-
Question 1
Correct
-
An 80-year-old man is seen in the stroke clinic for a history of transient paralysis and paresthesia in his left arm that resolved after 2 hours. The stroke clinicians suspect a transient ischaemic attack and plan to initiate secondary prevention treatment as per national guidelines.
What is the mode of action of the prescribed medication?Your Answer: ADP receptor inhibitor
Explanation:Clopidogrel works by inhibiting the P2Y12 adenosine diphosphate (ADP) receptor, which prevents platelet activation and is therefore classified as an ADP receptor inhibitor. This drug is recommended as secondary prevention for patients who have experienced symptoms of a transient ischaemic attack (TIA). Other examples of ADP receptor inhibitors include ticagrelor and prasugrel. Aspirin, on the other hand, is a cyclooxygenase (COX) inhibitor that is used for pain control and management of ischaemic heart disease. Glycoprotein IIB/IIA inhibitors such as tirofiban and abciximab prevent platelet aggregation and thrombus formation by inhibiting the glycoprotein IIB/IIIA receptors. Picotamide is a thromboxane synthase inhibitor that is indicated for the management of acute coronary syndrome, as it inhibits the synthesis of thromboxane, a potent vasoconstrictor and facilitator of platelet aggregation.
Clopidogrel: An Antiplatelet Agent for Cardiovascular Disease
Clopidogrel is a medication used to manage cardiovascular disease by preventing platelets from sticking together and forming clots. It is commonly used in patients with acute coronary syndrome and is now also recommended as a first-line treatment for patients following an ischaemic stroke or with peripheral arterial disease. Clopidogrel belongs to a class of drugs called thienopyridines, which work in a similar way. Other examples of thienopyridines include prasugrel, ticagrelor, and ticlopidine.
Clopidogrel works by blocking the P2Y12 adenosine diphosphate (ADP) receptor, which prevents platelets from becoming activated. However, concurrent use of proton pump inhibitors (PPIs) may make clopidogrel less effective. The Medicines and Healthcare products Regulatory Agency (MHRA) issued a warning in July 2009 about this interaction, and although evidence is inconsistent, omeprazole and esomeprazole are still cause for concern. Other PPIs, such as lansoprazole, are generally considered safe to use with clopidogrel. It is important to consult with a healthcare provider before taking any new medications or supplements.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Incorrect
-
A 63-year-old man visits the clinic with complaints of palpitations and constipation that has been bothering him for the past 5 days. He reports passing gas but feels uneasy. The patient has a history of hypertension, and you recently prescribed bendroflumethiazide to manage it. To check for signs of hypokalaemia, you conduct an ECG. What is an ECG indication of hypokalaemia?
Your Answer: Tall tented T waves
Correct Answer: Prolonged PR interval
Explanation:Hypokalaemia can be identified through a prolonged PR interval on an ECG. However, this same ECG sign may also be present in cases of hyperkalaemia. Additional ECG signs of hypokalaemia include small or absent P waves, tall tented T waves, and broad bizarre QRS complexes. On the other hand, hyperkalaemia can be identified through ECG signs such as long PR intervals, a sine wave pattern, and tall tented T waves, as well as broad bizarre QRS complexes.
Hypokalaemia, a condition characterized by low levels of potassium in the blood, can be detected through ECG features. These include the presence of U waves, small or absent T waves (which may occasionally be inverted), a prolonged PR interval, ST depression, and a long QT interval. The ECG image provided shows typical U waves and a borderline PR interval. To remember these features, one user suggests the following rhyme: In Hypokalaemia, U have no Pot and no T, but a long PR and a long QT.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Correct
-
A 68-year-old woman arrives at the emergency department with complaints of shortness of breath and palpitations. During the examination, you observe an irregularly irregular pulse. To check for signs of atrial fibrillation, you opt to conduct an ECG. In a healthy individual, where is the SA node located in the heart?
Your Answer: Right atrium
Explanation:The SA node is situated at the junction of the superior vena cava and the right atrium, and is responsible for initiating cardiac impulses in a healthy heart. The AV node, located in the atrioventricular septum, regulates the spread of excitation from the atria to the ventricles. The patient’s symptoms of palpitations and shortness of breath, along with an irregularly irregular pulse, strongly indicate atrial fibrillation. ECG findings consistent with atrial fibrillation include an irregularly irregular rhythm and the absence of P waves.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Correct
-
Where are the arterial baroreceptors situated?
