00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A middle-aged woman with myasthenia gravis experiences a myasthenic crisis leading to respiratory...

    Incorrect

    • A middle-aged woman with myasthenia gravis experiences a myasthenic crisis leading to respiratory failure. Which nerve root is most commonly affected in this scenario?

      Your Answer: T1

      Correct Answer: C4

      Explanation:

      The phrenic nerve receives input from C3, C4, and C5, which is essential for keeping the diaphragm functioning properly. In cases of medical emergencies, mechanical ventilation is often the first-line management. C2 primarily innervates muscles in the neck, while C7 and T1 are part of the brachial plexus and contribute to the formation of nerves in the upper limb.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      16.3
      Seconds
  • Question 2 - Which one of the following is a branch of the fourth part of...

    Correct

    • Which one of the following is a branch of the fourth part of the axillary artery?

      Your Answer: Posterior circumflex humeral

      Explanation:

      Anatomy of the Axilla

      The axilla, also known as the armpit, is a region of the body that contains important structures such as nerves, veins, and lymph nodes. It is bounded medially by the chest wall and serratus anterior, laterally by the humeral head, and anteriorly by the lateral border of the pectoralis major. The floor of the axilla is formed by the subscapularis muscle, while the clavipectoral fascia forms its fascial boundary.

      One of the important nerves that passes through the axilla is the long thoracic nerve, which supplies the serratus anterior muscle. The thoracodorsal nerve and trunk, on the other hand, innervated and vascularize the latissimus dorsi muscle. The axillary vein, which is the continuation of the basilic vein, lies at the apex of the axilla and becomes the subclavian vein at the outer border of the first rib. The intercostobrachial nerves, which provide cutaneous sensation to the axillary skin, traverse the axillary lymph nodes and are often divided during axillary surgery.

      The axilla is also an important site of lymphatic drainage for the breast. Therefore, any pathology or surgery involving the breast can affect the lymphatic drainage of the axilla and lead to lymphedema. Understanding the anatomy of the axilla is crucial for healthcare professionals who perform procedures in this region, as damage to any of the structures can lead to significant complications.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      22.7
      Seconds
  • Question 3 - A 70-year-old individual presents to the ophthalmology clinic with a gradual decline in...

    Incorrect

    • A 70-year-old individual presents to the ophthalmology clinic with a gradual decline in visual acuity, difficulty seeing at night, and occasional floaters. Upon fundoscopy, yellow pigment deposits are observed in the macular region, along with demarcated red patches indicating fluid leakage and bleeding. The patient has no significant medical history. The ophthalmologist recommends a treatment that directly inhibits vascular endothelial growth factors. What is the appropriate management for this patient?

      Your Answer:

      Correct Answer: Bevacizumab

      Explanation:

      Bevacizumab is a monoclonal antibody that targets vascular endothelial growth factor (VEGF) and is used as a first-line treatment for the neovascular or exudative form of age-related macular degeneration (AMD). This form of AMD is characterized by the proliferation of abnormal blood vessels in the eye that leak blood and protein below the macula, causing damage to the photoreceptors. Bevacizumab blocks VEGF, which stimulates the growth of these abnormal vessels.

      Fluocinolone is a corticosteroid that is used as an anti-inflammatory via intraocular injection in some eye conditions, but it does not affect VEGF. Laser photocoagulation is used to cauterize ocular blood vessels in several eye conditions, but it also does not affect VEGF. Verteporfin is a medication used as a photosensitizer prior to photodynamic therapy, which can be used in eye conditions with ocular vessel proliferation, but it is not an anti-VEGF drug.

      Age-related macular degeneration (ARMD) is a common cause of blindness in the UK, characterized by degeneration of the central retina (macula) and the formation of drusen. The risk of ARMD increases with age, smoking, family history, and conditions associated with an increased risk of ischaemic cardiovascular disease. ARMD is classified into dry and wet forms, with the latter carrying the worst prognosis. Clinical features include subacute onset of visual loss, difficulties in dark adaptation, and visual hallucinations. Signs include distortion of line perception, the presence of drusen, and well-demarcated red patches in wet ARMD. Investigations include slit-lamp microscopy, colour fundus photography, fluorescein angiography, indocyanine green angiography, and ocular coherence tomography. Treatment options include a combination of zinc with anti-oxidant vitamins for dry ARMD and anti-VEGF agents for wet ARMD. Laser photocoagulation is also an option, but anti-VEGF therapies are usually preferred.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 4 - A 20-year-old male comes to the clinic complaining of fatigue and a sore...

    Incorrect

    • A 20-year-old male comes to the clinic complaining of fatigue and a sore throat. During the examination, the doctor observes cervical lymphadenopathy and splenomegaly. Mono is suspected as the diagnosis. Which type of cancer is most commonly linked to Epstein-Barr Virus?

      Your Answer:

      Correct Answer: Burkitt's lymphoma

      Explanation:

      Epstein-Barr Virus is linked to Burkitt’s lymphoma.

      Hepatitis C is linked to hepatocellular carcinoma.

      Alcohol excess and smoking are linked to oesophageal cancer.

      Individuals with Down’s syndrome have a higher incidence of acute lymphoblastic leukaemia.

      Conditions Linked to Epstein-Barr Virus

      Epstein-Barr virus (EBV) is associated with various conditions, including malignancies and non-malignant conditions. Malignancies linked to EBV infection include Burkitt’s lymphoma, Hodgkin’s lymphoma, nasopharyngeal carcinoma, and HIV-associated central nervous system lymphomas. Burkitt’s lymphoma is currently believed to be associated with both African and sporadic cases.

