00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - By implementing a double-blinded randomised controlled trial to evaluate the efficacy of a...

    Correct

    • By implementing a double-blinded randomised controlled trial to evaluate the efficacy of a new medication for Lewy Body Dementia, what type of bias can be prevented by ensuring that both the patient and doctor are blinded?

      Your Answer: Expectation bias

      Explanation:

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      17.3
      Seconds
  • Question 2 - Researchers have conducted a study comparing a new blood pressure medication with a...

    Correct

    • Researchers have conducted a study comparing a new blood pressure medication with a standard blood pressure medication. 200 patients are divided equally between the two groups. Over the course of one year, 20 patients in the treatment group experienced a significant reduction in blood pressure, compared to 35 patients in the control group.

      What is the number needed to treat (NNT)?

      Your Answer: 7

      Explanation:

      The Relative Risk Reduction (RRR) is calculated by subtracting the experimental event rate (EER) from the control event rate (CER), dividing the result by the CER, and then multiplying by 100 to get a percentage. In this case, the RRR is (35-20)÷35 = 0.4285 of 42.85%.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      124
      Seconds
  • Question 3 - What type of regression is appropriate for analyzing data with dichotomous variables? ...

    Correct

    • What type of regression is appropriate for analyzing data with dichotomous variables?

      Your Answer: Logistic

      Explanation:

      Logistic regression is employed when dealing with dichotomous variables, which are variables that have only two possible values, such as live/dead of head/tail.

      Stats: Correlation and Regression

      Correlation and regression are related but not interchangeable terms. Correlation is used to test for association between variables, while regression is used to predict values of dependent variables from independent variables. Correlation can be linear, non-linear, of non-existent, and can be strong, moderate, of weak. The strength of a linear relationship is measured by the correlation coefficient, which can be positive of negative and ranges from very weak to very strong. However, the interpretation of a correlation coefficient depends on the context and purposes. Correlation can suggest association but cannot prove of disprove causation. Linear regression, on the other hand, can be used to predict how much one variable changes when a second variable is changed. Scatter graphs are used in correlation and regression analyses to visually determine if variables are associated and to detect outliers. When constructing a scatter graph, the dependent variable is typically placed on the vertical axis and the independent variable on the horizontal axis.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      32.7
      Seconds
  • Question 4 - In scientific research, what variable type has traditionally been used to record the...

    Incorrect

    • In scientific research, what variable type has traditionally been used to record the age of study participants?

      Your Answer: Ordinal

      Correct Answer: Binary

      Explanation:

      Gender has traditionally been recorded as either male of female, creating a binary of dichotomous variable. Other categorical variables, such as eye color and ethnicity, can be grouped into two or more categories. Continuous variables, such as temperature, height, weight, and age, can be placed anywhere on a scale and have mathematical properties. Ordinal variables allow for ranking, but do not allow for direct mathematical comparisons between values.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      24.2
      Seconds
  • Question 5 - How do the incidence rate and cumulative incidence differ from each other? ...

    Correct

    • How do the incidence rate and cumulative incidence differ from each other?

      Your Answer: The incidence rate is a more accurate estimate of the rate at which the outcome develops

      Explanation:

      Measures of Disease Frequency: Incidence and Prevalence

      Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.

      Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.

      It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.

      Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      46
      Seconds
  • Question 6 - What does a relative risk of 10 indicate? ...

    Correct

    • What does a relative risk of 10 indicate?

      Your Answer: The risk of the event in the exposed group is higher than in the unexposed group

      Explanation:

      Disease Rates and Their Interpretation

      Disease rates are a measure of the occurrence of a disease in a population. They are used to establish causation, monitor interventions, and measure the impact of exposure on disease rates. The attributable risk is the difference in the rate of disease between the exposed and unexposed groups. It tells us what proportion of deaths in the exposed group were due to the exposure. The relative risk is the risk of an event relative to exposure. It is calculated by dividing the rate of disease in the exposed group by the rate of disease in the unexposed group. A relative risk of 1 means there is no difference between the two groups. A relative risk of <1 means that the event is less likely to occur in the exposed group, while a relative risk of >1 means that the event is more likely to occur in the exposed group. The population attributable risk is the reduction in incidence that would be observed if the population were entirely unexposed. It can be calculated by multiplying the attributable risk by the prevalence of exposure in the population. The attributable proportion is the proportion of the disease that would be eliminated in a population if its disease rate were reduced to that of the unexposed group.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      311.4
      Seconds
  • Question 7 - What benefit does conducting a cost-effectiveness analysis offer? ...