Your Answer: Carotid sinus and aortic arch
Explanation:The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Incorrect
-
A 56-year-old man visits his GP complaining of congestive heart failure, angina, and exertional syncope. During the examination, the doctor observes a forceful apex beat and a systolic ejection murmur at the upper right sternal border.
What condition is most likely causing these symptoms?Your Answer: Aortic regurgitation
Correct Answer: Aortic stenosis
Explanation:Symptoms and Diagnosis of Heart Valve Disorders
Heart valve disorders can cause a range of symptoms depending on the type and severity of the condition. Aortic stenosis, for example, can lead to obstruction of left ventricular emptying, resulting in slow rising carotid pulse and a palpated murmur that may radiate to the neck. Aortic valve replacement is necessary for symptomatic patients to prevent death within three years or those with severe valve narrowing on ECHO. On the other hand, aortic regurgitation may not show any symptoms for many years until dyspnoea and fatigue set in. A blowing early diastolic murmur is typically found at the left sternal edge, and a mid-diastolic murmur may also be present over the apex of the heart.
Mitral regurgitation, whether acute or chronic, can cause pulmonary oedema, exertional dyspnoea, and lethargy. A pansystolic murmur is audible at the apex. Mitral stenosis, meanwhile, initially presents with exertional dyspnoea, but haemoptysis and a productive cough may also occur. A rumbling mid-diastolic murmur is indicative of mitral stenosis. Finally, a prolapsing mitral valve is common in young women and is usually asymptomatic, although atypical chest pain may be present. Overall, proper diagnosis and treatment of heart valve disorders are crucial to prevent complications and improve quality of life.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
A 50-year-old Afro-Caribbean woman comes to your clinic with symptoms of a malar rash, joint pain, and oral ulcers. Her blood test results reveal low hemoglobin levels, decreased platelets count, and a low white blood cell count. Additionally, she tests positive for anti-dsDNA antibodies. You inform her about her diagnosis and ask your medical trainee to educate her about medications that she should avoid.
Which of the following drugs is contraindicated for her?Your Answer: Hydroxychloroquine
Correct Answer: Hydralazine
Explanation:SLE patients should avoid taking hydralazine as it is known to cause drug-induced SLE, along with other medications such as isoniazid and procainamide.
Hydralazine: An Antihypertensive with Limited Use
Hydralazine is an antihypertensive medication that is not commonly used nowadays. It is still prescribed for severe hypertension and hypertension in pregnancy. The drug works by increasing cGMP, which leads to smooth muscle relaxation. However, there are certain contraindications to its use, such as systemic lupus erythematous and ischaemic heart disease/cerebrovascular disease.
Despite its potential benefits, hydralazine can cause adverse effects such as tachycardia, palpitations, flushing, fluid retention, headache, and drug-induced lupus. Therefore, it is not the first choice for treating hypertension in most cases. Overall, hydralazine is an older medication that has limited use due to its potential side effects and newer, more effective antihypertensive options available.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Incorrect
-
You are caring for a woman who has heart failure with reduced ejection fraction due to a previous myocardial infarction.
Starling's Law of the Heart states that:Your Answer: As preload progressively increases, afterload increases gradually then decreases suddenly
Correct Answer: As preload progressively increases, stroke volume increases gradually then decreases suddenly
Explanation:Starling’s Law of the Heart states that as preload increases, stroke volume also increases gradually, up to a certain point. However, beyond this point, stroke volume decreases due to overloading of the cardiac muscle fibers. Therefore, the higher the cardiac preload, the greater the stroke volume, but only up to a certain limit.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Correct
-
A 72-year-old woman is prescribed digoxin for the treatment of atrial fibrillation that was not effectively managed with atenolol alone. Digoxin works by inhibiting a crucial element in the cardiac action potential that restores resting potential. This inhibition leads to changes in the levels of specific ions on either side of the membrane, resulting in an enhanced contractile force of the heart and an improvement in left ventricular ejection fraction.
Which element does digoxin inhibit to achieve this effect?Your Answer: Na+/K+ ATPase
Explanation:Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
A patient develops a broad complex tachycardia three days following a myocardial infarction. What is the primary mechanism of action of intravenous amiodarone in this case?
Your Answer: Blocks voltage-gated calcium channels
Correct Answer: Blocks voltage-gated potassium channels
Explanation:Amiodarone’s mechanism of action involves the inhibition of potassium channels.
Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
A 32-year-old arrives at the emergency department with a stab wound to the femoral artery. He has a history of intravenous drug use.
