient experienced sudden dizziness and difficulty breathing while at home. The ambulance crew presents the patient's ECG for your review. Your plan includes administering atropine to address the patient's arrhythmia. Which of the following conditions would contraindicate the use of atropine?
Your Answer:
Correct Answer: Heart transplant
Explanation:Atropine should not be given to patients with certain conditions, including heart transplant, angle-closure glaucoma, gastrointestinal motility disorders, myasthenia gravis, severe ulcerative colitis, toxic megacolon, bladder outflow obstruction, and urinary retention. In heart transplant patients, atropine will not have the desired effect as the denervated hearts do not respond to vagal blockade. Giving atropine in these patients may even lead to paradoxical sinus arrest or high-grade AV block.
Further Reading:
Causes of Bradycardia:
– Physiological: Athletes, sleeping
– Cardiac conduction dysfunction: Atrioventricular block, sinus node disease
– Vasovagal & autonomic mediated: Vasovagal episodes, carotid sinus hypersensitivity
– Hypothermia
– Metabolic & electrolyte disturbances: Hypothyroidism, hyperkalaemia, hypermagnesemia
– Drugs: Beta-blockers, calcium channel blockers, digoxin, amiodarone
– Head injury: Cushing’s response
– Infections: Endocarditis
– Other: Sarcoidosis, amyloidosisPresenting symptoms of Bradycardia:
– Presyncope (dizziness, lightheadedness)
– Syncope
– Breathlessness
– Weakness
– Chest pain
– NauseaManagement of Bradycardia:
– Assess and monitor for adverse features (shock, syncope, myocardial ischaemia, heart failure)
– Treat reversible causes of bradycardia
– Pharmacological treatment: Atropine is first-line, adrenaline and isoprenaline are second-line
– Transcutaneous pacing if atropine is ineffective
– Other drugs that may be used: Aminophylline, dopamine, glucagon, glycopyrrolateBradycardia Algorithm:
– Follow the algorithm for management of bradycardia, which includes assessing and monitoring for adverse features, treating reversible causes, and using appropriate medications or pacing as needed.
https://acls-algorithms.com/wp-content/uploads/2020/12/Website-Bradycardia-Algorithm-Diagram.pdf -
This question is part of the following fields:
- Cardiology
-
-
Question 18
Incorrect
-
A 58 year old female presents to the emergency department 2 hours after developing severe tearing chest pain that radiates to the back. The patient rates the severity as 10/10 on the visual analogue scale. You note the patient is prescribed medication for hypertension but the patient admits she rarely takes her tablets. The patient's observations are shown below:
Blood pressure 180/88 mmHg
Pulse rate 92 bpm
Respiration rate 22 rpm
Oxygen sats 97% on air
Temperature 37.2ºC
Chest X-ray shows a widened mediastinum. You prescribe antihypertensive therapy. What is the target systolic blood pressure in this patient?Your Answer:
Correct Answer: 100-120 mmHg
Explanation:To manage aortic dissection, it is important to lower the systolic blood pressure to a range of 100-120 mmHg. This helps decrease the strain on the damaged artery and minimizes the chances of the dissection spreading further. In this patient, symptoms such as tearing chest pain and a widened mediastinum on the chest X-ray are consistent with aortic dissection.
Further Reading:
Aortic dissection is a life-threatening condition in which blood flows through a tear in the innermost layer of the aorta, creating a false lumen. Prompt treatment is necessary as the mortality rate increases by 1-2% per hour. There are different classifications of aortic dissection, with the majority of cases being proximal. Risk factors for aortic dissection include hypertension, atherosclerosis, connective tissue disorders, family history, and certain medical procedures.
The presentation of aortic dissection typically includes sudden onset sharp chest pain, often described as tearing or ripping. Back pain and abdominal pain are also common, and the pain may radiate to the neck and arms. The clinical picture can vary depending on which aortic branches are affected, and complications such as organ ischemia, limb ischemia, stroke, myocardial infarction, and cardiac tamponade may occur. Common signs and symptoms include a blood pressure differential between limbs, pulse deficit, and a diastolic murmur.
