00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A 30-year-old man arrived at the emergency department following a syncopal episode during...

    Incorrect

    • A 30-year-old man arrived at the emergency department following a syncopal episode during a game of basketball. He is typically healthy with no prior medical history, but he does mention experiencing occasional palpitations, which he believes may be due to alcohol or caffeine consumption. Upon further inquiry, he reveals that his father passed away suddenly at the age of 40 due to a heart condition. What is the underlying pathophysiological alteration in this patient?

      Your Answer: Emboli caused by mural thrombus

      Correct Answer: Asymmetric septal hypertrophy

      Explanation:

      When a young patient presents with symptoms of syncope and chest discomfort, along with a family history of hypertrophic cardiomyopathy (HOCM), it is important to consider the possibility of this condition. Asymmetric septal hypertrophy and systolic anterior movement (SAM) of the anterior leaflet of the mitral valve on echocardiogram or cMR are supportive of HOCM. This condition is caused by a genetic defect in the beta-myosin heavy chain protein gene. While Brugada syndrome may also be a consideration, it is not listed as a possible answer due to its underlying mechanism of sodium channelopathy.

      Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the ÎČ-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.

    • This question is part of the following fields:

      • Cardiovascular System
      49.5
      Seconds
  • Question 2 - A 50-year-old man presents to the emergency department with excruciating chest pain that...

    Incorrect

    • A 50-year-old man presents to the emergency department with excruciating chest pain that raises suspicion of aortic dissection. Which layers are the blood expected to be flowing between?

      Your Answer: Endothelium and basal laminae

      Correct Answer: Tunica intima and tunica media

      Explanation:

      In an aortic dissection, the tunica intima becomes separated from the tunica media. The tunica intima is the innermost layer of a blood vessel, while the tunica media is the second layer and the tunica adventitia is the third layer. Normally, the tunica media would be situated between the tunica intima and adventitia in the aorta. Capillaries have layers called endothelium and basal laminae, while the internal and external elastic laminae are found on either side of the tunica media.

      Artery Histology: Layers of Blood Vessel Walls

      The wall of a blood vessel is composed of three layers: the tunica intima, tunica media, and tunica adventitia. The innermost layer, the tunica intima, is made up of endothelial cells that are separated by gap junctions. The middle layer, the tunica media, contains smooth muscle cells and is separated from the intima by the internal elastic lamina and from the adventitia by the external elastic lamina. The outermost layer, the tunica adventitia, contains the vasa vasorum, fibroblast, and collagen. This layer is responsible for providing support and protection to the blood vessel. The vasa vasorum are small blood vessels that supply oxygen and nutrients to the larger blood vessels. The fibroblast and collagen provide structural support to the vessel wall. Understanding the histology of arteries is important in diagnosing and treating various cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      40.6
      Seconds
  • Question 3 - A 50-year-old woman is currently receiving antibiotics for bacterial endocarditis and is worried...

    Incorrect

    • A 50-year-old woman is currently receiving antibiotics for bacterial endocarditis and is worried about her future health. She asks about the common complications associated with her condition.

      Which of the following is a typical complication of bacterial endocarditis?

      Your Answer: Goodpasture's disease

      Correct Answer: Stroke

      Explanation:

      The risk of emboli is heightened by infective endocarditis. This is due to the formation of thrombus at the site of the lesion, which can result in the release of septic emboli. Other complications mentioned in the options are not typically associated with infective endocarditis.

      Aetiology of Infective Endocarditis

      Infective endocarditis is a condition that affects patients with previously normal valves, rheumatic valve disease, prosthetic valves, congenital heart defects, intravenous drug users, and those who have recently undergone piercings. The strongest risk factor for developing infective endocarditis is a previous episode of the condition. The mitral valve is the most commonly affected valve.

      The most common cause of infective endocarditis is Staphylococcus aureus, particularly in acute presentations and intravenous drug users. Historically, Streptococcus viridans was the most common cause, but this is no longer the case except in developing countries. Coagulase-negative Staphylococci such as Staphylococcus epidermidis are commonly found in indwelling lines and are the most common cause of endocarditis in patients following prosthetic valve surgery. Streptococcus bovis is associated with colorectal cancer, with the subtype Streptococcus gallolyticus being most linked to the condition.