Due to poor vein quality, peripheral cannulation under ultrasound guidance is not feasible. Intraosseous access has been established, but additional access is required to administer large volume transfusions.
To obtain access to a vessel that runs anterior to the medial malleolus, the consultant has decided to perform a venous cutdown.
Which vessel will be accessed through this procedure?Your Answer: Anterior tibial vein
Correct Answer: Long saphenous vein
Explanation:The correct answer is the long saphenous vein, which passes in front of the medial malleolus and is commonly used for venous cutdown procedures. This vein is the largest vessel in the superficial venous system and is formed from the dorsal venous arch of the foot. During a venous cutdown, the skin is opened up to expose the vessel, allowing for cannulation under direct vision.
The anterior tibial vein, fibular vein, and posterior tibial vein are all incorrect answers. The anterior tibial vein is part of the deep venous system and arises from the dorsal venous arch, while the fibular vein forms from the plantar veins of the foot and drains into the posterior tibial vein. The posterior tibial vein also arises from the plantar veins of the foot but ascends posterior to the medial malleolus.
The Anatomy of Saphenous Veins
The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.
On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.
Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
A 75-year-old man arrives at the emergency department complaining of lightheadedness and difficulty breathing. Upon examination, his ECG reveals supraventricular tachycardia, which may be caused by an irregularity in the cardiac electrical activation sequence. He is successfully cardioverted to sinus rhythm.
What is the anticipated sequence of his cardiac electrical activation following the procedure?Your Answer: SA node- AV node- atria- Bundle of His- right and left bundle branches- Purkinje fibres
Correct Answer: SA node- atria- AV node- Bundle of His- right and left bundle branches- Purkinje fibres
Explanation:The correct order of cardiac electrical activation is as follows: SA node, atria, AV node, Bundle of His, right and left bundle branches, and Purkinje fibers. Understanding this sequence is crucial as it is directly related to interpreting ECGs.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Correct
-
A 40-year-old woman visits her GP complaining of muscle cramps, fatigue, and tingling in her fingers and toes for the past two weeks. Upon conducting a blood test, the doctor discovers low levels of serum calcium and parathyroid hormone. The patient is new to the clinic and seems a bit confused, possibly due to hypocalcemia, and is unable to provide a complete medical history. However, she mentions that she was recently hospitalized. What is the most probable cause of her hypoparathyroidism?
Your Answer: Thyroidectomy
Explanation:Due to their location behind the thyroid gland, the parathyroid glands are at risk of damage during a thyroidectomy, leading to iatrogenic hypoparathyroidism. This condition is characterized by low levels of both parathyroid hormone and calcium, indicating that the parathyroid glands are not responding to the hypocalcemia. The patient’s confusion and prolonged hospital stay are likely related to the surgery.
Hypocalcemia can also be caused by chronic kidney disease, which triggers an increase in parathyroid hormone production in an attempt to raise calcium levels, resulting in hyperparathyroidism. Additionally, a deficiency in vitamin D, which is activated by the kidneys and aids in calcium absorption in the terminal ileum, can also lead to hyperparathyroidism.
While a parathyroid adenoma is a common occurrence, it is more likely to cause hyperparathyroidism than hypoparathyroidism, which is a relatively rare side effect of thyroidectomy.
Anatomy and Development of the Parathyroid Glands
The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.
The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
A 50-year-old UK born patient with end-stage kidney failure arrives at the emergency department complaining of sharp chest pain that subsides when sitting forward. The patient has not undergone dialysis yet. Upon conducting an ECG, it is observed that there is a widespread 'saddle-shaped' ST elevation and PR depression, leading to a diagnosis of pericarditis. What could be the probable cause of this pericarditis?
Your Answer: Post-myocardial infarction
Correct Answer: Uraemia
Explanation:There is no indication of trauma in patients with advanced renal failure prior to dialysis initiation.
ECG results do not indicate a recent heart attack.
The patient’s age decreases the likelihood of malignancy.
Acute Pericarditis: Causes, Features, Investigations, and Management
Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.
The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.
Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.
Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.
In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Correct
-
How many valves are present between the right atrium and the superior vena cava (SVC)?
Your Answer: None
Explanation:Inserting a CVP line from the internal jugular vein into the right atrium is relatively easy due to the absence of valves.
