-
Question 1
Correct
-
Jill, a 54-year-old female, visits her doctor complaining of chest pain. She reports that the pain worsens when she walks and subsides when she rests.
Jill's medical history includes diabetes, hypercholesterolemia, and hypertension. She also has a family history of myocardial infarction.
Based on her symptoms, the doctor diagnoses Jill with angina and prescribes a nitrate spray.
At what stage of the cardiac cycle do the coronary arteries primarily fill?Your Answer: Ventricular diastole
Explanation:The filling of the coronary arteries takes place during ventricular diastole and not during ventricular systole, which is when isovolumetric contraction occurs.
Understanding Coronary Circulation
Coronary circulation refers to the blood flow that supplies the heart with oxygen and nutrients. The arterial supply of the heart is divided into two main branches: the left coronary artery (LCA) and the right coronary artery (RCA). The LCA originates from the left aortic sinus, while the RCA originates from the right aortic sinus. The LCA further divides into two branches, the left anterior descending (LAD) and the circumflex artery, while the RCA supplies the posterior descending artery.
The LCA supplies the left ventricle, left atrium, and interventricular septum, while the RCA supplies the right ventricle and the inferior wall of the left ventricle. The SA node, which is responsible for initiating the heartbeat, is supplied by the RCA in 60% of individuals, while the AV node, which is responsible for regulating the heartbeat, is supplied by the RCA in 90% of individuals.
On the other hand, the venous drainage of the heart is through the coronary sinus, which drains into the right atrium. During diastole, the coronary arteries fill with blood, allowing for the delivery of oxygen and nutrients to the heart muscles. Understanding the coronary circulation is crucial in the diagnosis and management of various heart diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Incorrect
-
A 53-year-old woman presents with stroke symptoms after experiencing difficulty speaking and changes in vision while at a hair salon. She developed a headache after having her hair washed, and further examination reveals a vertebral arterial dissection believed to be caused by hyperextension of her neck.
What is the pathway of this blood vessel as it enters the cranial cavity?Your Answer: Carotid canal
Correct Answer: Foramen magnum
Explanation:The vertebral arteries pass through the foramen magnum to enter the cranial cavity. If the neck is hyperextended, it can compress and potentially cause dissection of these arteries. A well-known example of this happening is when a person leans back to have their hair washed at a salon. The vertebral artery runs alongside the medulla in the foramen magnum. The carotid canal is not involved in this process, as it contains the carotid artery. Similarly, the foramen ovale contains the accessory meningeal artery, not the vertebral artery, and the foramen spinosum contains the middle meningeal artery, not the vertebral artery.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Correct
-
John, a 35-year-old male, is brought to the emergency department by ambulance. The ambulance crew explains that the patient has homonymous hemianopia, weakness of left upper and lower limb, and dysphasia.
He has a strong past medical and family history deep vein thromboses.
A CT is ordered and the report suggests a stroke affecting the middle cerebral artery. Months later he is under investigations to explain the stroke at his young age. He is diagnosed with Factor V Leiden thrombophilia, which causes the blood to be in a hypercoagulable state.
What are the potential areas of the brain that can be impacted by an emboli in this artery?Your Answer: Frontal, temporal and parietal lobes
Explanation:The frontal, temporal, and parietal lobes are mainly supplied by the middle cerebral artery, which is a continuation of the internal carotid artery. As a result, any damage to this artery can have a significant impact on a large portion of the brain. The middle cerebral artery is frequently affected by cerebrovascular events. The posterior cerebral artery, on the other hand, supplies the occipital lobe. The anterior cerebral artery supplies a portion of the frontal and parietal lobes.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Incorrect
-
A 28-year-old man arrives at the emergency department complaining of chest pain. The ECG strip shows an irregularly irregular tachycardia that is not in sinus rhythm.
Where is the site of this pathology?Your Answer: Isolated discordance of the AV node
Correct Answer: Discordance of electrical activity from the myocytes surrounding the pulmonary veins
Explanation:Atrial fibrillation occurs when irregular electrical activity from the myocytes surrounding the pulmonary veins overwhelms the regular impulses from the sinus node. This leads to discordance of electrical activity in the atria, causing the irregularly irregular tachycardia characteristic of AF. It is important to note that AF is not caused by an absence of electrical activity in the atria or bundle of His.
Atrial fibrillation (AF) is a heart condition that requires prompt management. The management of AF depends on the patient’s haemodynamic stability and the duration of the AF. For haemodynamically unstable patients, electrical cardioversion is recommended. For haemodynamically stable patients, rate control is the first-line treatment strategy, except in certain cases. Medications such as beta-blockers, calcium channel blockers, and digoxin are commonly used to control the heart rate. Rhythm control is another treatment option that involves the use of medications such as beta-blockers, dronedarone, and amiodarone. Catheter ablation is recommended for patients who have not responded to or wish to avoid antiarrhythmic medication. The procedure involves the use of radiofrequency or cryotherapy to ablate the faulty electrical pathways that cause AF. Anticoagulation is necessary before and during the procedure to reduce the risk of stroke. The success rate of catheter ablation varies, with around 50% of patients experiencing an early recurrence of AF within three months. However, after three years, around 55% of patients who have undergone a single procedure remain in sinus rhythm.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Incorrect
-
You are requested to assess a patient in the emergency department who has experienced abrupt onset chest pain, dyspnoea and diaphoresis. After reviewing the patient's ECG, you identify changes within a specific section and promptly arrange for transfer to the catheterisation laboratory.
