00
Correct
00
Incorrect
00 : 00 : 0 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - What does a smaller p-value indicate in terms of the strength of evidence?...

    Incorrect

    • What does a smaller p-value indicate in terms of the strength of evidence?

      Your Answer: The quality of the study

      Correct Answer: The alternative hypothesis

      Explanation:

      A p-value represents the likelihood of rejecting a null hypothesis that is actually true. A smaller p-value indicates a lower chance of mistakenly rejecting the null hypothesis, providing evidence in favor of the alternative hypothesis.

      Understanding Hypothesis Testing in Statistics

      In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.

      The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.

      Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

      P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      19.9
      Seconds
  • Question 2 - What is the name of the database that focuses on literature created by...

    Incorrect

    • What is the name of the database that focuses on literature created by non-traditional commercial of academic publishing and distribution channels?

      Your Answer: Embase

      Correct Answer: OpenGrey

      Explanation:

      SIGLE is a database that specializes in collecting and indexing grey literature.

      Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.

      When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.

      There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      26.5
      Seconds
  • Question 3 - What statement accurately describes the process of searching a database? ...

    Correct

    • What statement accurately describes the process of searching a database?

      Your Answer: New references are added to PubMed more quickly than they are to MEDLINE

      Explanation:

      PubMed receives new references faster than MEDLINE because they do not need to undergo indexing, such as adding MeSH headings and checking tags. While an increasing number of MEDLINE citations have a link to the complete article, not all of them do. Since 2010, Embased has included all MEDLINE citations in its database, but it does not have all citations from before that year.

      Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.

      When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.

      There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      58.2
      Seconds
  • Question 4 - Which study design is always considered observational? ...

    Correct

    • Which study design is always considered observational?

      Your Answer: Cohort study

      Explanation:

      Case-studies and case-series can have an experimental nature due to the potential involvement of interventions of treatments.

      Types of Primary Research Studies and Their Advantages and Disadvantages

      Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.

      Type of Question Best Type of Study

      Therapy Randomized controlled trial (RCT), cohort, case control, case series
      Diagnosis Cohort studies with comparison to gold standard test
      Prognosis Cohort studies, case control, case series
      Etiology/Harm RCT, cohort studies, case control, case series
      Prevention RCT, cohort studies, case control, case series
      Cost Economic analysis

      Study Type Advantages Disadvantages

      Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
      Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
      Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
      Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
      Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)

      In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      29.5
      Seconds
  • Question 5 - Which of the following is an inferential statistic? ...

    Incorrect

    • Which of the following is an inferential statistic?

      Your Answer: Range

      Correct Answer: Standard error

      Explanation:

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      14
      Seconds
  • Question 6 - The QALY is utilized in which of the following approaches for economic assessment?...

    Correct

    • The QALY is utilized in which of the following approaches for economic assessment?

      Your Answer: Cost-utility analysis

      Explanation:

      Methods of Economic Evaluation

      There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.

      Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.

      Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.

      Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.

      Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.

      Costs in Economic Evaluation Studies

      There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      76.2
      Seconds
  • Question 7 - What statement accurately describes dependent variables? ...

    Correct

    • What statement accurately describes dependent variables?

      Your Answer: They are affected by changes of independent variables

      Explanation:

      Understanding Stats Variables

      Variables are characteristics, numbers, of quantities that can be measured of counted. They are also known as data items. Examples of variables include age, sex, business income and expenses, country of birth, capital expenditure, class grades, eye colour, and vehicle type. The value of a variable may vary between data units in a population. In a typical study, there are three main variables: independent, dependent, and controlled variables.

      The independent variable is something that the researcher purposely changes during the investigation. The dependent variable is the one that is observed and changes in response to the independent variable. Controlled variables are those that are not changed during the experiment. Dependent variables are affected by independent variables but not by controlled variables, as these do not vary throughout the study.

      For instance, a researcher wants to test the effectiveness of a new weight loss medication. Participants are divided into three groups, with the first group receiving a placebo (0mg dosage), the second group a 10 mg dose, and the third group a 40 mg dose. After six months, the participants’ weights are measured. In this case, the independent variable is the dosage of the medication, as that is what is being manipulated. The dependent variable is the weight, as that is what is being measured.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      197.9
      Seconds
  • Question 8 - Which of the following would make the use of the unpaired t-test inappropriate...

    Correct

    • Which of the following would make the use of the unpaired t-test inappropriate for comparing the mean ages of two groups of participants?

      Your Answer: Non-normal distribution of data

      Explanation:

      The t test is limited to parametric data that follows a normal distribution. However, inadequate statistical power due to a small sample size does not necessarily invalidate the t test results. While it is likely that a small sample size may not reveal any significant differences, it is still possible that large differences may be observed regardless of prior power calculations.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      53.2
      Seconds
  • Question 9 - What percentage of values fall within one standard deviation above and below the...