      Culture negative causes of infective endocarditis include prior antibiotic therapy, Coxiella burnetii, Bartonella, Brucella, and HACEK organisms (Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, Kingella). It is important to note that systemic lupus erythematosus and malignancy, specifically marantic endocarditis, can also cause non-infective endocarditis.

    • This question is part of the following fields:

      • Cardiovascular System
      57.4
      Seconds
  • Question 4 - A young man in his early twenties collapses during a game of basketball...

    Correct

    • A young man in his early twenties collapses during a game of basketball and is declared dead upon arrival at the hospital. The autopsy shows irregularities in his heart. What is the probable cause of the irregularities?

      Your Answer: Hypertrophic cardiomyopathy

      Explanation:

      The condition that is most commonly associated with sudden death is hypertrophic cardiomyopathy, making the other options less likely.

      Symptoms of acute myocarditis may include chest pain, fever, palpitations, tachycardia, and difficulty breathing.

      Dilated cardiomyopathy may cause right ventricular failure, leading to symptoms such as difficulty breathing, pulmonary edema, and atrial fibrillation.

      Restrictive cardiomyopathy and constrictive pericarditis have similar presentations, with right heart failure symptoms such as elevated JVP, hepatomegaly, edema, and ascites being predominant.

      Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the ÎČ-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.

    • This question is part of the following fields:

      • Cardiovascular System
      24.7
      Seconds
  • Question 5 - A 35-year-old man arrives at the emergency department with bradycardia. Is it possible...

    Correct

    • A 35-year-old man arrives at the emergency department with bradycardia. Is it possible for cardiac muscle to stay in phase 4 of the cardiac action potential for an extended period of time?

      What happens during phase 4 of the cardiac action potential?

      Your Answer: Na+/K+ ATPase acts

      Explanation:

      The Na+/K+ ATPase restores the resting potential.

      The cardiac action potential does not involve slow sodium influx.

      Phase 3 of repolarisation involves rapid potassium influx.

      Phase 2 involves slow calcium influx.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      61.2
      Seconds
  • Question 6 - A 75-year-old man arrives at the emergency department complaining of lightheadedness and difficulty...

    Incorrect

    • A 75-year-old man arrives at the emergency department complaining of lightheadedness and difficulty breathing. Upon examination, his ECG reveals supraventricular tachycardia, which may be caused by an irregularity in the cardiac electrical activation sequence. He is successfully cardioverted to sinus rhythm.

      What is the anticipated sequence of his cardiac electrical activation following the procedure?

      Your Answer: SA node- AV node- atria- Bundle of His- right and left bundle branches- Purkinje fibres

      Correct Answer: SA node- atria- AV node- Bundle of His- right and left bundle branches- Purkinje fibres

      Explanation:

      The correct order of cardiac electrical activation is as follows: SA node, atria, AV node, Bundle of His, right and left bundle branches, and Purkinje fibers. Understanding this sequence is crucial as it is directly related to interpreting ECGs.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      579.8
      Seconds
  • Question 7 - A 65-year-old woman experiences chest discomfort during physical activity and is diagnosed with...

    Incorrect

    • A 65-year-old woman experiences chest discomfort during physical activity and is diagnosed with angina.

      What alterations are expected to be observed in her arteries?

      Your Answer: The formation of foam cells from endothelial cells

      Correct Answer: Smooth muscle proliferation and migration from the tunica media to the intima

      Explanation:

      The final stage in the development of an atheroma involves the proliferation and migration of smooth muscle from the tunica media into the intima. While monocytes do migrate, they differentiate into macrophages which then phagocytose LDLs and form foam cells. Additionally, there is infiltration of LDLs. The formation of fibrous capsules is a result of the smooth muscle proliferation and migration. Atherosclerosis is also associated with a reduction in nitric oxide availability.

      Understanding Atherosclerosis and its Complications

      Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.

      Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      84.2
      Seconds
  • Question 8 - A 49-year-old man named Mr. Johnson visits his GP surgery to review his...