    Incorrect

    • What benefit does conducting a cost-effectiveness analysis offer?

      Your Answer: They allow for comparisons with other interventions whose effects are expressed in different metrics

      Correct Answer: Outcomes are expressed in natural units that are clinically meaningful

      Explanation:

      A major benefit of using cost-effectiveness analysis is that the results are immediately understandable, such as the cost per year of remission from depression. When conducting economic evaluations, costs are typically estimated in a standardized manner across different types of studies, taking into account direct costs (e.g. physician time), indirect costs (e.g. lost productivity from being absent from work), and future costs (e.g. developing diabetes as a result of treatment with clozapine). The primary variation between economic evaluations lies in how outcomes are evaluated.

      Methods of Economic Evaluation

      There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.

      Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.

      Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.

      Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.

      Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.

      Costs in Economic Evaluation Studies

      There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      38.8
      Seconds
  • Question 8 - What statement accurately describes the process of searching a database? ...

    Correct

    • What statement accurately describes the process of searching a database?

      Your Answer: New references are added to PubMed more quickly than they are to MEDLINE

      Explanation:

      PubMed receives new references faster than MEDLINE because they do not need to undergo indexing, such as adding MeSH headings and checking tags. While an increasing number of MEDLINE citations have a link to the complete article, not all of them do. Since 2010, Embased has included all MEDLINE citations in its database, but it does not have all citations from before that year.

      Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.

      When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.

      There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      26.8
      Seconds
  • Question 9 - Which option is not a type of descriptive statistic? ...

    Correct

    • Which option is not a type of descriptive statistic?

      Your Answer: Student's t-test

      Explanation:

      A t-test is a statistical method used to determine if there is a significant difference between the means of two groups. It is a type of statistical inference.

      Types of Statistics: Descriptive and Inferential

      Statistics can be divided into two categories: descriptive and inferential. Descriptive statistics are used to describe and summarize data without making any generalizations beyond the data at hand. On the other hand, inferential statistics are used to make inferences about a population based on sample data.

      Descriptive statistics are useful for identifying patterns and trends in data. Common measures used to describe a data set include measures of central tendency (such as the mean, median, and mode) and measures of variability of dispersion (such as the standard deviation of variance).

      Inferential statistics, on the other hand, are used to make predictions of draw conclusions about a population based on sample data. These statistics are also used to determine the probability that observed differences between groups are reliable and not due to chance.

      Overall, both descriptive and inferential statistics play important roles in analyzing and interpreting data. Descriptive statistics help us understand the characteristics of a data set, while inferential statistics allow us to make predictions and draw conclusions about larger populations.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      14.4
      Seconds
  • Question 10 - What is the calculation that the nurse performed to determine the patient's average...

    Correct

    • What is the calculation that the nurse performed to determine the patient's average daily calorie intake over a seven day period?

      Your Answer: Arithmetic mean

      Explanation:

      You don’t need to concern yourself with the specifics of the various means. Simply keep in mind that the arithmetic mean is the one utilized in fundamental biostatistics.

      Measures of Central Tendency

      Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.

      The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.

      The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.

      In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      10
      Seconds
  • Question 11 - A new test is developed to screen for dementia in elderly patients. Trials...

    Correct

    • A new test is developed to screen for dementia in elderly patients. Trials have shown it has a sensitivity for detecting clinically significant dementia of 80% but a specificity of 60%. What is the likelihood ratio for a positive test result?

      Your Answer: 2

      Explanation:

      The likelihood ratio for a positive test result is 2, which means that the probability of a positive test result in a person with the condition is twice as high as the probability of a positive test result in a person without the condition.

      Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      111.9
      Seconds
  • Question 12 - What is the purpose of using the Kolmogorov-Smirnov and Jarque-Bera tests? ...

    Correct

    • What is the purpose of using the Kolmogorov-Smirnov and Jarque-Bera tests?

      Your Answer: Normality

      Explanation:

      Normality Testing in Statistics

      In statistics, parametric tests are based on the assumption that the data set follows a normal distribution. On the other hand, non-parametric tests do not require this assumption but are less powerful. To check if a distribution is normally distributed, there are several tests available, including the Kolmogorov-Smirnov (Goodness-of-Fit) Test, Jarque-Bera test, Wilk-Shapiro test, P-plot, and Q-plot. However, it is important to note that if a data set is not normally distributed, it may be possible to transform it to make it follow a normal distribution, such as by taking the logarithm of the values.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      4.6
      Seconds
  • Question 13 - How would you describe the typical of ongoing prevalence of a disease within...