      Apart from malignancies, EBV infection is also linked to non-malignant conditions such as hairy leukoplakia. This condition is characterized by white patches on the tongue and inside of the cheeks, and it is often seen in people with weakened immune systems.

      In summary, EBV infection is associated with various conditions, including malignancies and non-malignant conditions. Understanding the link between EBV and these conditions can help in the development of effective prevention and treatment strategies.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 5 - A 35-year-old female patient complains of chronic flank pain. Her family history reveals...

    Incorrect

    • A 35-year-old female patient complains of chronic flank pain. Her family history reveals a brother with similar symptoms and a mother who died from a subarachnoid haemorrhage. Bilateral renal ultrasound shows multiple cysts. Which chromosome is most likely to be affected in this genetic disorder?

      Your Answer:

      Correct Answer: 16

      Explanation:

      Autosomal dominant polycystic kidney disease (ADPKD) is a commonly inherited kidney disease that affects 1 in 1,000 Caucasians. The disease is caused by mutations in two genes, PKD1 and PKD2, which produce polycystin-1 and polycystin-2 respectively. ADPKD type 1 accounts for 85% of cases, while ADPKD type 2 accounts for 15% of cases. ADPKD type 1 is caused by a mutation in the PKD1 gene on chromosome 16, while ADPKD type 2 is caused by a mutation in the PKD2 gene on chromosome 4. ADPKD type 1 tends to present with renal failure earlier than ADPKD type 2.

      To screen for ADPKD in relatives of affected individuals, an abdominal ultrasound is recommended. The diagnostic criteria for ultrasound include the presence of two cysts, either unilateral or bilateral, if the individual is under 30 years old. If the individual is between 30-59 years old, two cysts in both kidneys are required for diagnosis. If the individual is over 60 years old, four cysts in both kidneys are necessary for diagnosis.

      For some patients with ADPKD, tolvaptan, a vasopressin receptor 2 antagonist, may be an option to slow the progression of cyst development and renal insufficiency. However, NICE recommends tolvaptan only for adults with ADPKD who have chronic kidney disease stage 2 or 3 at the start of treatment, evidence of rapidly progressing disease, and if the company provides it with the agreed discount in the patient access scheme.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 6 - Which of the cranial nerves listed below is least likely to carry parasympathetic...

    Incorrect

    • Which of the cranial nerves listed below is least likely to carry parasympathetic fibers?

      Your Answer:

      Correct Answer: II

      Explanation:

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 7 - A 26-year-old man has been referred to ENT by his doctor as he...

    Incorrect

    • A 26-year-old man has been referred to ENT by his doctor as he has swallowed a small chicken bone that feels stuck in his throat. During laryngoscopy, a chicken bone is observed lodged in the piriform recess. Which of the following nerves is most likely to be affected by the chicken bone?

      Your Answer:

      Correct Answer: Internal laryngeal nerve

      Explanation:

      When foreign objects get stuck in the piriform recess, particularly sharp items like bones from fish or chicken, they can harm the internal laryngeal nerve that lies beneath the mucous membrane in that area. Retrieving these objects also poses a risk of damaging the internal laryngeal nerve. However, the other nerves are not likely to be impacted.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 8 - What are the root values of the sciatic nerve? ...

    Incorrect

    • What are the root values of the sciatic nerve?

      Your Answer:

      Correct Answer: L4 to S3

      Explanation:

      The origin of the sciatic nerve is typically from the fourth lumbar vertebrae to the third sacral vertebrae.

      Understanding the Sciatic Nerve

      The sciatic nerve is the largest nerve in the body, formed from the sacral plexus and arising from spinal nerves L4 to S3. It passes through the greater sciatic foramen and emerges beneath the piriformis muscle, running under the cover of the gluteus maximus muscle. The nerve provides cutaneous sensation to the skin of the foot and leg, as well as innervating the posterior thigh muscles and lower leg and foot muscles. Approximately halfway down the posterior thigh, the nerve splits into the tibial and common peroneal nerves. The tibial nerve supplies the flexor muscles, while the common peroneal nerve supplies the extensor and abductor muscles.

      The sciatic nerve also has articular branches for the hip joint and muscular branches in the upper leg, including the semitendinosus, semimembranosus, biceps femoris, and part of the adductor magnus. Cutaneous sensation is provided to the posterior aspect of the thigh via cutaneous nerves, as well as the gluteal region and entire lower leg (except the medial aspect). The nerve terminates at the upper part of the popliteal fossa by dividing into the tibial and peroneal nerves. The nerve to the short head of the biceps femoris comes from the common peroneal part of the sciatic, while the other muscular branches arise from the tibial portion. The tibial nerve goes on to innervate all muscles of the foot except the extensor digitorum brevis, which is innervated by the common peroneal nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 9 - A medical resident is reviewing a research study that investigates the association between...

    Incorrect

    • A medical resident is reviewing a research study that investigates the association between historical exposure to ionizing radiation and thyroid cancer in a group of patients over the age of 50.

      In the study, 1008 patients had a history of exposure to ionizing radiation, and 8 of them developed thyroid cancer. On the other hand, 5641 patients did not have any exposure to ionizing radiation, and 6 of them developed thyroid cancer.

      What is the formula that can be used to calculate the odds of developing thyroid cancer in patients over the age of 50 who have been exposed to ionizing radiation?