    Correct

    • A 49-year-old man named Mr. Johnson visits his GP surgery to review his blood pressure as he has been diagnosed with type II diabetes mellitus. His blood pressure is 150/112 mmHg and his heart rate is 82 bpm. Mr. Johnson smokes 20 cigarettes a day, drinks three pints of beer most nights, and has a diet high in saturated fat. He drives to work, even though his office is only one mile away from his house. He appears anxious and worried about having a heart attack soon. What would be your first step in treating his hypertension?

      Your Answer: Lifestyle advice and review

      Explanation:

      Importance of Confirming Persistent High Blood Pressure

      While reducing high blood pressure is crucial, it is important to confirm that it is persistent and not just a one-time occurrence. Anxiety or other factors could artificially elevate blood pressure readings. Therefore, it is necessary to conduct multiple tests to confirm the diagnosis. Additionally, lifestyle changes such as exercise, healthy eating, and stress reduction can help lower blood pressure and improve overall health. Prescribing medication should only be done when necessary, as it can lead to side effects, drug interactions, and poor adherence. It is important to consider the risks and benefits before prescribing medication and to prioritize non-pharmacological interventions whenever possible. For more information, refer to the NICE guidelines on hypertension.

    • This question is part of the following fields:

      • Cardiovascular System
      125.5
      Seconds
  • Question 9 - A 58-year-old male complains of intense pain in the center of his abdomen...

    Incorrect

    • A 58-year-old male complains of intense pain in the center of his abdomen that extends to his back and is accompanied by nausea and vomiting. Upon examination, his abdomen is tender and guarded, and his pulse is 106 bpm while his blood pressure is 120/82 mmHg. What diagnostic test would be beneficial in this case?

      Your Answer: Troponin T

      Correct Answer: Amylase

      Explanation:

      Diagnostic Tests and Severity Assessment for Acute Pancreatitis

      Acute pancreatitis is a medical condition that requires prompt diagnosis and treatment. One of the most useful diagnostic tests for this condition is the measurement of amylase levels in the blood. In patients with acute pancreatitis, amylase levels are typically elevated, often reaching three times the upper limit of normal. Other blood parameters, such as troponin T, are not specific to pancreatitis and may be used to diagnose other medical conditions.

      To assess the severity of acute pancreatitis, healthcare providers may use the Modified Glasgow Criteria, which is a mnemonic tool that helps to evaluate various clinical parameters. These parameters include PaO2, age, neutrophil count, calcium levels, renal function, enzymes such as LDH and AST, albumin levels, and blood sugar levels. Depending on the severity of these parameters, patients may be classified as having mild, moderate, or severe acute pancreatitis.

      In summary, the diagnosis of acute pancreatitis relies on the measurement of amylase levels in the blood, while the severity of the condition can be assessed using the Modified Glasgow Criteria. Early diagnosis and prompt treatment are crucial for improving outcomes in patients with acute pancreatitis.

    • This question is part of the following fields:

      • Cardiovascular System
      79.5
      Seconds
  • Question 10 - During surgery on her neck, a woman in her 50s suffers a vagus...

    Incorrect

    • During surgery on her neck, a woman in her 50s suffers a vagus nerve injury where the nerve is cut near the exit from the skull. She wakes up with a high heart rate and high blood pressure due to loss of parasympathetic tone.

      What other features would be expected with a vagus nerve injury?

      Your Answer: Urinary retention

      Correct Answer: Hoarse voice

      Explanation:

      The vagus (X) nerve is responsible for all innervation related to speech, meaning that any injuries to this nerve can lead to speech problems. It’s important to note that the vagus nerve has both autonomic and somatic effects, with the latter being the most crucial for speech. This involves the motor supply to the larynx through the recurrent laryngeal nerves, which are branches of the vagus. If one vagus nerve is damaged, it would have the same impact as damage to a single recurrent laryngeal nerve, resulting in a hoarse voice.

      However, it’s worth noting that anal tone, erections, and urination are controlled by the sacral parasympathetics and would not be affected by the loss of the vagus nerve. Similarly, pupillary constriction is controlled by parasympathetics on the oculomotor nerve and would not be impacted by the loss of the vagus nerve.

