-
Question 1
Correct
-
An aged woman with malabsorption and weight loss was diagnosed with small bowel amyloidosis. She was initially found to have osteomalacia and hypocalcemia. Despite receiving total parenteral nutrition with sufficient calcium replacement for the past seven days, she remained hypocalcemic. Which electrolyte deficiency is most likely responsible for this condition?
Your Answer: Magnesium
Explanation:Magnesium deficiency may occur in patients with malabsorption, even if they receive magnesium through TPN feeds, as it may not be enough to compensate for their losses. Serum calcium levels are not affected by sodium, phosphate, and potassium.
The Importance of Magnesium and Calcium in the Body
Magnesium and calcium are essential minerals in the body. Magnesium plays a crucial role in the secretion and action of parathyroid hormone (PTH) on target tissues. However, a deficiency in magnesium can cause hypocalcaemia and make patients unresponsive to calcium and vitamin D supplementation.
The body contains 1000 mmol of magnesium, with half stored in bones and the rest in muscle, soft tissues, and extracellular fluid. Unlike calcium, there is no specific hormonal control of magnesium. Hormones such as PTH and aldosterone affect the renal handling of magnesium.
Magnesium and calcium also interact at a cellular level. A decrease in magnesium levels can affect the permeability of cellular membranes to calcium, leading to hyperexcitability. Therefore, it is essential to maintain adequate levels of both magnesium and calcium in the body for optimal health.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 2
Correct
-
A 45-year-old Caucasian male visits his doctor complaining of numbness in his extremities and tingling sensations around his mouth and lips. He has undergone a thyroidectomy in the past. During a complete cranial nerve examination, the physician observes facial muscle twitching upon tapping the patient's face.
What is the reason for the facial muscle twitching observed during the examination?Your Answer: Increased irritability of peripheral nerves due to hypocalcaemia
Explanation:Chvostek’s sign is a facial twitch that occurs when the distribution of the facial nerve in front of the tragus is tapped. This sign is caused by increased irritability of peripheral nerves, which is often seen in cases of hypocalcemia. In fact, Chvostek’s sign is considered the most reliable test for hypocalcemia.
Calcium homeostasis is the process of regulating the concentration of calcium ions in the extracellular fluid. This is important because calcium ions help stabilize voltage-gated ion channels. When calcium levels are too low, these ion channels become more easily activated, leading to hyperactivity in nerve and muscle cells. This can result in hypocalcemic tetany, which is characterized by involuntary muscle spasms. On the other hand, when calcium levels are too high, voltage-gated ion channels become less responsive, leading to depressed nervous system function.
Understanding Hypoparathyroidism
Hypoparathyroidism is a medical condition that occurs when there is a decrease in the secretion of parathyroid hormone (PTH). This can be caused by primary hypoparathyroidism, which is often a result of thyroid surgery, leading to low calcium and high phosphate levels. Treatment for this type of hypoparathyroidism involves the use of alfacalcidol. The main symptoms of hypoparathyroidism are due to hypocalcaemia and include muscle twitching, cramping, and spasms, as well as perioral paraesthesia. Other symptoms include Trousseau’s sign, which is carpal spasm when the brachial artery is occluded, and Chvostek’s sign, which is facial muscle twitching when the parotid is tapped. Chronic hypoparathyroidism can lead to depression and cataracts, and ECG may show a prolonged QT interval.
Pseudohypoparathyroidism is another type of hypoparathyroidism that occurs when the target cells are insensitive to PTH due to an abnormality in a G protein. This condition is associated with low IQ, short stature, and shortened 4th and 5th metacarpals. The diagnosis is made by measuring urinary cAMP and phosphate levels following an infusion of PTH. In hypoparathyroidism, this will cause an increase in both cAMP and phosphate levels. In pseudohypoparathyroidism type I, neither cAMP nor phosphate levels are increased, while in pseudohypoparathyroidism type II, only cAMP rises. Pseudopseudohypoparathyroidism is a similar condition to pseudohypoparathyroidism, but with normal biochemistry.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 3
Correct
-
A 68-year-old man with a long history of poorly controlled type-2 diabetes is prescribed a new medication that increases urinary glucose excretion. The doctor informs him that it belongs to the SGLT-2 inhibitor drug class.