    Correct

    • How would you describe the typical of ongoing prevalence of a disease within a specific population?

      Your Answer: Endemic

      Explanation:

      Epidemiology Key Terms

      – Epidemic (Outbreak): A rise in disease cases above the anticipated level in a specific population during a particular time frame.
      – Endemic: The regular of anticipated level of disease in a particular population.
      – Pandemic: Epidemics that affect a significant number of individuals across multiple countries, regions, of continents.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      138.8
      Seconds
  • Question 14 - What measure of deprivation was created specifically to assess the workload of General...

    Incorrect

    • What measure of deprivation was created specifically to assess the workload of General Practice?

      Your Answer: Townsend Index

      Correct Answer: Jarman Score

      Explanation:

      It is advisable not to focus too much on this unusual question in the college exams. It is important to keep in mind that the Jarman Score is the commonly used score in general practice.

      Measuring Deprivation: Common Indices

      Deprivation indices are used to measure the proportion of households in a small geographical area that have low living standards of a high need for services, of both. Several measures of deprivation are commonly used, including the Jarman Score, Townsend Index, Carstairs Index, Index of Multiple Deprivation, and Index of Local Conditions. The Townsend and Carstairs indices were developed to measure material deprivation, while the Jarman Underprivileged Area Score was initially designed to measure General Practice workload.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      8.9
      Seconds
  • Question 15 - It has been proposed that individuals who develop schizophrenia may have subtle brain...

    Correct

    • It has been proposed that individuals who develop schizophrenia may have subtle brain abnormalities present in utero, which predispose them to experiencing obstetric complications during birth. What term best describes this proposed explanation for the association between schizophrenia and birth complications?

      Your Answer: Reverse causality

      Explanation:

      Common Biases and Errors in Research

      Reverse causality occurs when a risk factor appears to cause an illness, but in reality, it is a consequence of the illness. Information bias is a type of error that can occur in research. Two examples of information bias are observer bias and recall bias. Observer bias happens when the experimenter’s biases affect the study’s findings. Recall bias occurs when participants in the case and control groups have different levels of accuracy in their recollections.

      There are two types of errors in research: Type I and Type II. A Type I error is when a true null hypothesis is incorrectly rejected, resulting in a false positive. A Type II error is when a false null hypothesis is not rejected, resulting in a false negative. It is essential to be aware of these biases and errors to ensure accurate and reliable research findings.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      42.8
      Seconds
  • Question 16 - Out of the 5 trials included in a meta-analysis comparing the effects of...

    Correct

    • Out of the 5 trials included in a meta-analysis comparing the effects of depot olanzapine and depot risperidone on psychotic symptoms (measured by PANSS), which trial showed a statistically significant difference between the two treatments at a significance level of 5%?

      Your Answer: Trial 2 shows a reduction of 2 on the PANSS (p=0.001)

      Explanation:

      The results of Trial 4 indicate a decrease of 10 points on the PANSS scale, with a p-value of 0.9.

      Understanding Hypothesis Testing in Statistics

      In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.

      The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.

      Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

      P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      21.1
      Seconds
  • Question 17 - What is the standard deviation of the sample mean height of 100 adults...

    Incorrect

    • What is the standard deviation of the sample mean height of 100 adults who were administered steroids during childhood, given that the average height of the adults is 169cm and the standard deviation is 16cm?

      Your Answer: 1.3

      Correct Answer: 1.6

      Explanation:

      The standard error of the mean is 1.6, calculated by dividing the standard deviation of 16 by the square root of the number of patients, which is 100.

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      82.3
      Seconds
  • Question 18 - A nationwide study on mental health found that the incidence of depression is...

    Incorrect

    • A nationwide study on mental health found that the incidence of depression is significantly higher among elderly individuals living in suburban areas compared to those residing in urban environments. What factors could explain this disparity?