The Superior Vena Cava: Anatomy, Relations, and Developmental Variations
The superior vena cava (SVC) is a large vein that drains blood from the head and neck, upper limbs, thorax, and part of the abdominal walls. It is formed by the union of the subclavian and internal jugular veins, which then join to form the right and left brachiocephalic veins. The SVC is located in the anterior margins of the right lung and pleura, and is related to the trachea and right vagus nerve posteromedially, and the posterior aspects of the right lung and pleura posterolaterally. The pulmonary hilum is located posteriorly, while the right phrenic nerve and pleura are located laterally on the right side, and the brachiocephalic artery and ascending aorta are located laterally on the left side.
Developmental variations of the SVC are recognized, including anomalies of its connection and interruption of the inferior vena cava (IVC) in its abdominal course. In some individuals, a persistent left-sided SVC may drain into the right atrium via an enlarged orifice of the coronary sinus, while in rare cases, the left-sided vena cava may connect directly with the superior aspect of the left atrium, usually associated with an unroofing of the coronary sinus. Interruption of the IVC may occur in patients with left-sided atrial isomerism, with drainage achieved via the azygos venous system.
Overall, understanding the anatomy, relations, and developmental variations of the SVC is important for medical professionals in diagnosing and treating related conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
A 35-year-old man comes to the clinic complaining of occasional palpitations and feeling lightheaded. He reports no chest pain, shortness of breath, or swelling in his legs. Upon examination, no abnormalities are found. An ECG reveals a shortened PR interval and the presence of delta waves. What is the underlying pathophysiology of the most likely diagnosis?
Your Answer: Ventricular ischaemic tissues
Correct Answer: Accessory pathway
Explanation:The presence of intermittent palpitations and lightheadedness can be indicative of various conditions, but the detection of a shortened PR interval and delta wave on an ECG suggests the possibility of Wolff-Parkinson-White syndrome. This syndrome arises from an additional pathway connecting the atrium and ventricle.
Understanding Wolff-Parkinson White Syndrome
Wolff-Parkinson White (WPW) syndrome is a condition that occurs due to a congenital accessory conducting pathway between the atria and ventricles, leading to atrioventricular re-entry tachycardia (AVRT). This condition can cause AF to degenerate rapidly into VF as the accessory pathway does not slow conduction. The ECG features of WPW include a short PR interval, wide QRS complexes with a slurred upstroke known as a delta wave, and left or right axis deviation depending on the location of the accessory pathway. WPW is associated with various conditions such as HOCM, mitral valve prolapse, Ebstein’s anomaly, thyrotoxicosis, and secundum ASD.
The definitive treatment for WPW is radiofrequency ablation of the accessory pathway. Medical therapy options include sotalol, amiodarone, and flecainide. However, sotalol should be avoided if there is coexistent atrial fibrillation as it may increase the ventricular rate and potentially deteriorate into ventricular fibrillation. WPW can be differentiated into type A and type B based on the presence or absence of a dominant R wave in V1. It is important to understand WPW and its associations to provide appropriate management and prevent potential complications.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Incorrect
-
As a medical student on placement in the pathology lab, you are observing the pathologist examine a section of a blood vessel. Specifically, what can be found within the tunica media of a blood vessel?
Your Answer: Fibroblast
Correct Answer: Smooth muscle
Explanation:Artery Histology: Layers of Blood Vessel Walls
The wall of a blood vessel is composed of three layers: the tunica intima, tunica media, and tunica adventitia. The innermost layer, the tunica intima, is made up of endothelial cells that are separated by gap junctions. The middle layer, the tunica media, contains smooth muscle cells and is separated from the intima by the internal elastic lamina and from the adventitia by the external elastic lamina. The outermost layer, the tunica adventitia, contains the vasa vasorum, fibroblast, and collagen. This layer is responsible for providing support and protection to the blood vessel. The vasa vasorum are small blood vessels that supply oxygen and nutrients to the larger blood vessels. The fibroblast and collagen provide structural support to the vessel wall. Understanding the histology of arteries is important in diagnosing and treating various cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
A 50-year-old man presents to the emergency department with acute chest pain. His ECG reveals ST depression in leads II, III, & aVF, and his troponin levels are elevated. He is diagnosed with NSTEMI and prescribed ticagrelor as part of his treatment plan.
