00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 65-year-old patient with suspected spinal cord compression has been admitted to the...

    Correct

    • A 65-year-old patient with suspected spinal cord compression has been admitted to the neurosurgical team for an urgent MRI of the spine. The MRI technique primarily relies on the magnetic properties of which particle?

      Your Answer: Hydrogen ion (proton)

      Explanation:

      How MRI Scanners Use Hydrogen Ions to Create Images

      MRI scanners use the magnetic properties of hydrogen ions, also known as protons, to create images of the human body. These protons have nuclear spin, which means they have magnetic vectors that can be aligned in an electromagnet. The scanner bombards the protons with radiofrequency radiation, causing them to release energy when they return to their resting state. This energy release is recorded and used to construct the MRI image.

      While other nuclei, such as carbon 13, also have net nuclear spin and could be used in MRI imaging, hydrogen ions are much more abundant in human tissues. This makes them the preferred choice for creating images of the body. By using the magnetic properties of hydrogen ions, MRI scanners can create detailed images of internal structures without the use of harmful radiation.

    • This question is part of the following fields:

      • Basic Sciences
      18.3
      Seconds
  • Question 2 - What is the conversion of pyruvate before it enters the Krebs cycle? ...

    Incorrect

    • What is the conversion of pyruvate before it enters the Krebs cycle?

      Your Answer: Oxaloacetate

      Correct Answer: Acetyl-CoA

      Explanation:

      The Krebs cycle occurs in the mitochondrion and involves the conversion of acetyl-CoA to oxaloacetate. This cycle produces six NADH, two FADH, and two ATP for each molecule of glucose. Pyruvate is converted to acetyl-CoA before entering the Krebs cycle, and water and carbon dioxide are end products. Acetic acid itself has no role in the cycle, but its acetyl group is used to form acetyl-CoA. Some anaerobic bacteria can convert sugars to acetic acid directly.

    • This question is part of the following fields:

      • Basic Sciences
      6.5
      Seconds
  • Question 3 - What is the composition of enzymes found in lysosomes? ...

    Correct

    • What is the composition of enzymes found in lysosomes?

      Your Answer: Acid hydrolases

      Explanation:

      Lysosomes: The Digestive System of the Cell

      Lysosomes are organelles that come from the Golgi apparatus and are enclosed by a membrane. They are responsible for breaking down various biological macromolecules such as proteins, nucleic acids, carbohydrates, and lipids. Lysosomes contain acid hydrolases, which are enzymes that cleave chemical bonds by adding water and function at an acidic pH of around 5. They are involved in digesting foreign agents that are internalized by the cell and breaking down other cellular organelles like mitochondria, allowing for their components to be recycled.

      The acidic pH within lysosomes is maintained by a proton pump in the lysosomal membrane, which imports protons from the cytosol coupled to ATP hydrolysis. This acidic environment is necessary for the activity of the acid hydrolases. D-amino acid oxidases and peroxidases are not found in lysosomes but in peroxisomes. Alcohol dehydrogenases and ATPases are not involved in digestion but in other cellular functions. Alcohol dehydrogenases catalyze the interconversion between alcohols and aldehydes or ketones with the reduction of NAD+ to NADH, while ATPases catalyze the breakdown of ATP into ADP and a phosphate ion, releasing energy for the cell’s functions.

    • This question is part of the following fields:

      • Basic Sciences
      13.1
      Seconds
  • Question 4 - What is the primary function of riboflavin in the B vitamin group? ...

    Correct

    • What is the primary function of riboflavin in the B vitamin group?

      Your Answer: Mopping up free radicals

      Explanation:

      The Role of Riboflavin in the Body

      Riboflavin, also known as vitamin B2, is a B-vitamin that plays a crucial role in the body. One of its functions is to act as an antioxidant, mopping up free radicals that can cause damage to cells. However, if the metabolites formed during this process are not excreted promptly, the free radicals can be generated again. Riboflavin is also involved in the production of blue-light sensitive pigments in the eye, which help establish the circadian rhythm. This function is not related to visual acuity.