    Correct

    • What percentage of values fall within one standard deviation above and below the mean?

      Your Answer: 68.20%

      Explanation:

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      76.9
      Seconds
  • Question 10 - What method did the researchers use to ensure the accuracy and credibility of...

    Incorrect

    • What method did the researchers use to ensure the accuracy and credibility of their findings in the qualitative study on antidepressants?

      Your Answer: Content analysis

      Correct Answer: Member checking

      Explanation:

      To ensure validity in qualitative studies, a technique called member checking of respondent validation is used. This involves interviewing a subset of the participants (typically around 11) to confirm that their perspectives align with the study’s findings.

      Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      142.1
      Seconds
  • Question 11 - A study which aims to see if women over 40 years old have...

    Correct

    • A study which aims to see if women over 40 years old have a different length of pregnancy, compare the mean in a group of women of this age against the population mean. Which of the following tests would you use to compare the means?

      Your Answer: One sample t-test

      Explanation:

      The appropriate statistical test for the study is a one-sample t-test as it involves the calculation of a single mean.

      Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      8500.5
      Seconds
  • Question 12 - The research team is studying the effectiveness of a new treatment for a...

    Incorrect

    • The research team is studying the effectiveness of a new treatment for a certain medical condition. They have found that the brand name medication Y and its generic version Y1 have similar efficacy. They approach you for guidance on what type of analysis to conduct next. What would you suggest?

      Your Answer: Cost benefit analysis

      Correct Answer: Cost minimisation analysis

      Explanation:

      Cost minimisation analysis is employed to compare net costs when the observed effects of health care interventions are similar. To conduct this analysis, it is necessary to have clinical evidence that demonstrates the differences in health effects between alternatives are negligible of insignificant. This approach is commonly used by institutions like the National Institute for Health and Care Excellence (NICE).

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      16
      Seconds
  • Question 13 - A cohort study of 10,000 elderly individuals aimed to determine whether regular exercise...

    Correct

    • A cohort study of 10,000 elderly individuals aimed to determine whether regular exercise has an effect on cognitive decline. Half of the participants engaged in regular exercise while the other half did not.
      What is a limitation of conducting a cohort study in this scenario?

      Your Answer: When the outcome of interest is rare a very large sample size is needed

      Explanation:

      Cohort studies involve following a group of individuals over a period of time to investigate whether exposure to a particular factor affects disease incidence. Although they are costly and time-consuming, they offer several benefits. For instance, they can examine rare exposure factors and are less prone to recall bias than case-control studies. Additionally, they can measure disease incidence and risk. Results are typically presented as the relative risk of developing the disease due to exposure to the factor.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      91.4
      Seconds
  • Question 14 - A team of scientists aims to perform a systematic review and meta-analysis of...

    Incorrect

    • A team of scientists aims to perform a systematic review and meta-analysis of the environmental impacts and benefits of using solar energy in residential homes. They want to investigate how their findings would be affected by potential future changes, such as an increase in the cost of solar panels of a shift in government policies promoting renewable energy. What type of analysis should they undertake to address this inquiry?

      Your Answer: Analysis of heterogeneity

      Correct Answer: Sensitivity analysis

      Explanation:

      A sensitivity analysis is a tool utilized to evaluate the degree to which the outcomes of a study of systematic review are influenced by modifications in the methodology employed. It is employed to determine the resilience of the findings to uncertain judgments of assumptions regarding the data and techniques employed.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      86.2
      Seconds
  • Question 15 - What is a true statement about correlation? ...

    Correct

    • What is a true statement about correlation?

      Your Answer: Complete absence of correlation is expressed by a value of 0

      Explanation:

      Stats: Correlation and Regression

      Correlation and regression are related but not interchangeable terms. Correlation is used to test for association between variables, while regression is used to predict values of dependent variables from independent variables. Correlation can be linear, non-linear, of non-existent, and can be strong, moderate, of weak. The strength of a linear relationship is measured by the correlation coefficient, which can be positive of negative and ranges from very weak to very strong. However, the interpretation of a correlation coefficient depends on the context and purposes. Correlation can suggest association but cannot prove of disprove causation. Linear regression, on the other hand, can be used to predict how much one variable changes when a second variable is changed. Scatter graphs are used in correlation and regression analyses to visually determine if variables are associated and to detect outliers. When constructing a scatter graph, the dependent variable is typically placed on the vertical axis and the independent variable on the horizontal axis.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      660.9
      Seconds
  • Question 16 - Which study design involves conducting an experiment? ...

    Correct

    • Which study design involves conducting an experiment?

      Your Answer: A randomised control study

      Explanation:

      Types of Primary Research Studies and Their Advantages and Disadvantages

      Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.