What is the mechanism of action of ticagrelor?Your Answer: Activates antithrombin III which mainly inhibits factors Xa and IIa
Correct Answer: Inhibits ADP binding to platelet receptors
Explanation:Clopidogrel and ticagrelor have a similar mechanism of action in that they both inhibit the binding of ADP to platelet receptors. Heparin activates antithrombin III, which in turn inhibits factor Xa and IIa. DOACs like rivaroxaban directly inhibit factor Xa that is bound to the prothrombinase complex and associated with clots. Aspirin works by inhibiting the production of prostaglandins, while warfarin inhibits VKORC1, which is responsible for the activation of vitamin K.
ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Correct
-
A 65-year-old man visits his doctor with complaints of shortness of breath and swelling in his lower limbs. To aid in diagnosis, the doctor orders a B-type natriuretic peptide test. What triggers the production of B-type natriuretic peptide in heart failure?
Your Answer: Increased ventricular filling pressure
Explanation:When the ventricles are under strain, they release B-type natriuretic peptide. Normally, increased ventricular filling pressures would result in a larger diastolic volume and cardiac output through the Frank-Starling mechanism. However, in heart failure, this mechanism is overwhelmed and the ventricles are stretched too much for a strong contraction.
To treat heart failure, ACE inhibitors are used to decrease the amount of BNP produced. A decrease in stroke volume is a sign of heart failure. The body compensates for heart failure by increasing activation of the renin-angiotensin-aldosterone system.
B-type natriuretic peptide (BNP) is a hormone that is primarily produced by the left ventricular myocardium in response to strain. Although heart failure is the most common cause of elevated BNP levels, any condition that causes left ventricular dysfunction, such as myocardial ischemia or valvular disease, may also raise levels. In patients with chronic kidney disease, reduced excretion may also lead to elevated BNP levels. Conversely, treatment with ACE inhibitors, angiotensin-2 receptor blockers, and diuretics can lower BNP levels.
BNP has several effects, including vasodilation, diuresis, natriuresis, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. Clinically, BNP is useful in diagnosing patients with acute dyspnea. A low concentration of BNP (<100 pg/mL) makes a diagnosis of heart failure unlikely, but elevated levels should prompt further investigation to confirm the diagnosis. Currently, NICE recommends BNP as a helpful test to rule out a diagnosis of heart failure. In patients with chronic heart failure, initial evidence suggests that BNP is an extremely useful marker of prognosis and can guide treatment. However, BNP is not currently recommended for population screening for cardiac dysfunction.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
A 79-year-old man visits his doctor complaining of chest pain that occurs during physical activity and subsides after rest for the past three months. The doctor diagnoses him with angina and prescribes medications. Due to contraindications, beta blockers and calcium channel blockers are not suitable for this patient, so the doctor starts him on ranolazine. What is the main mechanism of action of ranolazine?
Your Answer: Increased release of nitric oxide
Correct Answer: Inhibition of persistent or late inward sodium current
Explanation:Ranolazine is a medication that works by inhibiting persistent or late sodium current in various voltage-gated sodium channels in heart muscle. This results in a decrease in intracellular calcium levels, which in turn reduces tension in the heart muscle and lowers its oxygen demand.
Other medications used to treat angina include ivabradine, which inhibits funny channels, trimetazidine, which inhibits fatty acid metabolism, nitrates, which increase nitric oxide, and several drugs that reduce heart rate, such as beta blockers and calcium channel blockers.
It is important to note that ranolazine is not typically the first medication prescribed for angina. The drug management of angina may vary depending on the individual patient’s needs and medical history.
Angina pectoris can be managed through lifestyle changes, medication, percutaneous coronary intervention, and surgery. In 2011, NICE released guidelines for the management of stable angina. Medication is an important aspect of treatment, and all patients should receive aspirin and a statin unless there are contraindications. Sublingual glyceryl trinitrate can be used to abort angina attacks. NICE recommends using either a beta-blocker or a calcium channel blocker as first-line treatment, depending on the patient’s comorbidities, contraindications, and preferences. If a calcium channel blocker is used as monotherapy, a rate-limiting one such as verapamil or diltiazem should be used. If used in combination with a beta-blocker, a longer-acting dihydropyridine calcium channel blocker like amlodipine or modified-release nifedipine should be used. Beta-blockers should not be prescribed concurrently with verapamil due to the risk of complete heart block. If initial treatment is ineffective, medication should be increased to the maximum tolerated dose. If a patient is still symptomatic after monotherapy with a beta-blocker, a calcium channel blocker can be added, and vice versa. If a patient cannot tolerate the addition of a calcium channel blocker or a beta-blocker, long-acting nitrate, ivabradine, nicorandil, or ranolazine can be considered. If a patient is taking both a beta-blocker and a calcium-channel blocker, a third drug should only be added while awaiting assessment for PCI or CABG.