      Your Answer:

      Correct Answer: 8/1000

      Explanation:

      The correct way to express odds is as a ratio of the number of people who experience a particular outcome to the number of people who do not experience that outcome. For example, if 8 out of 1000 people exposed to ionizing radiation develop thyroid cancer, the odds of developing thyroid cancer in this group would be 8/1000. It is important to note that odds are not a ratio of the number of people who experience a particular outcome to the total number of people.

      Understanding Odds and Odds Ratio

      When analyzing data, it is important to understand the difference between odds and probability. Odds are a ratio of the number of people who experience a particular outcome to those who do not. On the other hand, probability is the fraction of times an event is expected to occur in many trials. While probability is always between 0 and 1, odds can be any positive number.

      In case-control studies, odds ratios are the usual reported measure. This ratio compares the odds of a particular outcome with experimental treatment to that of a control group. It is important to note that odds ratios approximate to relative risk if the outcome of interest is rare.

      For example, in a trial comparing the use of paracetamol for dysmenorrhoea compared to placebo, the odds of achieving significant pain relief with paracetamol were 2, while the odds of achieving significant pain relief with placebo were 0.5. Therefore, the odds ratio was 4.

      Understanding odds and odds ratio is crucial in interpreting data and making informed decisions. By knowing the difference between odds and probability and how to calculate odds ratios, researchers can accurately analyze and report their findings.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 10 - A 35-year-old male patient comes to you with a right eye that is...

    Incorrect

    • A 35-year-old male patient comes to you with a right eye that is looking outward and downward, along with ptosis of the same eye. Which cranial nerve lesion is the most probable cause of this presentation?

      Your Answer:

      Correct Answer: Oculomotor

      Explanation:

      The oculomotor nerve is responsible for innervating all the extra-ocular muscles of the eye, except for the lateral rectus and superior oblique. If this nerve is damaged, it can result in unopposed action of the lateral rectus and superior oblique muscles, leading to a distinct ‘down and out’ gaze. Additionally, the oculomotor nerve controls the levator palpebrae superioris, so a lesion can cause ptosis. Furthermore, the nerve carries parasympathetic fibers that constrict the pupil, so compression of the nerve can result in a dilated pupil (mydriasis).

      Disorders of the Oculomotor System: Nerve Path and Palsy Features

      The oculomotor system is responsible for controlling eye movements and pupil size. Disorders of this system can result in various nerve path and palsy features. The oculomotor nerve has a large nucleus at the midbrain and its fibers pass through the red nucleus and the pyramidal tract, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience ptosis, eye down and out, and an inability to move the eye superiorly, inferiorly, or medially. The pupil may also become fixed and dilated.

      The trochlear nerve has the longest intracranial course and is the only nerve to exit the dorsal aspect of the brainstem. Its nucleus is located at the midbrain and it passes between the posterior cerebral and superior cerebellar arteries, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience vertical diplopia (diplopia on descending the stairs) and an inability to look down and in.

      The abducens nerve has its nucleus in the mid pons and is responsible for the convergence of eyes in primary position. When this nerve is affected, patients may experience lateral diplopia towards the side of the lesion and the eye may deviate medially. Understanding the nerve path and palsy features of the oculomotor system can aid in the diagnosis and treatment of disorders affecting this important system.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 11 - A 67-year-old hospitalized patient is prescribed a combination of irinotecan and 5-fluorouracil with...

    Incorrect

    • A 67-year-old hospitalized patient is prescribed a combination of irinotecan and 5-fluorouracil with added folinic acid for metastatic colon cancer. The patient is informed about the significant side effects associated with these drugs, including severe diarrhea, nausea, and fatigue. What is the mechanism of action of irinotecan?

      Your Answer:

      Correct Answer: Inhibition of topoisomerase I

      Explanation:

      Irinotecan prevents relaxation of supercoiled DNA by inhibiting topoisomerase I, an enzyme that regulates DNA supercoiling during mitosis and meiosis. Other topoisomerase inhibitors include topotecan, etoposide, and teniposide.

      Azathioprine is a purine analogue that inhibits DNA polymerase, thereby halting DNA synthesis.

      5-fluorouracil is a pyrimidine antagonist that inhibits thymidylate synthase, leading to a reduction in pyrimidine nucleotides.

      Tyrosine kinase inhibitors like imatinib and erlotinib have significantly improved the prognosis for patients with chronic myeloid leukemia (CML).

      Cytotoxic agents are drugs that are used to kill cancer cells. There are several types of cytotoxic agents, each with their own mechanism of action and potential adverse effects. Alkylating agents, such as cyclophosphamide, work by causing cross-linking in DNA. However, they can also cause haemorrhagic cystitis, myelosuppression, and transitional cell carcinoma. Cytotoxic antibiotics, like bleomycin and anthracyclines, degrade preformed DNA and stabilize DNA-topoisomerase II complex, respectively. However, they can also cause lung fibrosis and cardiomyopathy. Antimetabolites, such as methotrexate and fluorouracil, inhibit dihydrofolate reductase and thymidylate synthesis, respectively. However, they can also cause myelosuppression, mucositis, and liver or lung fibrosis. Drugs that act on microtubules, like vincristine and docetaxel, inhibit the formation of microtubules and prevent microtubule depolymerisation & disassembly, respectively. However, they can also cause peripheral neuropathy, myelosuppression, and paralytic ileus. Topoisomerase inhibitors, like irinotecan, inhibit topoisomerase I, which prevents relaxation of supercoiled DNA. However, they can also cause myelosuppression. Other cytotoxic drugs, such as cisplatin and hydroxyurea, cause cross-linking in DNA and inhibit ribonucleotide reductase, respectively. However, they can also cause ototoxicity, peripheral neuropathy, hypomagnesaemia, and myelosuppression.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 12 - Which type of cell makes up the majority of yellow bone marrow? ...