Various investigations can be done to diagnose aortic dissection, including ECG, CXR, and CT with arterial contrast enhancement (CTA). CT is the investigation of choice due to its accuracy in diagnosis and classification. Other imaging techniques such as transoesophageal echocardiography (TOE), magnetic resonance imaging/angiography (MRI/MRA), and digital subtraction angiography (DSA) are less commonly used.
Management of aortic dissection involves pain relief, resuscitation measures, blood pressure control, and referral to a vascular or cardiothoracic team. Opioid analgesia should be given for pain relief, and resuscitation measures such as high flow oxygen and large bore IV access should be performed. Blood pressure control is crucial, and medications such as labetalol may be used to reduce systolic blood pressure. Hypotension carries a poor prognosis and may require careful fluid resuscitation. Treatment options depend on the type of dissection, with type A dissections typically requiring urgent surgery and type B dissections managed by thoracic endovascular aortic repair (TEVAR) and blood pressure control optimization.
-
This question is part of the following fields:
- Cardiology
-
-
Question 19
Incorrect
-
A 28-year-old woman presents after experiencing a syncopal episode earlier in the day. She fainted while jogging on the treadmill at her local gym. She regained consciousness quickly and currently feels completely fine. Upon examination, she has a slim physique, normal heart sounds without any additional sounds or murmurs, clear lungs, and a soft abdomen. She is originally from Thailand and mentions that her mother passed away suddenly in her 30s.
Her ECG reveals:
- Right bundle branch block pattern
- Downward-sloping 'coved' ST elevation in leads V1-V3
- Widespread upward-sloping ST depression in other leads
What is the SINGLE most likely diagnosis?Your Answer:
Correct Answer: Brugada syndrome
Explanation:Brugada syndrome is a genetic disorder that is passed down from one generation to another in an autosomal dominant manner. It is characterized by abnormal findings on an electrocardiogram (ECG) and can lead to sudden cardiac death. The cause of death in individuals with Brugada syndrome is typically ventricular fibrillation, which occurs as a result of specific defects in ion channels that are determined by our genes. Interestingly, this syndrome is more commonly observed in South East Asia and is actually the leading cause of sudden unexplained cardiac death in Thailand.
One of the key features seen on an ECG that is consistent with Type 1 Brugada syndrome is a pattern known as right bundle branch block. Additionally, there is a distinct downward sloping coved ST elevation observed in leads V1-V3. These specific ECG findings help to identify individuals who may be at risk for developing Brugada syndrome and experiencing its potentially fatal consequences.
-
This question is part of the following fields:
- Cardiology
-
-
Question 20
Incorrect
-
A 70-year-old woman comes in complaining of a rapid heartbeat and difficulty breathing. She has a past medical history of a kidney transplant. Her rhythm strip reveals supraventricular tachycardia.
What is the most suitable initial dosage of adenosine to administer to her?Your Answer:
Correct Answer: Adenosine 3 mg IV
Explanation:Adenosine is given through a rapid IV bolus, followed by a flush of saline solution. In adults, the starting dose is 6 mg, and if needed, an additional dose of 12 mg is given. If necessary, another dose of either 12 mg or 18 mg can be administered at intervals of 1-2 minutes until the desired effect is observed.
It is important to note that the latest ALS guidelines recommend an 18 mg dose for the third administration, while the BNF/NICE guidelines suggest a 12 mg dose.
However, patients who have undergone a heart transplant are particularly sensitive to the effects of adenosine. Therefore, their initial dose should be reduced to 3 mg, followed by 6 mg, and then 12 mg.
-
This question is part of the following fields:
- Cardiology
-
-
Question 21
Incorrect
-
A 45 year old female comes to the emergency department with abrupt onset tearing chest pain that spreads to the throat and back. You contemplate the likelihood of aortic dissection. What is the predominant risk factor observed in individuals with aortic dissection?
Your Answer:
Correct Answer: Hypertension
Explanation:Aortic dissection is a condition that occurs when the middle layer of the aorta, known as the tunica media, becomes weakened. This weakening leads to the development of cases of aortic dissection.
Further Reading:
Aortic dissection is a life-threatening condition in which blood flows through a tear in the innermost layer of the aorta, creating a false lumen. Prompt treatment is necessary as the mortality rate increases by 1-2% per hour. There are different classifications of aortic dissection, with the majority of cases being proximal. Risk factors for aortic dissection include hypertension, atherosclerosis, connective tissue disorders, family history, and certain medical procedures.