      Your Answer: Urban drift' of those with psychotic illnesses

      Correct Answer: Reduced incidence in urban areas

      Explanation:

      The prevalence of schizophrenia may be higher in urban areas due to the social drift phenomenon, where individuals with severe and enduring mental illnesses tend to move towards urban areas. However, a reduced incidence of schizophrenia in urban areas could explain why there is an increased prevalence of the condition in rural settings. It is important to note that prevalence is influenced by both incidence and duration of illness, and can be reduced by increased recovery rates of death from any cause.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      129
      Seconds
  • Question 19 - A new antihypertensive medication is trialled for adults with high blood pressure. There...

    Correct

    • A new antihypertensive medication is trialled for adults with high blood pressure. There are 500 adults in the control group and 300 adults assigned to take the new medication. After 6 months, 200 adults in the control group had high blood pressure compared to 30 adults in the group taking the new medication. What is the relative risk reduction?

      Your Answer: 75%

      Explanation:

      The RRR (Relative Risk Reduction) is calculated by dividing the ARR (Absolute Risk Reduction) by the CER (Control Event Rate). The CER is determined by dividing the number of control events by the total number of participants, which in this case is 200/500 of 0.4. The EER (Experimental Event Rate) is determined by dividing the number of events in the experimental group by the total number of participants, which in this case is 30/300 of 0.1. The ARR is calculated by subtracting the EER from the CER, which is 0.4 – 0.1 = 0.3. Finally, the RRR is calculated by dividing the ARR by the CER, which is 0.3/0.4 of 0.75 (of 75%).

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      279.4
      Seconds
  • Question 20 - Which of the following is not a method used in qualitative research to...

    Correct

    • Which of the following is not a method used in qualitative research to evaluate validity?

      Your Answer: Content analysis

      Explanation:

      Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      19.6
      Seconds
  • Question 21 - What is the most suitable statistical test to compare the calcium levels of...

    Incorrect

    • What is the most suitable statistical test to compare the calcium levels of males and females who developed inflammatory bowel disease in childhood, considering that calcium levels in this population are normally distributed?

      Your Answer: Chi-squared test

      Correct Answer: Unpaired t-test

      Explanation:

      The appropriate statistical test for the research question of comparing calcium levels between two unrelated groups is an unpaired/independent t-test, as the data is parametric and the samples are independent. This means that the scores of one group do not affect the other, and there is no meaningful way to pair them.

      Dependent samples, on the other hand, are related to each other and can occur in two scenarios. One scenario is when a group is measured twice, such as in a pretest-posttest situation. The other scenario is when an observation in one sample is matched with an observation in the second sample.

      For example, if quality inspectors want to compare two laboratories to determine whether their blood tests give similar results, they would need to use a paired t-test. This is because both labs tested blood specimens from the same 10 children, making the test results dependent. The paired t-test is based on the assumption that samples are dependent.

      Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      69
      Seconds
  • Question 22 - A study is conducted to investigate whether a new exercise program has any...

    Incorrect

    • A study is conducted to investigate whether a new exercise program has any impact on weight loss. A total of 300 participants are enrolled from various locations and are randomly assigned to either the exercise group of the control group. Weight measurements are taken at the beginning of the study and at the end of a six-month period.

      What is the most effective method of visually presenting the data?

      Your Answer:

      Correct Answer: Kaplan-Meier plot

      Explanation:

      The Kaplan-Meier plot is the most effective graphical representation of survival probability. It presents the overall likelihood of an individual’s survival over time from a baseline, and the comparison of two lines on the plot can indicate whether there is a survival advantage. To determine if the distinction between the two groups is significant, a log rank test can be employed.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 23 - What is a characteristic of data that is positively skewed? ...

    Incorrect

    • What is a characteristic of data that is positively skewed?

      Your Answer:

      Correct Answer:

      Explanation:

      Skewed Data: Understanding the Relationship between Mean, Median, and Mode

      When analyzing a data set, it is important to consider the shape of the distribution. In a normally distributed data set, the curve is symmetrical and bell-shaped, with the median, mode, and mean all equal. However, in skewed data sets, the distribution is asymmetrical, with the bulk of the data concentrated on one side of the figure.

      In a negatively skewed distribution, the left tail is longer, and the bulk of the data is concentrated to the right of the figure. In contrast, a positively skewed distribution has a longer right tail, with the bulk of the data concentrated to the left of the figure. In both cases, the median is positioned between the mode and the mean, as it represents the halfway point of the distribution.

      However, the mean is affected by extreme values of outliers, causing it to move away from the median in the direction of the tail. In positively skewed data, the mean is greater than the median, which is greater than the mode. In negatively skewed data, the mode is greater than the median, which is greater than the mean.