      Type of Question Best Type of Study

      Therapy Randomized controlled trial (RCT), cohort, case control, case series
      Diagnosis Cohort studies with comparison to gold standard test
      Prognosis Cohort studies, case control, case series
      Etiology/Harm RCT, cohort studies, case control, case series
      Prevention RCT, cohort studies, case control, case series
      Cost Economic analysis

      Study Type Advantages Disadvantages

      Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
      Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
      Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
      Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
      Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)

      In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      9.4
      Seconds
  • Question 17 - A case-control study was conducted to determine if exposure to passive smoking during...

    Correct

    • A case-control study was conducted to determine if exposure to passive smoking during childhood increases the risk of nicotine dependence. Two groups were recruited: 200 patients with nicotine dependence and 200 controls without nicotine dependence. Among the patients, 40 reported exposure to parental smoking during childhood, while among the controls, 20 reported such exposure. The odds ratio of developing nicotine dependence after being exposed to passive smoking is:

      Your Answer: 2.25

      Explanation:

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      260.7
      Seconds
  • Question 18 - A pediatrician becomes interested in a newly identified and rare pediatric syndrome. They...

    Correct

    • A pediatrician becomes interested in a newly identified and rare pediatric syndrome. They are interested to investigate if previous exposure to herpes viruses may put children at increased risk. Which of the following study designs would be most appropriate?

      Your Answer: Case-control study

      Explanation:

      Case-control studies are useful in studying rare diseases as it would be impractical to follow a large group of people for a long period of time to accrue enough incident cases. For instance, if a disease occurs very infrequently, say 1 in 1,000,000 per year, it would require following 1,000,000 people for ten years of 1000 people for 1000 years to accrue ten total cases. However, this is not feasible. Therefore, a case-control study provides a more practical approach to studying rare diseases.

      Types of Primary Research Studies and Their Advantages and Disadvantages

      Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.

      Type of Question Best Type of Study

      Therapy Randomized controlled trial (RCT), cohort, case control, case series
      Diagnosis Cohort studies with comparison to gold standard test
      Prognosis Cohort studies, case control, case series
      Etiology/Harm RCT, cohort studies, case control, case series
      Prevention RCT, cohort studies, case control, case series
      Cost Economic analysis

      Study Type Advantages Disadvantages

      Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
      Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
      Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
      Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
      Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)

      In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      12.4
      Seconds
  • Question 19 - A study examining potential cases of neuroleptic malignant syndrome reports on several physical...

    Incorrect

    • A study examining potential cases of neuroleptic malignant syndrome reports on several physical parameters, including patient temperature in Celsius.

      This is an example of which of the following variables?:

      Your Answer: Ratio

      Correct Answer: Interval

      Explanation:

      Types of Variables

      There are different types of variables in statistics. Binary of dichotomous variables have only two values, such as gender. Categorical variables can be grouped into two or more categories, such as eye color of ethnicity. Continuous variables can be further classified into interval and ratio variables. They can be placed anywhere on a scale and have arithmetic properties. Ratio variables have a value of 0 that indicates the absence of the variable, such as temperature in Kelvin. On the other hand, interval variables, like temperature in Celsius of Fahrenheit, do not have a true zero point. Lastly, ordinal variables allow for ranking but do not allow for arithmetic comparisons between values. Examples of ordinal variables include education level and income bracket.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      20.2
      Seconds
  • Question 20 - What is a correct statement about funnel plots? ...

    Incorrect

    • What is a correct statement about funnel plots?

      Your Answer: The standard error is plotted on the x-axis

      Correct Answer: Studies with a smaller standard error are located towards the top of the funnel

      Explanation:

      Funnel plots are utilized in meta-analyses to visually display the potential presence of publication bias. However, it is important to note that an asymmetric funnel plot does not necessarily confirm the existence of publication bias, as other factors may contribute to its formation.

      Stats Publication Bias

      Publication bias refers to the tendency for studies with positive findings to be published more than studies with negative findings, leading to incomplete data sets in meta-analyses and erroneous conclusions. Graphical methods such as funnel plots, Galbraith plots, ordered forest plots, and normal quantile plots can be used to detect publication bias. Funnel plots are the most commonly used and offer an easy visual way to ensure that published literature is evenly weighted. The x-axis represents the effect size, and the y-axis represents the study size. A symmetrical, inverted funnel shape indicates that publication bias is unlikely, while an asymmetrical funnel indicates a relationship between treatment effect and study size, indicating either publication bias of small study effects.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      33.6
      Seconds
  • Question 21 - What is the ratio of the risk of stroke within a 3 year...