The presentation of aortic dissection typically includes sudden onset sharp chest pain, often described as tearing or ripping. Back pain and abdominal pain are also common, and the pain may radiate to the neck and arms. The clinical picture can vary depending on which aortic branches are affected, and complications such as organ ischemia, limb ischemia, stroke, myocardial infarction, and cardiac tamponade may occur. Common signs and symptoms include a blood pressure differential between limbs, pulse deficit, and a diastolic murmur.
Various investigations can be done to diagnose aortic dissection, including ECG, CXR, and CT with arterial contrast enhancement (CTA). CT is the investigation of choice due to its accuracy in diagnosis and classification. Other imaging techniques such as transoesophageal echocardiography (TOE), magnetic resonance imaging/angiography (MRI/MRA), and digital subtraction angiography (DSA) are less commonly used.
Management of aortic dissection involves pain relief, resuscitation measures, blood pressure control, and referral to a vascular or cardiothoracic team. Opioid analgesia should be given for pain relief, and resuscitation measures such as high flow oxygen and large bore IV access should be performed. Blood pressure control is crucial, and medications such as labetalol may be used to reduce systolic blood pressure. Hypotension carries a poor prognosis and may require careful fluid resuscitation. Treatment options depend on the type of dissection, with type A dissections typically requiring urgent surgery and type B dissections managed by thoracic endovascular aortic repair (TEVAR) and blood pressure control optimization.
-
This question is part of the following fields:
- Cardiology
-
-
Question 22
Incorrect
-
You are treating a 68 year old male who has been brought into the resuscitation bay by the ambulance crew. The patient was at home when he suddenly experienced dizziness and difficulty breathing. The ambulance crew presents the patient's ECG to you. You are considering administering atropine to address the patient's bradyarrhythmia. Which of the following statements is accurate regarding the use of atropine?
Your Answer:
Correct Answer: Up to 6 doses of 500 mcg can be given every 3-5 minutes
Explanation:When treating adults with bradycardia, it is recommended to administer a maximum of 6 doses of atropine 500 mcg. These doses can be repeated every 3-5 minutes. The total cumulative dose of atropine should not exceed 3 mg in adults.
Further Reading:
Causes of Bradycardia:
– Physiological: Athletes, sleeping
– Cardiac conduction dysfunction: Atrioventricular block, sinus node disease
– Vasovagal & autonomic mediated: Vasovagal episodes, carotid sinus hypersensitivity
– Hypothermia
– Metabolic & electrolyte disturbances: Hypothyroidism, hyperkalaemia, hypermagnesemia
– Drugs: Beta-blockers, calcium channel blockers, digoxin, amiodarone
– Head injury: Cushing’s response
– Infections: Endocarditis
– Other: Sarcoidosis, amyloidosisPresenting symptoms of Bradycardia:
– Presyncope (dizziness, lightheadedness)
– Syncope
– Breathlessness
– Weakness
– Chest pain
– NauseaManagement of Bradycardia:
– Assess and monitor for adverse features (shock, syncope, myocardial ischaemia, heart failure)
– Treat reversible causes of bradycardia
– Pharmacological treatment: Atropine is first-line, adrenaline and isoprenaline are second-line
– Transcutaneous pacing if atropine is ineffective
– Other drugs that may be used: Aminophylline, dopamine, glucagon, glycopyrrolateBradycardia Algorithm:
– Follow the algorithm for management of bradycardia, which includes assessing and monitoring for adverse features, treating reversible causes, and using appropriate medications or pacing as needed.
https://acls-algorithms.com/wp-content/uploads/2020/12/Website-Bradycardia-Algorithm-Diagram.pdf -
This question is part of the following fields:
- Cardiology
-
-
Question 23
Incorrect
-
A 67 year old male presents to the emergency department with complaints of dizziness, difficulty breathing, and heart palpitations. The patient reports that these symptoms began six hours ago. Upon examination, the patient's vital signs are as follows:
- Blood pressure: 118/76 mmHg
- Pulse rate: 86 bpm
- Respiration rate: 15 bpm
- Oxygen saturation: 97% on room air
An electrocardiogram (ECG) is performed, confirming the presence of atrial fibrillation. As part of the treatment plan, you need to calculate the patient's CHA2DS2-VASc score.