    Incorrect

    • Which type of cell makes up the majority of yellow bone marrow?

      Your Answer:

      Correct Answer: Adipocytes

      Explanation:

      Anatomy of Bones and Bone Marrow

      Bones are composed of two types of bone tissue: compact bone and cancellous bone. The medullary cavity is located within the cancellous bone and contains trabeculae. Blood vessels and bone marrow are also present within the cavity. The bone marrow is responsible for producing blood cells, with red marrow being the site of active haematopoiesis. Yellow marrow, on the other hand, is predominantly made up of adipocytes and fibroblasts.

      Chondrocytes are specialized cells found in cartilage that secrete the collagen matrix. Fibroblasts also contribute to the extracellular matrix by secreting collagen. Haematopoietic stem cells are found in bone marrow and are the common ancestor of all haematologic cells. Megakaryocytes, which are also found in bone marrow, are the precursor to platelets. the anatomy of bones and bone marrow is crucial in their functions and the processes that occur within them.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 13 - You are giving a lecture to a group of nursing students on aspirin...

    Incorrect

    • You are giving a lecture to a group of nursing students on aspirin overdose and its characteristics.

      As you discuss the pathophysiology of the metabolic acidosis observed in patients with aspirin overdose, you address the root cause of the metabolic acidosis in these individuals.

      Your Answer:

      Correct Answer: Uncoupling of the electron transport chain in the mitochondria leading to reduced ATP production

      Explanation:

      Inhibiting the electron transport chain in mitochondria, aspirin overdose leads to a decline in ATP production. This decrease in ATP is counterbalanced by an upsurge in anaerobic respiration, which generates lactate – an acidic byproduct. The accumulation of lactate leads to a decrease in pH, resulting in metabolic acidosis.

      Salicylate overdose can cause a combination of respiratory alkalosis and metabolic acidosis. The respiratory center is initially stimulated, leading to hyperventilation and respiratory alkalosis. However, the direct acid effects of salicylates, combined with acute renal failure, can later cause metabolic acidosis. In children, metabolic acidosis tends to be more prominent. Other symptoms of salicylate overdose include tinnitus, lethargy, sweating, pyrexia, nausea/vomiting, hyperglycemia and hypoglycemia, seizures, and coma.

      The treatment for salicylate overdose involves general measures such as airway, breathing, and circulation support, as well as administering activated charcoal. Urinary alkalinization with intravenous sodium bicarbonate can help eliminate aspirin in the urine. In severe cases, hemodialysis may be necessary. Indications for hemodialysis include a serum concentration of over 700 mg/L, metabolic acidosis that is resistant to treatment, acute renal failure, pulmonary edema, seizures, and coma.

      Salicylates can also cause the uncoupling of oxidative phosphorylation, which leads to decreased adenosine triphosphate production, increased oxygen consumption, and increased carbon dioxide and heat production. It is important to recognize the symptoms of salicylate overdose and seek prompt medical attention to prevent serious complications.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 14 - A new diagnostic test is being developed and this is now being trialed...

    Incorrect

    • A new diagnostic test is being developed and this is now being trialed on 10,000 patients, 500 of which are known to be over the age of 60.

      Each patient receives one test, producing 1,200 positive results. 400 of those with a positive test are later confirmed to be over the age of 60.

      Calculate the positive predictive value (PPV) of the test.

      Your Answer:

      Correct Answer: 40%

      Explanation:

      Precision refers to the consistency of a test in producing the same results when repeated multiple times. It is an important aspect of test reliability and can impact the accuracy of the results. In order to assess precision, multiple tests are performed on the same sample and the results are compared. A test with high precision will produce similar results each time it is performed, while a test with low precision will produce inconsistent results. It is important to consider precision when interpreting test results and making clinical decisions.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 15 - A 65-year-old man presents to the GP for a routine hypertension check-up. He...

    Incorrect

    • A 65-year-old man presents to the GP for a routine hypertension check-up. He has a medical history of hypertension, ischaemic heart disease, osteoarthritis, rheumatic fever and COPD.

      During the physical examination, the GP hears a mid-late diastolic murmur that intensifies during expiration. The GP suspects that the patient may have mitral stenosis.

      What is the primary cause of this abnormality?

      Your Answer:

      Correct Answer: Rheumatic fever

      Explanation:

      Understanding Mitral Stenosis

      Mitral stenosis is a condition where the mitral valve, which controls blood flow from the left atrium to the left ventricle, becomes obstructed. This leads to an increase in pressure within the left atrium, pulmonary vasculature, and right side of the heart. The most common cause of mitral stenosis is rheumatic fever, but it can also be caused by other rare conditions such as mucopolysaccharidoses, carcinoid, and endocardial fibroelastosis.

      Symptoms of mitral stenosis include dyspnea, hemoptysis, a mid-late diastolic murmur, a loud S1, and a low volume pulse. Severe cases may also present with an increased length of murmur and a closer opening snap to S2. Chest x-rays may show left atrial enlargement, while echocardiography can confirm a cross-sectional area of less than 1 sq cm for a tight mitral stenosis.