    Incorrect

    • What is the ratio of the risk of stroke within a 3 year period for high-risk psychiatric patients taking the new oral antithrombotic drug compared to those taking warfarin, based on the given data below? Number who had a stroke within a 3 year period vs Number without stroke New drug: 10 vs 190 Warfarin: 10 vs 490

      Your Answer: Cannot calculate from above data

      Correct Answer: 2.5

      Explanation:

      The relative risk (RR) of the event of interest in the exposed group compared to the unexposed group is 2.5.

      RR = EER / CER
      EER = 10 / 200 = 0.05
      CER = 10 / 500 = 0.02
      RR = EER / CER
      = 0.05 / 0.02 = 2.5

      This means that the exposed group has a 2.5 times higher risk of experiencing the event compared to the unexposed group.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      125.8
      Seconds
  • Question 22 - A new treatment for elderly patients with hypertension is investigated. The study looks...

    Correct

    • A new treatment for elderly patients with hypertension is investigated. The study looks at the incidence of stroke after 1 year. The following data is obtained:
      Number who had a stroke vs Number without a stroke
      New drug: 40 vs 160
      Placebo: 100 vs 300
      What is the relative risk reduction?

      Your Answer: 20%

      Explanation:

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      141.3
      Seconds
  • Question 23 - What is the range of values that would encompass 95% of the distribution...

    Incorrect

    • What is the range of values that would encompass 95% of the distribution of the number of cigarettes smoked per day by inpatients diagnosed with schizophrenia, given a mean of 20 and a standard deviation of 3?

      Your Answer: 11 and 29

      Correct Answer: 14 and 26

      Explanation:

      Standard Deviation and Standard Error of the Mean

      Standard deviation (SD) and standard error of the mean (SEM) are two important statistical measures used to describe data. SD is a measure of how much the data varies, while SEM is a measure of how precisely we know the true mean of the population. The normal distribution, also known as the Gaussian distribution, is a symmetrical bell-shaped curve that describes the spread of many biological and clinical measurements.

      68.3% of the data lies within 1 SD of the mean, 95.4% of the data lies within 2 SD of the mean, and 99.7% of the data lies within 3 SD of the mean. The SD is calculated by taking the square root of the variance and is expressed in the same units as the data set. A low SD indicates that data points tend to be very close to the mean.

      On the other hand, SEM is an inferential statistic that quantifies the precision of the mean. It is expressed in the same units as the data and is calculated by dividing the SD of the sample mean by the square root of the sample size. The SEM gets smaller as the sample size increases, and it takes into account both the value of the SD and the sample size.

      Both SD and SEM are important measures in statistical analysis, and they are used to calculate confidence intervals and test hypotheses. While SD quantifies scatter, SEM quantifies precision, and both are essential in understanding and interpreting data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      33.8
      Seconds
  • Question 24 - The researcher conducted a study to test his hypothesis that a new drug...

    Incorrect

    • The researcher conducted a study to test his hypothesis that a new drug would effectively treat depression. The results of the study indicated that his hypothesis was true, but in reality, it was not. What happened?

      Your Answer: Type II error

      Correct Answer: Type I error

      Explanation:

      Type I errors occur when we reject a null hypothesis that is actually true, leading us to believe that there is a significant difference of effect when there is not.

      Understanding Hypothesis Testing in Statistics

      In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.

      The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.

      Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

      P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      23.9
      Seconds
  • Question 25 - A new medication is being developed to treat hypertension in elderly patients. Several...

    Incorrect

    • A new medication is being developed to treat hypertension in elderly patients. Several different drugs are being considered for their efficacy in reducing blood pressure. Which study design would require the largest number of participants to achieve a significant outcome?

      Your Answer: Non-inferiority trial

      Correct Answer: Superiority trial

      Explanation:

      Since a superiority trial involves comparing a new drug with an already existing treatment that can also reduce HbA1c levels, a substantial sample size is necessary to establish a significant distinction.

      Study Designs for New Drugs: Options and Considerations

      When launching a new drug, there are various study design options available. One common approach is a placebo-controlled trial, which can provide strong evidence but may be deemed unethical if established treatments are available. Additionally, it does not allow for a comparison with standard treatments. Therefore, statisticians must decide whether the trial aims to demonstrate superiority, equivalence, of non-inferiority to an existing treatment.

      Superiority trials may seem like the obvious choice, but they require a large sample size to show a significant benefit over an existing treatment. Equivalence trials define an equivalence margin on a specified outcome, and if the confidence interval of the difference between the two drugs falls within this margin, the drugs are assumed to have a similar effect. Non-inferiority trials are similar to equivalence trials, but only the lower confidence interval needs to fall within the equivalence margin. These trials require smaller sample sizes, and once a drug has been shown to be non-inferior, larger studies may be conducted to demonstrate superiority.