Nitrate tolerance is a common issue for patients who take nitrates, leading to reduced efficacy. NICE advises patients who take standard-release isosorbide mononitrate to use an asymmetric dosing interval to maintain a daily nitrate-free time of 10-14 hours to minimize the development of nitrate tolerance. However, this effect is not seen in patients who take once-daily modified-release isosorbide mononitrate.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
A 72-year-old man has been discharged after an elective laparoscopic cholecystectomy and his GP is reviewing his discharge letter. The patient has a history of atrial fibrillation and takes warfarin to reduce the risk of stroke. The GP notices an abnormality in the coagulation screen that was performed before surgery. The discharge letter confirms that this is expected with warfarin use.
What is the most likely abnormality on this patient's coagulation blood results?
Reference ranges:
International normalised ratio (INR) 0.9-1.2
Prothrombin time (PT) 10-14 secsYour Answer: PT 21 secs, INR 0.6
Correct Answer: PT 21 secs, INR 2.5
Explanation:Warfarin causes an increase in prothrombin-time (PT) and international normalised ratio (INR) by inhibiting vitamin K-dependent clotting factors. An increase in PT will cause an increase in INR, and a decrease in PT and INR is a prothrombotic state.
Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 21
Correct
-
A 45-year-old male with no past medical history is recently diagnosed with hypertension. His GP prescribes him lisinopril and orders a baseline renal function blood test, which comes back normal. The GP schedules a follow-up appointment for two weeks later to check his renal function. At the follow-up appointment, the patient's blood test results show:
Na 137 mmol/l
K 4.7 mmol/l
Cl 98 mmol/l
Urea 12.2 mmol/l
Creatinine 250 mg/l
What is the most likely cause for the abnormal blood test results?Your Answer: Bilateral stenosis of renal arteries
Explanation:Patients with renovascular disease should not be prescribed ACE inhibitors as their first line antihypertensive medication. This is because bilateral renal artery stenosis, a common cause of hypertension, can go undetected and lead to acute renal impairment when treated with ACE inhibitors. This occurs because the medication prevents the constriction of efferent arterioles, which is necessary to maintain glomerular pressure in patients with reduced blood flow to the kidneys. Therefore, further investigations such as a renal artery ultrasound scan should be conducted before prescribing ACE inhibitors to patients with hypertension.
Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.
While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.
Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.
The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Correct
-
Sophie, a 6-week-old baby, presents to the emergency department for evaluation. Her mother has observed that Sophie has been experiencing shortness of breath for the past 3 weeks, particularly during feeding. Sophie was born at 36 weeks and her mother reports no other issues since birth.
During the examination, a continuous machinery murmur with a left-sided sub-clavicular thrill is detected, and a diagnosis of patent ductus arteriosus is made. Surgery is not deemed necessary, but a medication that inhibits prostaglandin synthesis is recommended.
What is the most probable pharmacological treatment that will be offered?Your Answer: Indomethacin
Explanation:The inhibition of prostaglandin synthesis in infants with patent ductus arteriosus is achieved through the use of indomethacin. This medication (or ibuprofen) is effective in promoting closure of the ductus arteriosus by inhibiting prostaglandin synthesis.
Beta-blockers such as bisoprolol are not used in the management of PDA, making this answer incorrect.
Steroids like dexamethasone and prednisolone are not typically used in the treatment of PDA, although they may be given to the mother if premature delivery is expected. Therefore, these answers are also incorrect.
Understanding Patent Ductus Arteriosus
Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.
This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.
The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 23
Incorrect
-
These thyroid function tests were obtained on a 55-year-old female who has recently been treated for hypertension:
Free T4 28.5 pmol/L (9.8-23.1)
TSH <0.02 mU/L (0.35-5.5)
Free T3 10.8 pmol/L (3.5-6.5)
She now presents with typical symptoms of hyperthyroidism.
Which medication is likely to have caused this?Your Answer: Atenolol
Correct Answer: Amiodarone
Explanation:Amiodarone and its Effects on Thyroid Function
Amiodarone is a medication that can have an impact on thyroid function, resulting in both hypo- and hyperthyroidism. This is due to the high iodine content in the drug, which contributes to its antiarrhythmic effects. Atenolol, on the other hand, is a beta blocker that is commonly used to treat thyrotoxicosis. Warfarin is another medication that is used to treat atrial fibrillation.