      The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.

      The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.

      The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.

    • This question is part of the following fields:

      • Cardiovascular System
      59.5
      Seconds
  • Question 11 - A 70-year-old female is brought to the Emergency department with a severe crushing...

    Incorrect

    • A 70-year-old female is brought to the Emergency department with a severe crushing chest pain that was alleviated by sublingual GTN. The medical team diagnoses her with acute coronary syndrome (ACS). What test can distinguish between unstable angina and non-ST elevation MI (NSTEMI), both of which are types of ACS?

      Your Answer: Echocardiogram

      Correct Answer: Troponin level

      Explanation:

      Acute Coronary Syndrome

      Acute coronary syndrome is a term used to describe a range of conditions that affect the heart, including unstable angina, non-ST elevation MI (NSTEMI), and ST elevation MI (STEMI). The detection of raised cardiac enzymes is the definitive test in distinguishing between NSTEMI and unstable angina. If the enzymes are raised, it indicates myocardial tissue infarction, which is present in NSTEMI but not in unstable angina. Clinical history and exercise ECG testing are also important in distinguishing between these conditions. It is important to understand the differences between these conditions in order to provide appropriate treatment and management.

    • This question is part of the following fields:

      • Cardiovascular System
      84.7
      Seconds
  • Question 12 - A routine ECG is performed on a 24-year-old man. Which segment of the...

    Incorrect

    • A routine ECG is performed on a 24-year-old man. Which segment of the tracing obtained indicates the repolarization of the atria?

      Your Answer: P-R interval

      Correct Answer: None of the above

      Explanation:

      During the QRS complex, the process of atrial repolarisation is typically not discernible on the ECG strip.

      Understanding the Normal ECG

      The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.

      The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.

      Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      81.5
      Seconds
  • Question 13 - A 73-year-old woman is admitted to the acute surgical unit with profuse vomiting....

    Incorrect

    • A 73-year-old woman is admitted to the acute surgical unit with profuse vomiting. Admission bloods show the following:

      Na+ 131 mmol/l
      K+ 2.2 mmol/l
      Urea 3.1 mmol/l
      Creatinine 56 mol/l
      Glucose 4.3 mmol/l

      What ECG feature is most likely to be seen in this patient?

      Your Answer: Flattened P waves

      Correct Answer: U waves

      Explanation:

      Hypokalaemia, a condition characterized by low levels of potassium in the blood, can be detected through ECG features. These include the presence of U waves, small or absent T waves (which may occasionally be inverted), a prolonged PR interval, ST depression, and a long QT interval. The ECG image provided shows typical U waves and a borderline PR interval. To remember these features, one user suggests the following rhyme: In Hypokalaemia, U have no Pot and no T, but a long PR and a long QT.

    • This question is part of the following fields:

      • Cardiovascular System
      111.3
      Seconds
  • Question 14 - A 52-year-old woman has come to you with her ambulatory blood pressure monitor...

    Incorrect

    • A 52-year-old woman has come to you with her ambulatory blood pressure monitor readings, which are consistently high. You suggest starting her on ramipril and advise her to avoid certain things that could impact the absorption of the medication.

      What should she avoid?

      Your Answer: Coffee

      Correct Answer: Antacids

      Explanation:

      ACE-inhibitors’ therapeutic effect is reduced by antacids as they interfere with their absorption. However, low dose aspirin is safe to use alongside ACE-inhibitors. Coffee and tea do not affect the absorption of ACE-inhibitors. Patients taking ACE-inhibitors need not avoid high-intensity exercise, unlike those on statins who have an increased risk of muscle breakdown due to rhabdomyolysis.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      85.4
      Seconds
  • Question 15 - A 73-year-old man presents to the emergency department with complaints of severe cramping...

    Incorrect

    • A 73-year-old man presents to the emergency department with complaints of severe cramping pain in his leg at rest. He has a medical history of peripheral vascular disease, chronic obstructive pulmonary disease, and hypertension.