What is the underlying process indicated by the affected section of the ECG?Your Answer:
Correct Answer: Period between ventricular depolarisation and repolarisation
Explanation:The ST segment on an ECG indicates the period when the entire ventricle is depolarized. In the case of a suspected myocardial infarction, it is crucial to examine the ST segment for any elevation or depression, which can indicate a STEMI or NSTEMI, respectively.
The ECG does not have a specific section that corresponds to the firing of the sino-atrial node, which triggers atrial depolarization (represented by the p wave). The T wave represents ventricular repolarization.
In atrial fibrillation, the p wave is absent or abnormal due to the irregular firing of the atria.
Understanding the Normal ECG
The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.
The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.
Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
Where is the highest percentage of musculi pectinati located?
Your Answer:
Correct Answer: Right atrium
Explanation:The irregular anterior walls of the right atrium are due to the presence of musculi pectinati, which are located in the atria. These internal muscular ridges are found on the anterolateral surface of the chambers and are limited to the area that originates from the embryological true atrium.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Incorrect
-
A 78-year-old man with an ST-elevation myocardial infarction receives bivalirudin, aspirin, and clopidogrel before undergoing percutaneous coronary intervention. What is the mode of action of bivalirudin?
Your Answer:
Correct Answer: Reversible direct thrombin inhibitor
Explanation:Bivalirudin inhibits thrombin directly in a reversible manner.
Warfarin prevents the conversion of vitamin K to its active hydroquinone form by acting as an antagonist.
Heparins activate antithrombin II and also form inactive complexes with other clotting factors.
Aspirin inhibits COX.
Clopidogrel functions as a/an.
Bivalirudin: An Anticoagulant for Acute Coronary Syndrome
Bivalirudin is a medication that acts as a direct thrombin inhibitor, meaning it prevents the formation of blood clots. It is commonly used as an anticoagulant in the treatment of acute coronary syndrome, a condition where blood flow to the heart is blocked or reduced. Bivalirudin is a reversible inhibitor, meaning its effects can be reversed if necessary.
Acute coronary syndrome is a serious condition that can lead to heart attack or other complications if left untreated. Bivalirudin is an effective treatment option for preventing blood clots and reducing the risk of further complications. Its reversible nature also makes it a safer option for patients who may need to undergo surgery or other procedures while on anticoagulant therapy. Overall, bivalirudin is an important medication in the management of acute coronary syndrome and plays a crucial role in improving patient outcomes.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Incorrect
-
A fifth-year medical student is requested to perform an abdominal examination on a 58-year-old man who was admitted to the hospital with diffuse abdominal discomfort. The patient has a medical history of chronic obstructive pulmonary disease. The student noted diffuse tenderness in the abdomen without any signs of peritonism, masses, or organ enlargement. The student observed that the liver was bouncing up and down intermittently on the tips of her fingers.
What could be the probable reason for this observation?Your Answer:
Correct Answer: Tricuspid regurgitation
Explanation:Tricuspid regurgitation causes pulsatile hepatomegaly due to backflow of blood into the liver during the cardiac cycle. Other conditions such as hepatitis, mitral stenosis or mitral regurgitation do not cause this symptom.
Tricuspid Regurgitation: Causes and Signs
Tricuspid regurgitation is a heart condition characterized by the backflow of blood from the right ventricle to the right atrium due to the incomplete closure of the tricuspid valve. This condition can be identified through various signs, including a pansystolic murmur, prominent or giant V waves in the jugular venous pulse, pulsatile hepatomegaly, and a left parasternal heave.
There are several causes of tricuspid regurgitation, including right ventricular infarction, pulmonary hypertension (such as in cases of COPD), rheumatic heart disease, infective endocarditis (especially in intravenous drug users), Ebstein’s anomaly, and carcinoid syndrome. It is important to identify the underlying cause of tricuspid regurgitation in order to determine the appropriate treatment plan.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
An 80-year-old patient who recently had a TIA is admitted to the vascular ward in preparation for a carotid endarterectomy tomorrow. During her pre-operative consultation, the surgeon explained that the artery will be tied during the procedure. The patient asks about the different arteries and their functions. You inform her that the internal carotid artery supplies the brain, while the external carotid artery divides into two arteries after ascending the neck. One of these arteries is the superficial temporal artery, but what is the other?
Your Answer:
Correct Answer: Maxillary artery
Explanation:The correct answer is the maxillary artery, which is one of the two terminal branches of the external carotid artery. It supplies deep structures of the face and usually bifurcates within the parotid gland to form the superficial temporal artery and maxillary artery. The facial artery supplies superficial structures in the face, while the lingual artery supplies the tongue. The middle meningeal artery is a branch of the maxillary artery and supplies the dura mater and calvaria. There are also two deep temporal arteries that arise from the maxillary artery and supply the temporalis muscle. The patient is scheduled to undergo carotid endarterectomy, a surgical procedure that involves removing atherosclerotic plaque from the common carotid artery to reduce the risk of subsequent ischaemic strokes or transient ischaemic attacks.
Anatomy of the External Carotid Artery
The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.
To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.
The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
A 35-year-old man arrives at the emergency department with bradycardia. Is it possible for cardiac muscle to stay in phase 4 of the cardiac action potential for an extended period of time?
What happens during phase 4 of the cardiac action potential?Your Answer:
Correct Answer: Na+/K+ ATPase acts
Explanation:The Na+/K+ ATPase restores the resting potential.
The cardiac action potential does not involve slow sodium influx.
Phase 3 of repolarisation involves rapid potassium influx.
Phase 2 involves slow calcium influx.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)