      Understanding the relationship between mean, median, and mode in skewed data sets is crucial for accurate data analysis and interpretation. By recognizing the shape of the distribution, researchers can make informed decisions about which measures of central tendency to use and how to interpret their results.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 24 - What is the significance of the cut off of 5 on the MDQ...

    Incorrect

    • What is the significance of the cut off of 5 on the MDQ in diagnosing depression?

      Your Answer:

      Correct Answer: The optimal threshold

      Explanation:

      The threshold score that results in the lowest misclassification rate, achieved by minimizing both false positive and false negative rates, is known as the optimal threshold. Based on the findings of the previous study, the ideal cut off for identifying caseness on the MDQ is five, making it the optimal threshold.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 25 - What type of data was collected for the outcome that utilized the Clinical...

    Incorrect

    • What type of data was collected for the outcome that utilized the Clinical Global Impressions Improvement scale in the randomized control trial?

      Your Answer:

      Correct Answer: Dichotomous

      Explanation:

      The study used the CGI scale, which produces ordinal data. However, the data was transformed into dichotomous data by dividing it into two categories. The CGI-I is a simple seven-point scale that compares a patient’s overall clinical condition to the one week period just prior to the initiation of medication use. The ratings range from very much improved to very much worse since the initiation of treatment.

      Scales of Measurement in Statistics

      In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.

      Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.

      Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.

      Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 26 - The Delphi method is used to evaluate what? ...

    Incorrect

    • The Delphi method is used to evaluate what?

      Your Answer:

      Correct Answer: Expert consensus

      Explanation:

      The Delphi Method: A Widely Used Technique for Achieving Convergence of Opinion

      The Delphi method is a well-established technique for soliciting expert opinions on real-world knowledge within specific topic areas. The process involves multiple rounds of questionnaires, with each round building on the previous one to achieve convergence of opinion among the participants. However, there are potential issues with the Delphi method, such as the time-consuming nature of the process, low response rates, and the potential for investigators to influence the opinions of the participants. Despite these challenges, the Delphi method remains a valuable tool for generating consensus among experts in various fields.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 27 - What is the term used to describe a test that initially appears to...

    Incorrect

    • What is the term used to describe a test that initially appears to measure what it is intended to measure?

      Your Answer:

      Correct Answer: Good face validity

      Explanation:

      A test that seems to measure what it is intended to measure has strong face validity.

      Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 28 - In a study, the null hypothesis posits that there is no disparity between...

    Incorrect

    • In a study, the null hypothesis posits that there is no disparity between the mean values of group A and group B. Upon analysis, the study discovers a difference and presents a p-value of 0.04. Which statement below accurately reflects this scenario?

      Your Answer:

      Correct Answer: Assuming the null hypothesis is correct, there is a 4% chance that the difference detected between A and B has arisen by chance

      Explanation:

      Understanding Hypothesis Testing in Statistics

      In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.

      The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.

      Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

      P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 29 - What is a true statement about statistical power? ...

    Incorrect

    • What is a true statement about statistical power?

      Your Answer:

      Correct Answer: The larger the sample size of a study the greater the power

      Explanation:

      The Importance of Power in Statistical Analysis

      Power is a crucial concept in statistical analysis as it helps researchers determine the number of participants needed in a study to detect a clinically significant difference of effect. It represents the probability of correctly rejecting the null hypothesis when it is false, which means avoiding a Type II error. Power values range from 0 to 1, with 0 indicating 0% and 1 indicating 100%. A power of 0.80 is generally considered the minimum acceptable level.

      Several factors influence the power of a study, including sample size, effect size, and significance level. Larger sample sizes lead to more precise parameter estimations and increase the study’s ability to detect a significant effect. Effect size, which is determined at the beginning of a study, refers to the size of the difference between two means that leads to rejecting the null hypothesis. Finally, the significance level, also known as the alpha level, represents the probability of a Type I error. By considering these factors, researchers can optimize the power of their studies and increase the likelihood of detecting meaningful effects.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 30 - How would you rephrase the question to refer to the test's capacity to...

    Incorrect

    • How would you rephrase the question to refer to the test's capacity to identify a person with a disease as positive?

      Your Answer:

      Correct Answer: Sensitivity

      Explanation:

      Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Research Methods, Statistics, Critical Review And Evidence-Based Practice (15/21) 71%
Passmed