According to NICE guidelines, what is the usual threshold score for initiating anticoagulation in this case?Your Answer:
Correct Answer: 2
Explanation:According to NICE guidelines, the usual threshold score for initiating anticoagulation in this case is 2.
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, affecting around 5% of patients over the age of 70-75 years and 10% of patients aged 80-85 years. While AF can cause palpitations and inefficient cardiac function, the most important aspect of managing patients with AF is reducing the increased risk of stroke.
AF can be classified as first detected episode, paroxysmal, persistent, or permanent. First detected episode refers to the initial occurrence of AF, regardless of symptoms or duration. Paroxysmal AF occurs when a patient has 2 or more self-terminating episodes lasting less than 7 days. Persistent AF refers to episodes lasting more than 7 days that do not self-terminate. Permanent AF is continuous atrial fibrillation that cannot be cardioverted or if attempts to do so are deemed inappropriate. The treatment goals for permanent AF are rate control and anticoagulation if appropriate.
Symptoms of AF include palpitations, dyspnea, and chest pain. The most common sign is an irregularly irregular pulse. An electrocardiogram (ECG) is essential for diagnosing AF, as other conditions can also cause an irregular pulse.
Managing patients with AF involves two key parts: rate/rhythm control and reducing stroke risk. Rate control involves slowing down the irregular pulse to avoid negative effects on cardiac function. This is typically achieved using beta-blockers or rate-limiting calcium channel blockers. If one drug is not effective, combination therapy may be used. Rhythm control aims to restore and maintain normal sinus rhythm through pharmacological or electrical cardioversion. However, the majority of patients are managed with a rate control strategy.
Reducing stroke risk in patients with AF is crucial. Risk stratifying tools, such as the CHA2DS2-VASc score, are used to determine the most appropriate anticoagulation strategy. Anticoagulation is recommended for patients with a score of 2 or more. Clinicians can choose between warfarin and novel oral anticoagulants (NOACs) for anticoagulation.
Before starting anticoagulation, the patient’s bleeding risk should be assessed using tools like the HAS-BLED score or the ORBIT tool. These tools evaluate factors such as hypertension, abnormal renal or liver function, history of bleeding, age, and use of drugs that predispose to bleeding.
-
This question is part of the following fields:
- Cardiology
-
-
Question 24
Incorrect
-
A 42 year old male comes to the emergency department with a sudden onset of 'tearing' pain in the middle of his chest that extends to the center of his back. The patient is tall and has a slender physique. Additionally, you observe that the patient has elongated arms and fingers. During the chest examination, you notice a prominent protrusion of the sternum (pectus carinatum). What is the probable underlying cause of this patient's chest pain?
Your Answer:
Correct Answer: Aortic dissection
Explanation:Marfan’s syndrome is a condition that greatly increases the risk of aortic dissection. This patient exhibits several characteristics commonly seen in individuals with Marfan syndrome, such as tall stature, low BMI, and pectoral abnormalities like pectus carinatum and excavatum. Additionally, their long limbs and fingers are also indicative of Marfan’s syndrome. It is important to note that aortic dissection tends to occur at a much younger age in individuals with Marfan syndrome compared to those without connective tissue diseases. The median age for type A dissection in Marfan’s patients is 36.7 years, while for type B dissection it is 40 years. In contrast, individuals without Marfan’s syndrome typically experience dissection at the ages of 63 and 62 years for type A and type B dissections, respectively.
Further Reading:
Aortic dissection is a life-threatening condition in which blood flows through a tear in the innermost layer of the aorta, creating a false lumen. Prompt treatment is necessary as the mortality rate increases by 1-2% per hour. There are different classifications of aortic dissection, with the majority of cases being proximal. Risk factors for aortic dissection include hypertension, atherosclerosis, connective tissue disorders, family history, and certain medical procedures.