      During the examination, his blood pressure is measured at 138/92 mmHg, respiratory rate at 22/min, and oxygen saturations at 99%. The healthcare provider performs a neurovascular exam of the lower limbs and palpates the pulses.

      Which area should be palpated first?

      Your Answer: Fourth metatarsal space on dorsum of foot

      Correct Answer: First metatarsal space on dorsum of foot

      Explanation:

      To assess lower leg pulses, it is recommended to start from the most distal point and move towards the proximal area. This helps to identify the location of any occlusion. The first pulse to be checked is the dorsalis pedis pulse, which is located on the dorsum of the foot in the first metatarsal space, lateral to the extensor hallucis longus tendon. Palpating behind the knee or in the fourth metatarsal space is incorrect, as no pulse can be felt there. The posterior tibial pulse can be felt posteriorly and inferiorly to the medial malleolus, but it should not be assessed first as it is not as distal as the dorsalis pedis pulse.

      The anterior tibial artery starts opposite the lower border of the popliteus muscle and ends in front of the ankle, where it continues as the dorsalis pedis artery. As it descends, it runs along the interosseous membrane, the distal part of the tibia, and the front of the ankle joint. The artery passes between the tendons of the extensor digitorum and extensor hallucis longus muscles as it approaches the ankle. The deep peroneal nerve is closely related to the artery, lying anterior to the middle third of the vessel and lateral to it in the lower third.

    • This question is part of the following fields:

      • Cardiovascular System
      77.4
      Seconds
  • Question 16 - A 68-year-old man is diagnosed with a transient ischaemic attack and started on...

    Incorrect

    • A 68-year-old man is diagnosed with a transient ischaemic attack and started on modified-release dipyridamole as part of combination antiplatelet treatment. He already takes a statin. After a week of treatment, he visits his GP with concerns of the drug's mechanism of action.

      What is the mechanism of action of modified-release dipyridamole?

      Your Answer: P2Y12 inhibitor

      Correct Answer: Phosphodiesterase inhibitor

      Explanation:

      Dipyridamole is a medication that inhibits phosphodiesterase in a non-specific manner and reduces the uptake of adenosine by cells.

      As an antiplatelet agent, dipyridamole works by inhibiting phosphodiesterase. It can be used in combination with aspirin to prevent secondary transient ischemic attacks if clopidogrel is not well-tolerated.

      Tirofiban is a drug that inhibits the platelet glycoprotein IIb/IIIa receptor, which binds to collagen.

      The platelet receptor glycoprotein VI interacts with subendothelial collagen.

      Glycoprotein 1b is the platelet receptor for von Willebrand Factor. Although there is no specific drug that targets this interaction, autoantibodies to glycoprotein Ib are the basis of immune thrombocytopenic purpura (ITP).

      Clopidogrel targets the platelet receptor P2Y12, which interacts with adenosine diphosphate.

      Understanding the Mechanism of Action of Dipyridamole

      Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.

      Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.

      Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.

      In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.

    • This question is part of the following fields:

      • Cardiovascular System
      53.2
      Seconds
  • Question 17 - A 68-year-old man comes to his GP for a medication review. His medical...

    Correct

    • A 68-year-old man comes to his GP for a medication review. His medical record shows that he has vertebral artery stenosis, which greatly elevates his chances of experiencing a stroke in the posterior circulation.

      Can you identify the location where the impacted arteries converge to create the basilar artery?

      Your Answer: Base of the pons

      Explanation:

      The basilar artery is formed by the union of the vertebral arteries at the base of the pons, which is the most appropriate answer. If a patient has stenosis in their vertebral artery, it can increase the risk of a posterior circulation stroke by reducing perfusion to the brain or causing an arterial embolus.

      The anterior aspect of the spinal cord is not the most appropriate answer as it is supplied by the anterior spinal arteries, which branch off the vertebral arteries and descend past the anterior aspect of the brainstem to supply the spinal cord’s anterior aspects.

      The region anterior to the cavernous sinus is not the most appropriate answer. The internal carotid arteries pass anterior to the cavernous sinus before branching off to anastomose with the circle of Willis, mainly contributing to the anterior circulation of the brain.