      It is important to note that drug companies may not necessarily aim to show superiority over an existing product. If they can demonstrate that their product is equivalent of even non-inferior, they may compete on price of convenience. Overall, the choice of study design depends on various factors, including ethical considerations, sample size, and the desired outcome.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      41.7
      Seconds
  • Question 26 - What type of data is required to compute the relative risk of odds...

    Incorrect

    • What type of data is required to compute the relative risk of odds ratio?

      Your Answer: Continuous

      Correct Answer: Dichotomous

      Explanation:

      When outcomes are binary (such as dead of alive), there are various ways to report them, including proportions, percentages, risk, odds, risk ratios, odds ratios, number needed to treat, likelihood ratios, sensitivity, specificity, and pre-test and post-test probability. However, for non-binary data types, different methods of reporting are required.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      15.1
      Seconds
  • Question 27 - In an economic evaluation study, which of the options below would be considered...

    Correct

    • In an economic evaluation study, which of the options below would be considered an indirect cost?

      Your Answer: Costs of lost work due to absenteeism

      Explanation:

      Methods of Economic Evaluation

      There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.

      Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.

      Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.

      Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.

      Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.

      Costs in Economic Evaluation Studies

      There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      44.7
      Seconds
  • Question 28 - A team of scientists aimed to examine the prognosis of late-onset Alzheimer's disease...

    Correct

    • A team of scientists aimed to examine the prognosis of late-onset Alzheimer's disease using the available evidence. They intend to arrange the evidence in a hierarchy based on their study designs.
      What study design would be placed at the top of their hierarchy?

      Your Answer: Systematic review of cohort studies

      Explanation:

      When investigating prognosis, the hierarchy of study designs starts with a systematic review of cohort studies, followed by a cohort study, follow-up of untreated patients from randomized controlled trials, case series, and expert opinion. The strength of evidence provided by a study depends on its ability to minimize bias and maximize attribution. The Agency for Healthcare Policy and Research hierarchy of study types is widely accepted as reliable, with systematic reviews and meta-analyses of randomized controlled trials at the top, followed by randomized controlled trials, non-randomized intervention studies, observational studies, and non-experimental studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      28.4
      Seconds
  • Question 29 - If the new antihypertensive therapy is implemented for the secondary prevention of stroke,...

    Correct

    • If the new antihypertensive therapy is implemented for the secondary prevention of stroke, it would result in an absolute annual risk reduction of 0.5% compared to conventional therapy. However, the cost of the new treatment is £100 more per patient per year. Therefore, what would the cost of implementing the new therapy for each stroke prevented?

      Your Answer: £20,000

      Explanation:

      The new drug reduces the annual incidence of stroke by 0.5% and costs £100 more than conventional therapy. This means that for every 200 patients treated, one stroke would be prevented with the new drug compared to conventional therapy. The Number Needed to Treat (NNT) is 200 per year to prevent one stroke. Therefore, the annual cost of this treatment to prevent one stroke would be £20,000, which is the cost of treating 200 patients with the new drug (£100 x 200).

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      50.1
      Seconds
  • Question 30 - What is another term used to refer to a type II error in...

    Correct

    • What is another term used to refer to a type II error in hypothesis testing?

      Your Answer: False negative

      Explanation:

      Hypothesis testing involves the possibility of two types of errors: type I and type II errors. A type I error occurs when the null hypothesis is wrongly rejected of the alternative hypothesis is wrongly accepted. This error is also referred to as an alpha error, error of the first kind, of a false positive. On the other hand, a type II error occurs when the null hypothesis is wrongly accepted. This error is also known as the beta error, error of the second kind, of the false negative.

      Understanding Hypothesis Testing in Statistics

      In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.

      The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.

      Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

      P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      50.7
      Seconds
  • Question 31 - A researcher wants to compare the mean age of two groups of participants...

    Correct

    • A researcher wants to compare the mean age of two groups of participants who were randomly assigned to either a standard exercise program of a standard exercise program + new supplement. The data collected is parametric and continuous. What is the most appropriate statistical test to use?

      Your Answer: Unpaired t test

      Explanation:

      The two sample unpaired t test is utilized to examine whether the null hypothesis that the two populations related to the two random samples are equivalent is true of not. When dealing with continuous data that is believed to conform to the normal distribution, a t test is suitable, making it appropriate for comparing weight loss between two groups. In contrast, a paired t test is used when the data is dependent, meaning there is a direct correlation between the values in the two samples. This could include the same subject being measured before and after a process change of at different times.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      1009.8
      Seconds
  • Question 32 - Which of the following methods is most effective in eliminating of managing confounding...

    Incorrect

    • Which of the following methods is most effective in eliminating of managing confounding factors?