      Riboflavin is found in a variety of foods, including milk and offal. Deficiency of this vitamin is rare, but when it does occur, it can cause non-specific effects on the skin and mucous membranes. There is no evidence of clear long-lasting damage from riboflavin deficiency. Overall, riboflavin is an important nutrient that plays a vital role in maintaining good health.

    • This question is part of the following fields:

      • Basic Sciences
      13.6
      Seconds
  • Question 5 - What are the vitamins that are soluble in fat? ...

    Incorrect

    • What are the vitamins that are soluble in fat?

      Your Answer: Vitamins D, E and K

      Correct Answer: Vitamins A, D, E and K

      Explanation:

      Absorption of Fat-Soluble Vitamins

      Fat-soluble vitamins, namely A, D, E, and K, have a different absorption process compared to water-soluble vitamins. In the gut, these vitamins are combined with other fat-soluble substances such as monoacylglycerols and cholesterol to form micelles. These micelles are then transported to the lymphatic system and eventually enter the bloodstream through the subclavian vein.

      However, any issues that affect the absorption of fats will also impact the absorption of fat-soluble vitamins. This means that individuals with conditions that affect fat absorption, such as cystic fibrosis or celiac disease, may have difficulty absorbing these vitamins. It is important to ensure adequate intake of fat-soluble vitamins through a balanced diet or supplements to prevent deficiencies and associated health problems.

    • This question is part of the following fields:

      • Basic Sciences
      7.6
      Seconds
  • Question 6 - A couple in their late 30s come to the clinic seeking information about...

    Incorrect

    • A couple in their late 30s come to the clinic seeking information about the risk of their three children inheriting Huntington's disease. The husband has recently been diagnosed with the disease, while the wife is not affected. What is the likelihood, expressed as a percentage, that their children will inherit the disease?

      Your Answer: 25%

      Correct Answer: 50%

      Explanation:

      Huntington’s Disease

      Huntington’s disease is a genetic disorder that typically appears later in life and is characterized by symptoms such as chorea, cognitive decline, and personality changes. It is an autosomal dominant disease, meaning that there is a 50% chance of passing it on to offspring. If the gene is inherited from an unaffected parent, the child will not be affected. This is different from autosomal recessive inheritance, where both parents must pass on the gene for it to affect their children.

      The disease is caused by an increase in the length of a repeating trinucleotide sequence (CAG) in the Huntington protein. This sequence can change in length through generations, and longer sequences are associated with earlier onset of symptoms (genetic anticipation). Since Huntington’s disease usually presents itself after people have already started their families, there are many issues associated with genetic testing.

    • This question is part of the following fields:

      • Basic Sciences
      13.2
      Seconds
  • Question 7 - What occurs during metaphase II of meiosis? ...

    Incorrect

    • What occurs during metaphase II of meiosis?

      Your Answer: Sister chromatids separate on the meiotic spindle

      Correct Answer: The cell's chromosomes attach to the meiotic spindle to divide into chromatids

      Explanation:

      The Process of Meiosis

      Meiosis is a complex process that involves two major cycles. The first cycle, meiosis I, condenses the reproductive cell’s DNA into chromosomes that are then replicated, creating two pairs of each original chromosome. These pairs are then separated, and the cell divides with one chromosome in each daughter cell. The second cycle, meiosis II, splits the chromosomes into individual chromatids, which are then separated as in meiosis I. This separation is facilitated by a spindle, a set of parallel fibers that attach to the center of each chromosome and split into two, making the chromatids travel on the polar opposite sides of the cell. The cell then divides again, giving rise to four haploid daughter cells.

      During meiosis II, the chromosomes align on the spindle in metaphase II. Tetrads separate during anaphase I and line up during metaphase I. Sister chromatids separate on the meiotic spindle during anaphase II. Finally, chromosomes uncoil and lengthen at the end of meiosis, in telophase II. This process is essential for the production of gametes and the continuation of sexual reproduction in many organisms.