      The pontomesencephalic junction is not the most appropriate answer. The superior cerebellar arteries branch off from the distal basilar artery at the pontomesencephalic junction.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      323.7
      Seconds
  • Question 18 - A 36-year-old woman is scheduled for a parathyroidectomy to treat her hyperparathyroidism. During...

    Incorrect

    • A 36-year-old woman is scheduled for a parathyroidectomy to treat her hyperparathyroidism. During the surgery, an enlarged inferior parathyroid gland is identified with a vessel located adjacent to it laterally. Which vessel is most likely to be in this location?

      Your Answer: None of the above

      Correct Answer: Common carotid artery

      Explanation:

      The inferior parathyroid is located laterally to the common carotid artery.

      Anatomy and Development of the Parathyroid Glands

      The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.

      The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.

    • This question is part of the following fields:

      • Cardiovascular System
      32.9
      Seconds
  • Question 19 - A 59-year-old man with a history of hypertension presents to the ED with...

    Incorrect

    • A 59-year-old man with a history of hypertension presents to the ED with sudden palpitations that started six hours ago. He denies chest pain, dizziness, or shortness of breath.

      His vital signs are heart rate 163/min, blood pressure 155/92 mmHg, respiratory rate 17/min, oxygen saturations 98% on air, and temperature 36.2ÂșC. On examination, his pulse is irregularly irregular, and there is no evidence of pulmonary edema. His Glasgow Coma Scale is 15.

      An ECG shows atrial fibrillation with a rapid ventricular response. Despite treatment with IV fluids, IV metoprolol, and IV digoxin, his heart rate remains elevated at 162 beats per minute.

      As the onset of symptoms was less than 48 hours ago, the decision is made to attempt chemical cardioversion with amiodarone. Why is a loading dose necessary for amiodarone?

      Your Answer: Class Ia, II and IV anti-arrhythmic activity

      Correct Answer: Long half-life

      Explanation:

      Amiodarone requires a prolonged loading regime to achieve stable therapeutic levels due to its highly lipophilic nature and wide absorption by tissue, which reduces its bioavailability in serum. While it is predominantly a class III anti-arrhythmic, it also has numerous effects similar to class Ia, II, and IV. Amiodarone is primarily eliminated through hepatic excretion and has a long half-life, meaning it is eliminated slowly and only requires a low maintenance dose to maintain appropriate therapeutic concentrations. The inhibition of cytochrome P450 by amiodarone is not the reason for administering a loading dose.

      Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.

    • This question is part of the following fields:

      • Cardiovascular System
      92.7
      Seconds
  • Question 20 - You are working with a consultant paediatrician in an outpatient clinic and have...

    Incorrect

    • You are working with a consultant paediatrician in an outpatient clinic and have a 14-month-old patient who is failing to thrive. The GP suspects the presence of an audible murmur. The consultant informs you that this child has an atrial septal defect (ASD). What is the most prevalent form of ASD?

      Your Answer: Patent ductus arteriosus

      Correct Answer: Ostium secundum

      Explanation:

      Atrial Septal Defects

      Atrial septal defects (ASDs) are a type of congenital heart defect that occur when there is a hole in the wall separating the two upper chambers of the heart. The most common type of ASD is the ostium secundum defect, accounting for 75% of all cases. It is important to note that patent ductus arteriosus is not an ASD, but rather a connection between the aorta and pulmonary trunk that remains open after birth.

      Most patients with ASDs are asymptomatic, but symptoms may occur depending on the size of the defect and the resistance in the pulmonary and systemic circulation. Typically, there is shunting of blood from the left to the right atrium, causing an increase in pulmonary blood flow and diastolic overload of the right ventricle. This can lead to enlargement of the right atrium, right ventricle, and pulmonary arteries, as well as incompetence of the pulmonary and tricuspid valves. In severe cases, pulmonary arterial hypertension may develop, which can lead to cyanosis if the shunt reverses from right to left.

      It is important to note that right to left shunts cause cyanosis, while left to right shunts are generally not associated with cyanosis in the absence of other pathology. the pathophysiology of ASDs is crucial for proper diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      52.2
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (4/20) 20%
Passmed