Which of the following medications is classified as an SGLT-2 inhibitor?Your Answer: Dapagliflozin
Explanation:SGLT2 inhibitors are known as gliflozins.
Sulfonylurea refers to tolbutamide.
GLP-1 receptor agonist is exenatide.
DPP-4 inhibitor is linagliptin.
Understanding SGLT-2 Inhibitors
SGLT-2 inhibitors are medications that work by blocking the reabsorption of glucose in the kidneys, leading to increased excretion of glucose in the urine. This mechanism of action helps to lower blood sugar levels in patients with type 2 diabetes mellitus. Examples of SGLT-2 inhibitors include canagliflozin, dapagliflozin, and empagliflozin.
However, it is important to note that SGLT-2 inhibitors can also have adverse effects. Patients taking these medications may be at increased risk for urinary and genital infections due to the increased glucose in the urine. Fournier’s gangrene, a rare but serious bacterial infection of the genital area, has also been reported. Additionally, there is a risk of normoglycemic ketoacidosis, a condition where the body produces high levels of ketones even when blood sugar levels are normal. Finally, patients taking SGLT-2 inhibitors may be at increased risk for lower-limb amputations, so it is important to closely monitor the feet.
Despite these potential risks, SGLT-2 inhibitors can also have benefits. Patients taking these medications often experience weight loss, which can be beneficial for those with type 2 diabetes mellitus. Overall, it is important for patients to discuss the potential risks and benefits of SGLT-2 inhibitors with their healthcare provider before starting treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 4
Incorrect
-
A 4-month-old boy is being evaluated for possible hypospadias. In boys with this condition, where is the urethral opening most commonly found?
Your Answer: On the distal dorsal surface of the penis
Correct Answer: On the distal ventral surface of the penis
Explanation:The anomaly is typically situated on the underside and frequently towards the end. Urethral openings found closer to the body are a known occurrence. Surgical removal of the foreskin may hinder the process of repairing the defect.
Understanding Hypospadias: A Congenital Abnormality of the Penis
Hypospadias is a congenital abnormality of the penis that affects approximately 3 out of 1,000 male infants. It is usually identified during the newborn baby check, but if missed, parents may notice an abnormal urine stream. This condition is characterized by a ventral urethral meatus, a hooded prepuce, and chordee in more severe forms. In some cases, the urethral meatus may open more proximally in the more severe variants, but 75% of the openings are distally located.
There appears to be a significant genetic element to hypospadias, with further male children having a risk of around 5-15%. While it most commonly occurs as an isolated disorder, associated conditions include cryptorchidism (present in 10%) and inguinal hernia.
Once hypospadias has been identified, infants should be referred to specialist services. Corrective surgery is typically performed when the child is around 12 months of age. It is essential that the child is not circumcised prior to the surgery as the foreskin may be used in the corrective procedure. In boys with very distal disease, no treatment may be needed.
Overall, understanding hypospadias is important for parents and healthcare providers to ensure proper management and treatment for affected infants.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 5
Incorrect
-
A 50-year-old woman has just had a thyroidectomy to treat medullary thyroid cancer. What is the clinical tumor marker used to screen for recurrence?
Your Answer: Thyroglobulin
Correct Answer: Calcitonin
Explanation:Calcitonin is used in clinical practice to detect recurrence of medullary thyroid cancer. Thyroid function tests are not used for diagnosis or follow-up of malignancies. However, regular monitoring of TSH levels may be necessary for patients taking thyroxine.
Thyroid cancer rarely causes hyperthyroidism or hypothyroidism as it does not usually secrete thyroid hormones. The most common type of thyroid cancer is papillary carcinoma, which is often found in young females and has an excellent prognosis. Follicular carcinoma is less common, while medullary carcinoma is a cancer of the parafollicular cells that secrete calcitonin and is associated with multiple endocrine neoplasia type 2. Anaplastic carcinoma is rare and not responsive to treatment, causing pressure symptoms. Lymphoma is also rare and associated with Hashimoto’s thyroiditis.