      Management of mitral stenosis depends on the severity of the condition. Asymptomatic patients are monitored with regular echocardiograms, while symptomatic patients may undergo percutaneous mitral balloon valvotomy or mitral valve surgery. Patients with associated atrial fibrillation require anticoagulation, with warfarin currently recommended for moderate/severe cases. However, there is an emerging consensus that direct-acting anticoagulants may be suitable for mild cases with atrial fibrillation.

      Overall, understanding mitral stenosis is important for proper diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 16 - Breast cancer usually presents with non-specific symptoms and is therefore often diagnosed at...

    Incorrect

    • Breast cancer usually presents with non-specific symptoms and is therefore often diagnosed at a late stage. A new assay for cancer antigen 15-3 (CA 15-3) is being evaluated for potential use in a breast cancer screening programme. You are asked to analyze the results by the programme director shown below and report the specificity.

      Breast cancer present Breast cancer absent
      CA 15-3 positive 300 60
      CA 15-3 negative 40 200

      What figure will you report to the screening programme director?

      Your Answer:

      Correct Answer: 75%

      Explanation:

      The negative predictive value is 86%, calculated as 275 divided by the sum of 275 and 50, which equals 0.846 or 84.6%.

      Precision refers to the consistency of a test in producing the same results when repeated multiple times. It is an important aspect of test reliability and can impact the accuracy of the results. In order to assess precision, multiple tests are performed on the same sample and the results are compared. A test with high precision will produce similar results each time it is performed, while a test with low precision will produce inconsistent results. It is important to consider precision when interpreting test results and making clinical decisions.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 17 - A 35-year-old woman arrives at the emergency department with lock-jaw and muscle spasms...

    Incorrect

    • A 35-year-old woman arrives at the emergency department with lock-jaw and muscle spasms throughout her body, particularly in the abdomen and back. She reports cutting her hand on a rusty knife covered in soil while gardening a week ago.

      During the examination, the patient displays trismus, an arched back, and visible distress. The palm of her hand shows a four-inch cut with redness, warmth, and pus.

      Which neurotransmitter is involved in the pathophysiology of the probable diagnosis?

      Your Answer:

      Correct Answer: GABA

      Explanation:

      The correct answer is GABA. Tetanus toxin, also known as tetanospasmin, inhibits the release of GABA and glycine, which are neurotransmitters that normally prevent excessive motor neuron activity. When these inhibitory neurotransmitters are blocked, the motor neurons become overactive, leading to muscle spasms and lockjaw. If left untreated, this can progress to respiratory paralysis, which is a medical emergency.

      Acetylcholine is not the correct answer. While acetylcholine is an excitatory neurotransmitter at some neuromuscular synapses, it is not involved in tetanus toxin release. Botulinum toxin, on the other hand, blocks the release of acetylcholine, causing muscle paralysis.

      Glutamate is also not the correct answer. While glutamate is an excitatory neurotransmitter in the central nervous system, it is not involved in the peripheral nervous system, which is affected by tetanus toxin.

      Noradrenaline is not the correct answer either. Noradrenaline is not released in the peripheral somatic system and does not affect skeletal muscles. It is primarily released in the sympathetic nervous system and acts on smooth muscle in various parts of the body.

      Exotoxins vs Endotoxins: Understanding the Differences

      Exotoxins and endotoxins are two types of toxins produced by bacteria. Exotoxins are secreted by bacteria, while endotoxins are only released when the bacterial cell is lysed. Exotoxins are typically produced by Gram-positive bacteria, with some exceptions like Vibrio cholerae and certain strains of E. coli.

      Exotoxins can be classified based on their primary effects, which include pyrogenic toxins, enterotoxins, neurotoxins, tissue invasive toxins, and miscellaneous toxins. Pyrogenic toxins stimulate the release of cytokines, resulting in fever and rash. Enterotoxins act on the gastrointestinal tract, causing either diarrheal or vomiting illness. Neurotoxins act on the nerves or neuromuscular junction, causing paralysis. Tissue invasive toxins cause damage to tissues, while miscellaneous toxins have various effects.

      On the other hand, endotoxins are lipopolysaccharides that are released from Gram-negative bacteria like Neisseria meningitidis. These toxins can cause fever, sepsis, and shock. Unlike exotoxins, endotoxins are not actively secreted by bacteria but are instead released when the bacterial cell is lysed.

      Understanding the differences between exotoxins and endotoxins is important in diagnosing and treating bacterial infections. While exotoxins can be targeted with specific treatments like antitoxins, endotoxins are more difficult to treat and often require supportive care.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 18 - A 70-year-old man visits his primary care physician with complaints of hearing difficulties....

    Incorrect

    • A 70-year-old man visits his primary care physician with complaints of hearing difficulties. He states that he has been increasingly struggling to hear his wife's conversations for the past six months. He is concerned that this problem will worsen and eventually lead to complete hearing loss, making it difficult for him to communicate with his children over the phone. His wife is also distressed by the situation, as he frequently asks her to turn up the volume on the television. The man has no history of exposure to loud noises and has well-controlled hypertension. He is a retired police officer and currently resides with his wife. What is the primary pathology underlying this man's most likely diagnosis?