The presentation of aortic dissection typically includes sudden onset sharp chest pain, often described as tearing or ripping. Back pain and abdominal pain are also common, and the pain may radiate to the neck and arms. The clinical picture can vary depending on which aortic branches are affected, and complications such as organ ischemia, limb ischemia, stroke, myocardial infarction, and cardiac tamponade may occur. Common signs and symptoms include a blood pressure differential between limbs, pulse deficit, and a diastolic murmur.
Various investigations can be done to diagnose aortic dissection, including ECG, CXR, and CT with arterial contrast enhancement (CTA). CT is the investigation of choice due to its accuracy in diagnosis and classification. Other imaging techniques such as transoesophageal echocardiography (TOE), magnetic resonance imaging/angiography (MRI/MRA), and digital subtraction angiography (DSA) are less commonly used.
Management of aortic dissection involves pain relief, resuscitation measures, blood pressure control, and referral to a vascular or cardiothoracic team. Opioid analgesia should be given for pain relief, and resuscitation measures such as high flow oxygen and large bore IV access should be performed. Blood pressure control is crucial, and medications such as labetalol may be used to reduce systolic blood pressure. Hypotension carries a poor prognosis and may require careful fluid resuscitation. Treatment options depend on the type of dissection, with type A dissections typically requiring urgent surgery and type B dissections managed by thoracic endovascular aortic repair (TEVAR) and blood pressure control optimization.
-
This question is part of the following fields:
- Cardiology
-
-
Question 25
Incorrect
-
A 72 year old male presents to the emergency department with central chest pain. After evaluating the patient and reviewing the tests, your consultant determines that the patient has unstable angina. Your consultant instructs you to contact the bed manager and arrange for the patient's admission. What crucial finding is necessary to establish the diagnosis of unstable angina?
Your Answer:
Correct Answer: Normal troponin assay
Explanation:Distinguishing between unstable angina and other acute coronary syndromes can be determined by normal troponin results. Unstable angina is characterized by new onset angina or a sudden worsening of previously stable angina, often occurring at rest. This condition typically requires hospital admission. On the other hand, stable angina is predictable and occurs during physical exertion or emotional stress, lasting for a short duration of no more than 10 minutes and relieved within minutes of rest or sublingual nitrates.
To diagnose unstable angina, it is crucial to consider the nature of the chest pain and negative cardiac enzyme testing. The presence or absence of chest pain at rest and the response to rest and treatment with GTN are the most useful descriptors in distinguishing between stable and unstable angina. It is important to note that patients with unstable angina may not exhibit any changes on an electrocardiogram (ECG).
If troponin results are abnormal, it indicates a myocardial infarction rather than unstable angina.
Further Reading:
Acute Coronary Syndromes (ACS) is a term used to describe a group of conditions that involve the sudden reduction or blockage of blood flow to the heart. This can lead to a heart attack or unstable angina. ACS includes ST segment elevation myocardial infarction (STEMI), non-ST segment elevation myocardial infarction (NSTEMI), and unstable angina (UA).
The development of ACS is usually seen in patients who already have underlying coronary heart disease. This disease is characterized by the buildup of fatty plaques in the walls of the coronary arteries, which can gradually narrow the arteries and reduce blood flow to the heart. This can cause chest pain, known as angina, during physical exertion. In some cases, the fatty plaques can rupture, leading to a complete blockage of the artery and a heart attack.
There are both non modifiable and modifiable risk factors for ACS. non modifiable risk factors include increasing age, male gender, and family history. Modifiable risk factors include smoking, diabetes mellitus, hypertension, hypercholesterolemia, and obesity.
The symptoms of ACS typically include chest pain, which is often described as a heavy or constricting sensation in the central or left side of the chest. The pain may also radiate to the jaw or left arm. Other symptoms can include shortness of breath, sweating, and nausea/vomiting. However, it’s important to note that some patients, especially diabetics or the elderly, may not experience chest pain.
The diagnosis of ACS is typically made based on the patient’s history, electrocardiogram (ECG), and blood tests for cardiac enzymes, specifically troponin. The ECG can show changes consistent with a heart attack, such as ST segment elevation or depression, T wave inversion, or the presence of a new left bundle branch block. Elevated troponin levels confirm the diagnosis of a heart attack.