      Your Answer: Stratification

      Correct Answer: Randomisation

      Explanation:

      The most effective way to eliminate of manage potential confounding factors is to randomize a large enough sample size. This approach addresses all potential confounders, regardless of whether they were measured in the study design. Matching involves pairing individuals who received a treatment of intervention with non-treated individuals who have similar observable characteristics. Post-hoc methods, such as stratification, regression analysis, and analysis of variance, can be used to evaluate the impact of known or suspected confounders.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      11.7
      Seconds
  • Question 33 - The ICER is utilized in the following methods of economic evaluation: ...

    Incorrect

    • The ICER is utilized in the following methods of economic evaluation:

      Your Answer: Cost-minimisation analysis

      Correct Answer: Cost-effectiveness analysis

      Explanation:

      The acronym ICER stands for incremental cost-effectiveness ratio.

      Methods of Economic Evaluation

      There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.

      Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.

      Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.

      Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.

      Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.

      Costs in Economic Evaluation Studies

      There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      25
      Seconds
  • Question 34 - Which value of r indicates the highest degree of correlation? ...

    Incorrect

    • Which value of r indicates the highest degree of correlation?

      Your Answer: 0

      Correct Answer: -0.8

      Explanation:

      It is important to distinguish between the direction of the correlation (the slope of the line) and its strength (the spread of the data). To emphasize this difference, the correct answer to this question is a negative value.

      Stats: Correlation and Regression

      Correlation and regression are related but not interchangeable terms. Correlation is used to test for association between variables, while regression is used to predict values of dependent variables from independent variables. Correlation can be linear, non-linear, of non-existent, and can be strong, moderate, of weak. The strength of a linear relationship is measured by the correlation coefficient, which can be positive of negative and ranges from very weak to very strong. However, the interpretation of a correlation coefficient depends on the context and purposes. Correlation can suggest association but cannot prove of disprove causation. Linear regression, on the other hand, can be used to predict how much one variable changes when a second variable is changed. Scatter graphs are used in correlation and regression analyses to visually determine if variables are associated and to detect outliers. When constructing a scatter graph, the dependent variable is typically placed on the vertical axis and the independent variable on the horizontal axis.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      115
      Seconds
  • Question 35 - Which study design is considered to generate the most robust and reliable evidence?...

    Incorrect

    • Which study design is considered to generate the most robust and reliable evidence?

      Your Answer: Expert opinion

      Correct Answer: Cohort study

      Explanation:

      Levels and Grades of Evidence in Evidence-Based Medicine

      To evaluate the quality of evidence on a subject of question, levels of grades are used. The traditional hierarchy approach places systematic reviews of randomized control trials at the top and case-series/report at the bottom. However, this approach is overly simplistic as certain research questions cannot be answered using RCTs. To address this, the Oxford Centre for Evidence-Based Medicine introduced their 2011 Levels of Evidence system, which separates the type of study questions and gives a hierarchy for each.

      The grading approach to be aware of is the GRADE system, which classifies the quality of evidence as high, moderate, low, of very low. The process begins by formulating a study question and identifying specific outcomes. Outcomes are then graded as critical of important. The evidence is then gathered and criteria are used to grade the evidence, with the type of evidence being a significant factor. Evidence can be promoted of downgraded based on certain criteria, such as limitations to study quality, inconsistency, uncertainty about directness, imprecise of sparse data, and reporting bias. The GRADE system allows for the promotion of observational studies to high-quality evidence under the right circumstances.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      22.4
      Seconds
  • Question 36 - You record the age of all of your students in your class. You...

    Correct

    • You record the age of all of your students in your class. You notice that your data set is skewed. What method would you use to describe the typical age of your students?

      Your Answer: Median

      Explanation:

      When dealing with a data set that is quantitative and measured on a ratio scale, the mean is typically the preferred measure of central tendency. However, if the data is skewed, the median may be a better choice as it is less affected by the skewness of the data.

      Measures of Central Tendency

      Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.

      The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.

      The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.

      In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      16
      Seconds
  • Question 37 - What standardized mortality ratio indicates a lower mortality rate in a sample group...

    Incorrect

    • What standardized mortality ratio indicates a lower mortality rate in a sample group compared to a reference group?

      Your Answer: -10

      Correct Answer: 0.5

      Explanation:

      A negative SMR is not possible. An SMR less than 1.0 suggests that there were fewer deaths than expected in the study population, while an SMR of 1.0 indicates that the observed and expected deaths were equal. An SMR greater than 1.0 indicates that there were excess deaths in the study population.

      Calculation of Standardised Mortality Ratio (SMR)

      To calculate the SMR, age and sex-specific death rates in the standard population are obtained. An estimate for the number of people in each category for both the standard and study populations is needed. The number of expected deaths in each age-sex group of the study population is calculated by multiplying the age-sex-specific rates in the standard population by the number of people in each category of the study population. The sum of all age- and sex-specific expected deaths gives the expected number of deaths for the whole study population. The observed number of deaths is then divided by the expected number of deaths to obtain the SMR.