      Your Answer:

      Correct Answer: Degeneration of the cells at the cochlear base

      Explanation:

      The patient has a gradual-onset hearing loss, which is most likely due to presbycusis, an aging-related sensorineural hearing loss. This condition has multiple causes, including environmental factors like noise pollution and biological factors like genetics and oxidative stress. Damage to the organ of Corti stereocilia from exposure to sudden loud noises can also cause hearing loss, which is typically sudden and associated with a history of exposure to loud noises. Other conditions that can cause hearing loss include cholesteatoma, which is due to the accumulation of keratin debris in the middle ear, and otosclerosis, which is characterized by the overgrowth of bone in the middle ear.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 19 - A 55-year-old woman comes to her doctor complaining of fatigue, difficulty passing stool,...

    Incorrect

    • A 55-year-old woman comes to her doctor complaining of fatigue, difficulty passing stool, and muscle weakness. Her lab results show:

      Free T4 6 pmol/l (9-18 pmol/l)
      TSH 7.2 mu/l (0.5-5.5 mu/l)

      Based on the probable diagnosis, which of the following tests is most likely to be positive in this patient?

      Your Answer:

      Correct Answer: Anti-thyroid peroxidase (anti-TPO) antibodies

      Explanation:

      Rheumatoid factor is not the most suitable answer for a patient with hypothyroidism, despite its presence in various rheumatological conditions and healthy individuals.

      Understanding Thyroid Autoantibodies

      Thyroid autoantibodies are antibodies that attack the thyroid gland, causing various thyroid disorders. There are three main types of anti-thyroid autoantibodies: anti-thyroid peroxidase (anti-TPO) antibodies, TSH receptor antibodies, and thyroglobulin antibodies. Anti-TPO antibodies are present in 90% of Hashimoto’s thyroiditis cases and 75% of Graves’ disease cases. TSH receptor antibodies are found in 90-100% of Graves’ disease cases. Thyroglobulin antibodies are present in 70% of Hashimoto’s thyroiditis cases, 30% of Graves’ disease cases, and a small proportion of thyroid cancer cases.

      Understanding the different types of thyroid autoantibodies is important in diagnosing and treating thyroid disorders. Hashimoto’s thyroiditis and Graves’ disease are the most common autoimmune thyroid disorders, and the presence of specific autoantibodies can help differentiate between the two. Additionally, monitoring the levels of these antibodies can help track the progression of the disease and the effectiveness of treatment. Overall, understanding thyroid autoantibodies is crucial in managing thyroid health.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 20 - A 55-year-old female is referred to the cardiologist by her GP due to...

    Incorrect

    • A 55-year-old female is referred to the cardiologist by her GP due to experiencing postural dyspnoea and leg oedema for a few months. The cardiologist conducts an echocardiogram and finds out that her left ventricular ejection fraction is 34%. Based on her clinical presentation, she is diagnosed with congestive cardiac failure.

      To alleviate her symptoms and improve her long-term prognosis, the patient is prescribed several medications. However, she visits the GP after two weeks, complaining of a dry, tickling cough that she attributes to one of her new medications.

      Which medication is most likely causing this new symptom in the patient?

      Your Answer:

      Correct Answer: Ramipril (ACE inhibitor)

      Explanation:

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 21 - Which of the following most accurately explains how glucocorticoids work? ...

    Incorrect

    • Which of the following most accurately explains how glucocorticoids work?

      Your Answer:

      Correct Answer: Binding of intracellular receptors that migrate to the nucleus to then affect gene transcription

      Explanation:

      The effects of glucocorticoids are mediated by intracellular receptors that bind to them and are subsequently transported to the nucleus, where they modulate gene transcription.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 22 - A 90-year-old man was brought to the clinic by his family due to...

    Incorrect

    • A 90-year-old man was brought to the clinic by his family due to a decline in his memory over the past 6 months, accompanied by occasional confusion. His personality and behavior remain unchanged. Upon neurological examination, no abnormalities were found. Following further investigations, he was diagnosed with dementia. What is the probable molecular pathology underlying his symptoms?

      Your Answer:

      Correct Answer: Presence of neurofibrillary tangles

      Explanation:

      Alzheimer’s disease is the most prevalent cause of dementia, followed by vascular dementia. It is characterized by the accumulation of type A-Beta-amyloid protein, leading to cortical plaques, and abnormal aggregation of the tau protein, resulting in intraneuronal neurofibrillary tangles. Parkinson’s disease is indicated by the loss of dopaminergic neurons in the substantia nigra, while Lewy body dementia is suggested by the presence of Lewy bodies. Vascular dementia is associated with atherosclerosis of cerebral arteries.

      Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.

      The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.

      Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 23 - A 25-year-old woman presents to the Emergency department with sudden onset of difficulty...

    Incorrect

    • A 25-year-old woman presents to the Emergency department with sudden onset of difficulty breathing. She has a history of asthma but is otherwise healthy. Upon admission, she is observed to be breathing rapidly, using her accessory muscles, and is experiencing cold and clammy skin. Upon chest auscultation, widespread wheezing is detected.

      An arterial blood gas analysis reveals:

      pH 7.46
      pO2 13 kPa
      pCO2 2.7 kPa
      HCO3- 23 mmol/l

      Which aspect of the underlying disease is affected in this patient?

      Your Answer:

      Correct Answer: Forced Expiratory Volume

      Explanation:

      It is probable that this individual is experiencing an acute episode of asthma. Asthma is a condition that results in the constriction of the airways, known as an obstructive airway disease. Its distinguishing feature is its ability to be reversed. The forced expiratory volume is the most impacted parameter in asthma and other obstructive airway diseases.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 24 - A surprised 25-year-old woman is brought to the emergency room with a possible...