There are two types of thyrotoxicosis that can be caused by amiodarone. Type 1 results in excess thyroxine synthesis, while type 2 leads to the release of excess thyroxine but normal levels of synthesis. It is important for healthcare professionals to monitor thyroid function in patients taking amiodarone and adjust treatment as necessary to prevent complications.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
Which one of the following is not a branch of the subclavian artery?
Your Answer: Internal thoracic artery
Correct Answer: Superior thyroid artery
Explanation:The branches of the subclavian artery can be remembered using the mnemonic VIT C & D, which stands for Vertebral artery, Internal thoracic, Thyrocervical trunk, Costalcervical trunk, and Dorsal scapular. It is important to note that the Superior thyroid artery is actually a branch of the external carotid artery.
The Subclavian Artery: Origin, Path, and Branches
The subclavian artery is a major blood vessel that supplies blood to the upper extremities, neck, and head. It has two branches, the left and right subclavian arteries, which arise from different sources. The left subclavian artery originates directly from the arch of the aorta, while the right subclavian artery arises from the brachiocephalic artery (trunk) when it bifurcates into the subclavian and the right common carotid artery.
From its origin, the subclavian artery travels laterally, passing between the anterior and middle scalene muscles, deep to scalenus anterior and anterior to scalenus medius. As it crosses the lateral border of the first rib, it becomes the axillary artery and is superficial within the subclavian triangle.
The subclavian artery has several branches that supply blood to different parts of the body. These branches include the vertebral artery, which supplies blood to the brain and spinal cord, the internal thoracic artery, which supplies blood to the chest wall and breast tissue, the thyrocervical trunk, which supplies blood to the thyroid gland and neck muscles, the costocervical trunk, which supplies blood to the neck and upper back muscles, and the dorsal scapular artery, which supplies blood to the muscles of the shoulder blade.
In summary, the subclavian artery is an important blood vessel that plays a crucial role in supplying blood to the upper extremities, neck, and head. Its branches provide blood to various parts of the body, ensuring proper functioning and health.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 25
Incorrect
-
You are asked to evaluate a 5-day old cyanotic infant named Benjamin. Benjamin has had a chest x-ray which shows a heart appearance described as 'egg-on-side'. What is the probable underlying diagnosis?
Your Answer: Patent ductus arteriosus
Correct Answer: Transposition of the great arteries
Explanation:The ‘egg-on-side’ appearance on x-rays is a characteristic finding of transposition of the great arteries, which is one of the causes of cyanotic heart disease along with tetralogy of Fallot. While the age of the patient can help distinguish between the two conditions, the x-ray provides a clue for diagnosis. Patent ductus arteriosus, coarctation of the aorta, and ventricular septal defect do not typically present with cyanosis.
Understanding Transposition of the Great Arteries
Transposition of the great arteries (TGA) is a type of congenital heart disease that results in cyanosis. This condition occurs when the aorticopulmonary septum fails to spiral during septation, causing the aorta to leave the right ventricle and the pulmonary trunk to leave the left ventricle. Infants born to diabetic mothers are at a higher risk of developing TGA.
The clinical features of TGA include cyanosis, tachypnea, a loud single S2, and a prominent right ventricular impulse. Chest x-rays may show an egg-on-side appearance. To manage TGA, prostaglandins can be used to maintain the ductus arteriosus. However, surgical correction is the definitive treatment for this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 26
Incorrect
-
A 82-year-old man visits the urology department complaining of a painful swelling in his left testicle that has been present for the past month. Upon examination, it is diagnosed as a left varicocele. Further CT scans reveal enlarged lymph nodes obstructing the venous drainage in the middle portion of his abdomen. Which vein is most likely to be compressed?
Your Answer:
Correct Answer: Left renal vein
Explanation:The left renal vein collects venous blood from the left testis through the left testicular/gonadal vein.
Both the left and right testes are drained by their respective testicular/gonadal veins. The right testicular vein empties directly into the inferior vena cava, while the left testicular vein drains into the left renal vein before joining the inferior vena cava.
Anatomy of the Inferior Vena Cava
The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.
The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.
The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 27
Incorrect
-
A 68-year-old man presents to the emergency department after experiencing a syncopal episode. His ECG reveals a prolonged PR interval, with every other QRS complex being dropped. The QRS complex width is within normal limits.