The management of ACS depends on the specific condition and the patient’s risk factors. For STEMI, immediate coronary reperfusion therapy, either through primary percutaneous coronary intervention (PCI) or fibrinolysis, is recommended. In addition to aspirin, a second antiplatelet agent is usually given. For NSTEMI or unstable angina, the treatment approach may involve reperfusion therapy or medical management, depending on the patient’s risk of future cardiovascular events.
-
This question is part of the following fields:
- Cardiology
-
-
Question 26
Incorrect
-
You are summoned to a cardiac arrest in the resuscitation area of your Emergency Department. The patient is experiencing ventricular fibrillation, and adrenaline is being administered as part of the cardiac arrest protocol.
Which ONE statement is accurate regarding the utilization of adrenaline in this arrest?Your Answer:
Correct Answer: There is no evidence of long-term benefit from its use
Explanation:Adrenaline is recommended to be administered after the third shock in a shockable cardiac arrest (Vf/pVT) once chest compressions have been resumed. The recommended dose is 1 mg, which can be administered as either 10 mL of 1:10,000 or 1 mL of 1:1000 concentration. Subsequently, adrenaline should be given every 3-5 minutes, alternating with chest compressions, and it should be administered without interrupting the compressions. While there is no evidence of long-term benefit from the use of adrenaline in cardiac arrest, some studies have shown improved short-term survival, which justifies its continued use.
-
This question is part of the following fields:
- Cardiology
-
-
Question 27
Incorrect
-
You are called to a cardiac arrest in a child in the Emergency Department. Which SINGLE statement regarding resuscitation in children is true?
Your Answer:
Correct Answer: The ratio of chest compressions to ventilations is 15:2
Explanation:The ratio of chest compressions to ventilations is 15:2. This ratio has not been proven through experiments, but it has been validated through mathematical studies. When performing chest compressions on a child, it is recommended to make them at least 1/3 of the depth of the child’s chest. Additionally, the optimal compression rate is between 100 and 120 compressions per minute.
To protect the airway of an unconscious child, the oropharyngeal (Guedel) airway is the best option. However, it should not be used on awake patients as there is a risk of vomiting and aspiration.
In children, asystole is the most common arrest rhythm. This occurs when the young heart responds to prolonged hypoxia and acidosis by progressively slowing down, eventually resulting in asystole. -
This question is part of the following fields:
- Cardiology
-
-
Question 28
Incorrect
-
A 55-year-old male with a past medical history of high blood pressure arrives at the emergency department complaining of sudden chest and interscapular pain that feels like tearing. You suspect aortic dissection. Which of the following signs and symptoms aligns with the diagnosis of aortic dissection?
Your Answer:
Correct Answer: Blood pressure differential of more than 10 mmHg between left and right arms
Explanation:A significant proportion of the population experiences a difference of 10 mmHg or more in blood pressure between their upper limbs. Pericarditis can be identified by the presence of saddle-shaped ST elevation and pain in the trapezius ridge. Aortic dissection is characterized by a diastolic murmur with a decrescendo pattern, which indicates aortic incompetence.
Further Reading:
Aortic dissection is a life-threatening condition in which blood flows through a tear in the innermost layer of the aorta, creating a false lumen. Prompt treatment is necessary as the mortality rate increases by 1-2% per hour. There are different classifications of aortic dissection, with the majority of cases being proximal. Risk factors for aortic dissection include hypertension, atherosclerosis, connective tissue disorders, family history, and certain medical procedures.
The presentation of aortic dissection typically includes sudden onset sharp chest pain, often described as tearing or ripping. Back pain and abdominal pain are also common, and the pain may radiate to the neck and arms. The clinical picture can vary depending on which aortic branches are affected, and complications such as organ ischemia, limb ischemia, stroke, myocardial infarction, and cardiac tamponade may occur. Common signs and symptoms include a blood pressure differential between limbs, pulse deficit, and a diastolic murmur.
Various investigations can be done to diagnose aortic dissection, including ECG, CXR, and CT with arterial contrast enhancement (CTA). CT is the investigation of choice due to its accuracy in diagnosis and classification. Other imaging techniques such as transoesophageal echocardiography (TOE), magnetic resonance imaging/angiography (MRI/MRA), and digital subtraction angiography (DSA) are less commonly used.