    Incorrect

    • A surprised 25-year-old woman is brought to the emergency room with a possible diagnosis of Staphylococcus aureus toxic shock syndrome. What is one of the parameters used to diagnose systemic inflammatory response syndrome (SIRS)?

      Your Answer:

      Correct Answer: White blood cell count

      Explanation:

      Systemic Inflammatory Response Syndrome

      Systemic inflammatory response syndrome (SIRS) is a condition that is diagnosed when a combination of abnormal parameters are detected. These parameters can be deranged for various reasons, including both infective and non-infective causes. Some examples of infective causes include Staph. aureus toxic shock syndrome, while acute pancreatitis is an example of a non-infective cause. The diagnosis of SIRS is based on the presence of a constellation of abnormal parameters, which include a temperature below 36°C or above 38.3°C, a heart rate exceeding 90 beats per minute, a respiratory rate exceeding 20 breaths per minute, and a white blood cell count below 4 or above 12 ×109/L.

      It is important to note that the systolic blood pressure is not included in the definition of SIRS. However, if the systolic pressure remains below 90 mmHg after a fluid bolus, this would be considered a result of septic shock. the criteria for SIRS is crucial for healthcare professionals to identify and manage patients with this condition promptly.

    • This question is part of the following fields:

      • Infectious Diseases
      0
      Seconds
  • Question 25 - A 25-year-old man experiences a blunt head trauma and presents with a GCS...

    Incorrect

    • A 25-year-old man experiences a blunt head trauma and presents with a GCS of 7 upon admission. What is the primary factor influencing cerebral blood flow in this scenario?

      Your Answer:

      Correct Answer: Intracranial pressure

      Explanation:

      Cerebral blood flow can be impacted by both hypoxaemia and acidosis, but in cases of trauma, the likelihood of increased intracranial pressure is much higher, particularly when the Glasgow Coma Scale (GCS) is low. This can have a negative impact on cerebral blood flow.

      Understanding Cerebral Blood Flow and Angiography

      Cerebral blood flow is regulated by the central nervous system, which can adjust its own blood supply. Various factors can affect cerebral pressure, including CNS metabolism, trauma, pressure, and systemic carbon dioxide levels. The most potent mediator is PaCO2, while acidosis and hypoxemia can also increase cerebral blood flow to a lesser degree. In patients with head injuries, increased intracranial pressure can impair blood flow. The Monro-Kelly Doctrine governs intracerebral pressure, which considers the brain as a closed box, and changes in pressure are offset by the loss of cerebrospinal fluid. However, when this is no longer possible, intracranial pressure rises.

      Cerebral angiography is an invasive test that involves injecting contrast media into the carotid artery using a catheter. Radiographs are taken as the dye works its way through the cerebral circulation. This test can be used to identify bleeding aneurysms, vasospasm, and arteriovenous malformations, as well as differentiate embolism from large artery thrombosis. Understanding cerebral blood flow and angiography is crucial in diagnosing and treating various neurological conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 26 - An 80-year-old man comes to the clinic complaining of hearing loss in one...

    Incorrect

    • An 80-year-old man comes to the clinic complaining of hearing loss in one ear that has persisted for the last 3 months. Upon examination, Webers test indicates that the issue is on the opposite side, and a CT scan of his head reveals a thickened calvarium with areas of sclerosis and radiolucency. His blood work shows an elevated alkaline phosphatase, normal serum calcium, and normal PTH levels. What is the most probable underlying diagnosis?

      Your Answer:

      Correct Answer: Pagets disease with skull involvement

      Explanation:

      The most probable diagnosis for an old man experiencing bone pain and raised ALP is Paget’s disease, as it often presents with skull vault expansion and sensorineural hearing loss. While multiple myeloma may also cause bone pain, it typically results in multiple areas of radiolucency and raised calcium levels. Although osteopetrosis can cause similar symptoms, it is a rare inherited disorder that usually presents in children or young adults, making it an unlikely diagnosis for an older patient with no prior symptoms.

      Understanding Paget’s Disease of the Bone

      Paget’s disease of the bone is a condition characterized by increased and uncontrolled bone turnover. It is believed to be caused by excessive osteoclastic resorption followed by increased osteoblastic activity. Although it is a common condition, affecting around 5% of the UK population, only 1 in 20 patients experience symptoms. The most commonly affected areas are the skull, spine/pelvis, and long bones of the lower extremities.

      Several factors can predispose an individual to Paget’s disease, including increasing age, male sex, living in northern latitudes, and having a family history of the condition. Symptoms of Paget’s disease include bone pain, particularly in the pelvis, lumbar spine, and femur. In untreated cases, patients may experience bowing of the tibia or bossing of the skull.

      To diagnose Paget’s disease, doctors may perform blood tests to check for elevated levels of alkaline phosphatase (ALP), a marker of bone turnover. Other markers of bone turnover, such as procollagen type I N-terminal propeptide (PINP), serum C-telopeptide (CTx), urinary N-telopeptide (NTx), and urinary hydroxyproline, may also be measured. X-rays and bone scintigraphy can help identify areas of active bone lesions.

      Treatment for Paget’s disease is typically reserved for patients experiencing bone pain, skull or long bone deformity, fractures, or periarticular Paget’s. Bisphosphonates, such as oral risedronate or IV zoledronate, are commonly used to manage the condition. Calcitonin may also be used in some cases. Complications of Paget’s disease can include deafness, bone sarcoma, fractures, skull thickening, and high-output cardiac failure.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      0
      Seconds
  • Question 27 - Which of the following is not associated with an increase in ESR? ...