From which area of the heart is the conduction delay most likely originating?Your Answer:
Correct Answer: Atrio-Ventricular node
Explanation:The PR interval is the duration between the depolarization of the atria and the depolarization of the ventricles. In this case, the man is experiencing a 2:1 block, which is a type of second-degree heart block. Since his PR interval is prolonged, the issue must be occurring in the pathway between the atria and ventricles. However, since his QRS complex is normal, it is likely that the problem is in the AV node rather than the bundles of His. If the issue were in the sino-atrial node, it would not cause a prolonged PR interval with dropped QRS complexes. Similarly, if there were a slowing of conduction in the ventricles, it would cause a wide QRS complex but not a prolonged PR interval.
Understanding the Normal ECG
The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.
The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.
Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 28
Incorrect
-
A 75-year-old man presents to the emergency department with chest pain and shortness of breath while gardening. He reports that the pain has subsided and is able to provide a detailed medical history. He mentions feeling breathless while gardening and walking in the park, and occasionally feeling like he might faint. He has a history of hypertension, is a retired construction worker, and a non-smoker. On examination, the doctor detects a crescendo-decrescendo systolic ejection murmur. The ECG shows no ST changes and the troponin test is negative. What is the underlying pathology responsible for this man's condition?
Your Answer:
Correct Answer: Old-age related calcification of the aortic valves
Explanation:The patient’s symptoms suggest an ischemic episode of the myocardium, which could indicate an acute coronary syndrome (ACS). However, the troponin test and ECG results were negative, and there are no known risk factors for coronary artery disease. Instead, the presence of a crescendo-decrescendo systolic ejection murmur and the triad of breathlessness, chest pain, and syncope suggest a likely diagnosis of aortic stenosis, which is commonly caused by calcification of the aortic valves in older adults or abnormal valves in younger individuals.
Arteriolosclerosis in severe systemic hypertension leads to hyperplastic proliferation of smooth muscle cells in the arterial walls, resulting in an onion-skin appearance. This is distinct from hyaline arteriolosclerosis, which is associated with diabetes mellitus and hypertension. Atherosclerosis, characterized by fibrous plaque formation in the coronary arteries, can lead to cardiac ischemia and myocyte death if the plaque ruptures and forms a thrombus.
After a myocardial infarction, the rupture of the papillary muscle can cause mitral regurgitation, which is most likely to occur between days 2 and 7 as macrophages begin to digest necrotic myocardial tissue. The posteromedial papillary muscle is particularly at risk due to its single blood supply from the posterior descending artery.
Aortic stenosis is a condition characterized by the narrowing of the aortic valve, which can lead to various symptoms. These symptoms include chest pain, dyspnea, syncope or presyncope, and a distinct ejection systolic murmur that radiates to the carotids. Severe aortic stenosis can cause a narrow pulse pressure, slow rising pulse, delayed ESM, soft/absent S2, S4, thrill, duration of murmur, and left ventricular hypertrophy or failure. The condition can be caused by degenerative calcification, bicuspid aortic valve, William’s syndrome, post-rheumatic disease, or subvalvular HOCM.
Management of aortic stenosis depends on the severity of the condition and the presence of symptoms. Asymptomatic patients are usually observed, while symptomatic patients require valve replacement. Surgical AVR is the preferred treatment for young, low/medium operative risk patients, while TAVR is used for those with a high operative risk. Balloon valvuloplasty may be used in children without aortic valve calcification and in adults with critical aortic stenosis who are not fit for valve replacement. If the valvular gradient is greater than 40 mmHg and there are features such as left ventricular systolic dysfunction, surgery may be considered even if the patient is asymptomatic.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 29
Incorrect
-
An eager young medical student inquires about ECGs. Despite your limited knowledge on the subject, you valiantly attempt to respond to her queries! One of her questions is: which part of the ECG denotes ventricular repolarization?
Your Answer:
Correct Answer: T wave
Explanation:The final stage of cardiac contraction, ventricular repolarization, is symbolized by the T wave. This can be easily remembered by recognizing that it occurs after the QRS complex, which represents earlier phases of contraction.
Understanding the Normal ECG
The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.
The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.
Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 30
Incorrect
-
A 63-year-old man visits his physician complaining of exertional dyspnea. To assess his heart function, he undergoes a transthoracic echocardiogram.
What is the method used to determine his cardiac output from the echocardiogram?Your Answer:
Correct Answer: (end diastolic LV volume - end systolic LV volume) x heart rate
Explanation:Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.
Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.
Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
0
00
Session Time
00
:
00
Average Question Time (
Mins)