Management of aortic dissection involves pain relief, resuscitation measures, blood pressure control, and referral to a vascular or cardiothoracic team. Opioid analgesia should be given for pain relief, and resuscitation measures such as high flow oxygen and large bore IV access should be performed. Blood pressure control is crucial, and medications such as labetalol may be used to reduce systolic blood pressure. Hypotension carries a poor prognosis and may require careful fluid resuscitation. Treatment options depend on the type of dissection, with type A dissections typically requiring urgent surgery and type B dissections managed by thoracic endovascular aortic repair (TEVAR) and blood pressure control optimization.
-
This question is part of the following fields:
- Cardiology
-
-
Question 29
Incorrect
-
A 45-year-old woman comes in with central chest pain that is spreading to her left arm for the past 30 minutes. Her vital signs are as follows: heart rate of 80 beats per minute, blood pressure of 118/72, and oxygen saturation of 98% on room air. The ECG shows the following findings:
ST depression in leads V1-V4 and aVR
ST elevation in V5-V6, II, III, and aVF
Positive R wave in V1 and V2
What is the most likely diagnosis in this case?Your Answer:
Correct Answer: Acute inferoposterior myocardial infarction
Explanation:The ECG shows the following findings:
– There is ST depression in leads V1-V4 and aVR.
– There is ST elevation in leads V5-V6, II, III, and aVF.
– There is a positive R wave in leads V1 and V2, which indicates a reverse Q wave.
These ECG changes indicate that there is an acute inferoposterior myocardial infarction. -
This question is part of the following fields:
- Cardiology
-
-
Question 30
Incorrect
-
You are summoned to the resuscitation bay to provide assistance with a 72-year-old patient who is undergoing treatment for cardiac arrest. After three shocks, the patient experiences a return of spontaneous circulation.
What are the recommended blood pressure goals following a return of spontaneous circulation (ROSC) after cardiac arrest?Your Answer:
Correct Answer: Mean arterial pressure 65-100 mmHg
Explanation:After the return of spontaneous circulation (ROSC), there are two specific blood pressure targets that need to be achieved. The first target is to maintain a systolic blood pressure above 100 mmHg. The second target is to maintain the mean arterial pressure (MAP) within the range of 65 to 100 mmHg.
Further Reading:
Cardiopulmonary arrest is a serious event with low survival rates. In non-traumatic cardiac arrest, only about 20% of patients who arrest as an in-patient survive to hospital discharge, while the survival rate for out-of-hospital cardiac arrest is approximately 8%. The Resus Council BLS/AED Algorithm for 2015 recommends chest compressions at a rate of 100-120 per minute with a compression depth of 5-6 cm. The ratio of chest compressions to rescue breaths is 30:2.
After a cardiac arrest, the goal of patient care is to minimize the impact of post cardiac arrest syndrome, which includes brain injury, myocardial dysfunction, the ischaemic/reperfusion response, and the underlying pathology that caused the arrest. The ABCDE approach is used for clinical assessment and general management. Intubation may be necessary if the airway cannot be maintained by simple measures or if it is immediately threatened. Controlled ventilation is aimed at maintaining oxygen saturation levels between 94-98% and normocarbia. Fluid status may be difficult to judge, but a target mean arterial pressure (MAP) between 65 and 100 mmHg is recommended. Inotropes may be administered to maintain blood pressure. Sedation should be adequate to gain control of ventilation, and short-acting sedating agents like propofol are preferred. Blood glucose levels should be maintained below 8 mmol/l. Pyrexia should be avoided, and there is some evidence for controlled mild hypothermia but no consensus on this.
Post ROSC investigations may include a chest X-ray, ECG monitoring, serial potassium and lactate measurements, and other imaging modalities like ultrasonography, echocardiography, CTPA, and CT head, depending on availability and skills in the local department. Treatment should be directed towards the underlying cause, and PCI or thrombolysis may be considered for acute coronary syndrome or suspected pulmonary embolism, respectively.
Patients who are comatose after ROSC without significant pre-arrest comorbidities should be transferred to the ICU for supportive care. Neurological outcome at 72 hours is the best prognostic indicator of outcome.
-
This question is part of the following fields:
- Cardiology
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)