    • This question is part of the following fields:

      • Basic Sciences
      24.8
      Seconds
  • Question 8 - What role does the nucleolus play in eukaryotic cells? ...

    Incorrect

    • What role does the nucleolus play in eukaryotic cells?

      Your Answer: To produce RNA polymerases for ribosomal RNA transcription

      Correct Answer: To transcribe ribosomal RNA and assemble ribosomes

      Explanation:

      The Nucleolus: Structure and Function

      The nucleolus is a non-membrane-bound structure that takes up about a quarter of the nuclear volume. It is composed mainly of proteins and nucleic acids and is responsible for transcribing ribosomal RNA (rRNA) and assembling ribosomes in the cell. Nucleoli are formed in nucleolar organizing regions (NORs), which are also the regions of the genes for three of the four eukaryotic rRNAs.

      During ribosome assembly, ribosomal proteins enter the nucleolus from the cytoplasm and begin to assemble on an rRNA precursor. As the pre-rRNA is cleaved to produce 5.8S, 18S, and 28S rRNAs, additional ribosomal proteins and the 5S rRNA (which is synthesized elsewhere in the nucleus) assemble to form preribosomal subunits. These subunits then exit the nucleolus into the cytoplasm and combine to produce the final 40S and 60S ribosomal subunits.

      Overall, the nucleolus plays a crucial role in protein synthesis by producing the components necessary for ribosome assembly. Its unique structure and function make it an essential component of the cell’s machinery.

    • This question is part of the following fields:

      • Basic Sciences
      21.8
      Seconds
  • Question 9 - What significance do leucine, lysine, and phenylalanine hold? ...

    Incorrect

    • What significance do leucine, lysine, and phenylalanine hold?

      Your Answer: They are essential fatty acids

      Correct Answer: They are essential amino acids

      Explanation:

      Essential Amino Acids and their Importance in the Diet

      There are approximately 20 essential amino acids that are crucial for human health. These amino acids are considered essential because the body cannot produce them on its own and they must be obtained through the diet. While some of these essential amino acids can be used to create other non-essential amino acids, they are still necessary for overall health and wellbeing.

      Some examples of essential amino acids include histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. However, the amount of these essential amino acids can vary depending on the type of dietary protein consumed. Additionally, cooking or preserving proteins can alter the amino acid composition, making them less effective for the body.

      In summary, essential amino acids play a vital role in maintaining human health and must be obtained through the diet. the importance of these amino acids and their sources can help individuals make informed decisions about their dietary choices.

    • This question is part of the following fields:

      • Basic Sciences
      6.9
      Seconds
  • Question 10 - What could be a potential cause of metabolic acidosis? ...

    Correct

    • What could be a potential cause of metabolic acidosis?

      Your Answer: Poorly controlled diabetes

      Explanation:

      Acid-Base Imbalances in Different Medical Conditions

      Poorly controlled diabetes can cause the breakdown of fatty acids, leading to the production of ketones as an alternative energy source. However, an excess of ketones can result in metabolic acidosis due to their acidic nature. On the other hand, chronic obstructive pulmonary disease (COPD) and suffocation can cause the retention of carbon dioxide, leading to respiratory acidosis. In COPD, there may be a compensatory metabolic alkalosis. Voluntary hyperventilation can cause respiratory alkalosis due to the reduction of carbon dioxide. Vomiting can also lead to metabolic alkalosis. Diabetic ketoacidosis is a complication of type 1 diabetes that results in high blood sugar levels, ketone production, and acidosis.

      In summary, different medical conditions can cause acid-base imbalances in the body. It is important to identify the underlying cause of the imbalance to provide appropriate treatment.

    • This question is part of the following fields:

      • Basic Sciences
      8
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Basic Sciences (4/10) 40%
Passmed