      The SMR can be standardised using the direct of indirect method. The direct method is used when the age-sex-specific rates for the study population and the age-sex-structure of the standard population are known. The indirect method is used when the age-specific rates for the study population are unknown of not available. This method uses the observed number of deaths in the study population and compares it to the number of deaths that would be expected if the age distribution was the same as that of the standard population.

      The SMR can be interpreted as follows: an SMR less than 1.0 indicates fewer than expected deaths in the study population, an SMR of 1.0 indicates the number of observed deaths equals the number of expected deaths in the study population, and an SMR greater than 1.0 indicates more than expected deaths in the study population (excess deaths). It is sometimes expressed after multiplying by 100.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      98
      Seconds
  • Question 38 - What is the appropriate denominator for calculating the incidence rate? ...

    Incorrect

    • What is the appropriate denominator for calculating the incidence rate?

      Your Answer: The number of disease free people at the beginning of a specified time period

      Correct Answer: The total person time at risk during a specified time period

      Explanation:

      Measures of Disease Frequency: Incidence and Prevalence

      Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.

      Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.

      It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.

      Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      36.8
      Seconds
  • Question 39 - What value of NNT indicates the most positive result for an intervention? ...

    Incorrect

    • What value of NNT indicates the most positive result for an intervention?

      Your Answer: NNT = 34

      Correct Answer: NNT = 1

      Explanation:

      An NNT of 1 indicates that every patient who receives the treatment experiences a positive outcome, while no patient in the control group experiences the same outcome. This represents an ideal outcome.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      15.9
      Seconds
  • Question 40 - What factor is most likely to impact the generalizability of a study's findings...

    Correct

    • What factor is most likely to impact the generalizability of a study's findings to the larger population?

      Your Answer: Reactive effects of the research setting

      Explanation:

      Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      27.5
      Seconds
  • Question 41 - For a study comparing two chemotherapy regimens for small cell lung cancer patients...

    Correct

    • For a study comparing two chemotherapy regimens for small cell lung cancer patients based on survival time, which statistical measure is most suitable for comparison?

      Your Answer: Hazard ratio

      Explanation:

      Understanding Hazard Ratio in Survival Analysis

      Survival analysis is a statistical method used to analyze the time it takes for an event of interest to occur, such as death of disease progression. In this type of analysis, the hazard ratio (HR) is a commonly used measure that is similar to the relative risk but takes into account the fact that the risk of an event may change over time.

      The hazard ratio is particularly useful in situations where the risk of an event is not constant over time, such as in medical research where patients may have different survival times of disease progression rates. It is a measure of the relative risk of an event occurring in one group compared to another, taking into account the time it takes for the event to occur.

      For example, in a study comparing the survival rates of two groups of cancer patients, the hazard ratio would be used to compare the risk of death in one group compared to the other, taking into account the time it takes for the patients to die. A hazard ratio of 1 indicates that there is no difference in the risk of death between the two groups, while a hazard ratio greater than 1 indicates that one group has a higher risk of death than the other.

      Overall, the hazard ratio is a useful tool in survival analysis that allows researchers to compare the risk of an event occurring between different groups, taking into account the time it takes for the event to occur.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      66.6
      Seconds
  • Question 42 - What term is used to describe an association between two variables that is...

    Incorrect

    • What term is used to describe an association between two variables that is influenced by a confounding factor?

      Your Answer: Factitious

      Correct Answer: Indirect

      Explanation:

      Stats Association and Causation

      When two variables are found to be more commonly present together, they are said to be associated. However, this association can be of three types: spurious, indirect, of direct. Spurious association is one that has arisen by chance and is not real, while indirect association is due to the presence of another factor, known as a confounding variable. Direct association, on the other hand, is a true association not linked by a third variable.

      Once an association has been established, the next question is whether it is causal. To determine causation, the Bradford Hill Causal Criteria are used. These criteria include strength, temporality, specificity, coherence, and consistency. The stronger the association, the more likely it is to be truly causal. Temporality refers to whether the exposure precedes the outcome. Specificity asks whether the suspected cause is associated with a specific outcome of disease. Coherence refers to whether the association fits with other biological knowledge. Finally, consistency asks whether the same association is found in many studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      12.4
      Seconds
  • Question 43 - Which of the following statements about calculating the correlation coefficient (r) for the...

    Incorrect

    • Which of the following statements about calculating the correlation coefficient (r) for the relationship between age and systolic blood pressure is not accurate?