    Incorrect

    • Which of the following is not associated with an increase in ESR?

      Your Answer:

      Correct Answer: Polycythaemia

      Explanation:

      Understanding Erythrocyte Sedimentation Rate (ESR)

      The Erythrocyte Sedimentation Rate (ESR) is a test that measures the rate at which red blood cells settle in a tube over a period of time. It is a non-specific marker of inflammation and can be affected by various factors such as the size, shape, and number of red blood cells, as well as the concentration of plasma proteins like fibrinogen, alpha2-globulins, and gamma globulins.

      A high ESR can be caused by various conditions such as temporal arteritis, myeloma, connective tissue disorders like systemic lupus erythematosus, malignancies, infections, and other factors like increasing age, female sex, and anaemia. On the other hand, a low ESR can be caused by conditions like polycythaemia, afibrinogenaemia, or hypofibrinogenaemia.

      It is important to note that while a high ESR can indicate the presence of an underlying condition, it is not a definitive diagnosis and further testing may be required to determine the cause. Therefore, it is essential to consult a healthcare professional for proper evaluation and management.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      0
      Seconds
  • Question 28 - A 42-year-old male presents to the emergency department with a burn on his...

    Incorrect

    • A 42-year-old male presents to the emergency department with a burn on his arm. The on-call plastic surgeon wants to prevent infection and prescribes a dressing containing an antibiotic that inhibits folic acid formation. Which antibiotic works via this mechanism of action?

      Your Answer:

      Correct Answer: Sulfadiazine (a sulphonamide)

      Explanation:

      Antibiotics work in different ways to kill or inhibit the growth of bacteria. The commonly used antibiotics can be classified based on their gross mechanism of action. The first group inhibits cell wall formation by either preventing peptidoglycan cross-linking (penicillins, cephalosporins, carbapenems) or peptidoglycan synthesis (glycopeptides like vancomycin). The second group inhibits protein synthesis by acting on either the 50S subunit (macrolides, chloramphenicol, clindamycin, linezolid, streptogrammins) or the 30S subunit (aminoglycosides, tetracyclines) of the bacterial ribosome. The third group inhibits DNA synthesis (quinolones like ciprofloxacin) or damages DNA (metronidazole). The fourth group inhibits folic acid formation (sulphonamides and trimethoprim), while the fifth group inhibits RNA synthesis (rifampicin). Understanding the mechanism of action of antibiotics is important in selecting the appropriate drug for a particular bacterial infection.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 29 - An 80-year-old man visits his GP with a persistent ulcer on his buccal...

    Incorrect

    • An 80-year-old man visits his GP with a persistent ulcer on his buccal mucosal. He is urgently referred for evaluation of potential oral cancer. During his visit to the oral surgery clinic, he is questioned about various risk factors, such as smoking, illicit drug use, and exposure to specific viruses. Which virus is a risk factor for the development of this condition?

      Your Answer:

      Correct Answer: Human papillomavirus 16

      Explanation:

      Understanding Oncoviruses and Their Associated Cancers

      Oncoviruses are viruses that have the potential to cause cancer. These viruses can be detected through blood tests and prevented through vaccination. There are several types of oncoviruses, each associated with a specific type of cancer.

      The Epstein-Barr virus, for example, is linked to Burkitt’s lymphoma, Hodgkin’s lymphoma, post-transplant lymphoma, and nasopharyngeal carcinoma. Human papillomavirus 16/18 is associated with cervical cancer, anal cancer, penile cancer, vulval cancer, and oropharyngeal cancer. Human herpes virus 8 is linked to Kaposi’s sarcoma, while hepatitis B and C viruses are associated with hepatocellular carcinoma. Finally, human T-lymphotropic virus 1 is linked to tropical spastic paraparesis and adult T cell leukemia.

      It is important to understand the link between oncoviruses and cancer so that appropriate measures can be taken to prevent and treat these diseases. Vaccination against certain oncoviruses, such as HPV, can significantly reduce the risk of developing associated cancers. Regular screening and early detection can also improve outcomes for those who do develop cancer as a result of an oncovirus.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 30 - A 65-year-old patient with suspected spinal cord compression has been admitted to the...

    Incorrect

    • A 65-year-old patient with suspected spinal cord compression has been admitted to the neurosurgical team for an urgent MRI of the spine. Which particle's magnetic properties does magnetic resonance imaging rely predominantly upon?

      Your Answer:

      Correct Answer: Hydrogen ion (proton)

      Explanation:

      How MRI Scanners Use Hydrogen Ions to Create Images

      MRI scanners use the magnetic properties of hydrogen ions, also known as protons, to create images of the human body. These protons have nuclear spin, which means they have magnetic vectors that can be aligned in an electromagnet. The scanner bombards the protons with radiofrequency radiation, causing them to release energy when they return to their resting state. This energy release is recorded and used to construct the MRI image.

      While other nuclei, such as carbon 13, also have nuclear spin and could be used in MRI imaging, hydrogen ions are much more abundant in human tissues. This makes them the preferred choice for creating images of the body. The process of aligning the magnetic vectors of the protons and then recording their energy release is repeated many times to create a detailed image of the body’s internal structures.

      Overall, MRI scanners use the magnetic properties of hydrogen ions to create detailed images of the human body. This non-invasive imaging technique has revolutionized medical diagnosis and treatment, allowing doctors to see inside the body without the need for surgery.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Respiratory System (0/1) 0%
Musculoskeletal System And Skin (1/1) 100%
Passmed