      Your Answer: If r = 0 then there is no linear correlation between systolic blood pressure and age

      Correct Answer: May be used to predict systolic blood pressure for a given age

      Explanation:

      To make predictions about systolic blood pressure, linear regression is necessary in this situation.

      Stats: Correlation and Regression

      Correlation and regression are related but not interchangeable terms. Correlation is used to test for association between variables, while regression is used to predict values of dependent variables from independent variables. Correlation can be linear, non-linear, of non-existent, and can be strong, moderate, of weak. The strength of a linear relationship is measured by the correlation coefficient, which can be positive of negative and ranges from very weak to very strong. However, the interpretation of a correlation coefficient depends on the context and purposes. Correlation can suggest association but cannot prove of disprove causation. Linear regression, on the other hand, can be used to predict how much one variable changes when a second variable is changed. Scatter graphs are used in correlation and regression analyses to visually determine if variables are associated and to detect outliers. When constructing a scatter graph, the dependent variable is typically placed on the vertical axis and the independent variable on the horizontal axis.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      41.9
      Seconds
  • Question 44 - What does the term external validity in a study refer to? ...

    Incorrect

    • What does the term external validity in a study refer to?

      Your Answer: The extent to which a test of measure assesses the full content of a subject of area

      Correct Answer: The degree to which the conclusions in a study would hold for other persons in other places and at other times

      Explanation:

      Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      8.3
      Seconds
  • Question 45 - How do the odds of excessive drinking differ between patients with liver cirrhosis...

    Incorrect

    • How do the odds of excessive drinking differ between patients with liver cirrhosis and those without cirrhosis?

      Your Answer: 3

      Correct Answer: 16

      Explanation:

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      10.2
      Seconds
  • Question 46 - Which of the following search methods would be best suited for a user...

    Incorrect

    • Which of the following search methods would be best suited for a user seeking all references that discuss psychosis resulting from cannabis use and sexual abuse in adolescents?

      Your Answer: Psychosis of cannabis

      Correct Answer: Psychosis AND (cannabis of sexual abuse)

      Explanation:

      The search ‘Psychosis AND (cannabis AND sexual abuse)’ would also return citations with all three terms, but it allows for the possibility of citations that include both cannabis and sexual abuse, but not necessarily psychosis.

      Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.

      When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.

      There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      9.5
      Seconds
  • Question 47 - What is the appropriate denominator to use when computing the sample variance? ...

    Incorrect

    • What is the appropriate denominator to use when computing the sample variance?

      Your Answer:

      Correct Answer: n-1

      Explanation:

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 48 - What category does country of origin fall under in terms of data classification?...

    Incorrect

    • What category does country of origin fall under in terms of data classification?

      Your Answer:

      Correct Answer: Nominal

      Explanation:

      Scales of Measurement in Statistics

      In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.

      Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.

      Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.

      Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 49 - What is the purpose of using Cohen's kappa coefficient? ...

    Incorrect

    • What is the purpose of using Cohen's kappa coefficient?

      Your Answer:

      Correct Answer: Inter-rater reliability

      Explanation:

      Kappa is used to assess the consistency of agreement between different raters.

      Understanding the Kappa Statistic for Measuring Interobserver Variation

      The kappa statistic, also known as Cohen’s kappa coefficient, is a useful tool for quantifying the level of agreement between independent observers. This measure can be applied in any situation where multiple observers are evaluating the same thing, such as in medical diagnoses of research studies. The kappa coefficient ranges from 0 to 1, with 0 indicating complete disagreement and 1 indicating perfect agreement. By using the kappa statistic, researchers and practitioners can gain insight into the level of interobserver variation present in their data, which can help to improve the accuracy and reliability of their findings. Overall, the kappa statistic is a valuable tool for understanding and measuring interobserver variation in a variety of contexts.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 50 - Which study design is susceptible to making the erroneous assumption that relationships observed...

    Incorrect

    • Which study design is susceptible to making the erroneous assumption that relationships observed among groups also hold true for individuals?

      Your Answer:

      Correct Answer: Ecological study

      Explanation:

      An ecological fallacy is a potential error that can occur when generalizing relationships observed among groups to individuals. This is a concern when conducting analyses of ecological studies.

      Types of Primary Research Studies and Their Advantages and Disadvantages

      Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.

      Type of Question Best Type of Study

      Therapy Randomized controlled trial (RCT), cohort, case control, case series
      Diagnosis Cohort studies with comparison to gold standard test
      Prognosis Cohort studies, case control, case series
      Etiology/Harm RCT, cohort studies, case control, case series
      Prevention RCT, cohort studies, case control, case series
      Cost Economic analysis

      Study Type Advantages Disadvantages

      Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
      Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
      Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
      Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
      Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)

      In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Research Methods, Statistics, Critical Review And Evidence-Based Practice (24/46) 52%
Passmed