Management of papillary and follicular cancer involves a total thyroidectomy followed by radioiodine to kill residual cells. Yearly thyroglobulin levels are monitored to detect early recurrent disease. Papillary carcinoma usually contains a mixture of papillary and colloid filled follicles, while follicular adenoma presents as a solitary thyroid nodule and malignancy can only be excluded on formal histological assessment. Follicular carcinoma may appear macroscopically encapsulated, but microscopically capsular invasion is seen. Medullary carcinoma is associated with raised serum calcitonin levels and familial genetic disease in up to 20% of cases. Anaplastic carcinoma is most common in elderly females and is treated by resection where possible, with palliation achieved through isthmusectomy and radiotherapy. Chemotherapy is ineffective.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 6
Correct
-
A 20-year-old man was admitted to hospital with a 5 day history of vomiting, fever and chills. He developed a purpuric rash on his lower limbs and abdomen. During examination, the patient was found to have a pulse rate of 100 beats per minute and a systolic blood pressure of 70mmHg. A spinal tap was performed for CSF microscopy and a CT scan revealed adrenal haemorrhage. Based on the CT scan, the doctor suspected Waterhouse-Friderichsen syndrome. What is the most common bacterial cause of this syndrome?
Your Answer: Neisseria meningitidis
Explanation:The most frequent cause of Waterhouse-Friderichsen syndrome is Neisseria meningitidis. This syndrome is characterized by adrenal gland failure caused by bleeding into the adrenal gland. Although any organism that can induce disseminated intravascular coagulation can lead to adrenal haemorrhage, neisseria meningitidis is the most common cause and therefore the answer.
Understanding Waterhouse-Friderichsen Syndrome
Waterhouse-Friderichsen syndrome is a condition that occurs when the adrenal glands fail due to a previous adrenal haemorrhage caused by a severe bacterial infection. The most common cause of this condition is Neisseria meningitidis, but it can also be caused by other bacteria such as Haemophilus influenzae, Pseudomonas aeruginosa, Escherichia coli, and Streptococcus pneumoniae.
The symptoms of Waterhouse-Friderichsen syndrome are similar to those of hypoadrenalism, including lethargy, weakness, anorexia, nausea and vomiting, and weight loss. Other symptoms may include hyperpigmentation, especially in the palmar creases, vitiligo, and loss of pubic hair in women. In severe cases, a crisis may occur, which can lead to collapse, shock, and pyrexia.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 7
Correct
-
At their yearly diabetic check-up, a 65-year-old individual is discovered to have insufficient glycaemic management despite being treated with metformin and pioglitazone. As a result, it is determined to initiate an SGLT-2 inhibitor alongside their current medication.
What is the site of action for this newly prescribed drug?Your Answer: Renal proximal convoluted tubules
Explanation:SGLT-2 inhibitors work by reversibly blocking the activity of sodium-glucose co-transporter 2 (SGLT-2) in the renal proximal convoluted tubule. This is the correct answer.
Understanding SGLT-2 Inhibitors
SGLT-2 inhibitors are medications that work by blocking the reabsorption of glucose in the kidneys, leading to increased excretion of glucose in the urine. This mechanism of action helps to lower blood sugar levels in patients with type 2 diabetes mellitus. Examples of SGLT-2 inhibitors include canagliflozin, dapagliflozin, and empagliflozin.
However, it is important to note that SGLT-2 inhibitors can also have adverse effects. Patients taking these medications may be at increased risk for urinary and genital infections due to the increased glucose in the urine. Fournier’s gangrene, a rare but serious bacterial infection of the genital area, has also been reported. Additionally, there is a risk of normoglycemic ketoacidosis, a condition where the body produces high levels of ketones even when blood sugar levels are normal. Finally, patients taking SGLT-2 inhibitors may be at increased risk for lower-limb amputations, so it is important to closely monitor the feet.
Despite these potential risks, SGLT-2 inhibitors can also have benefits. Patients taking these medications often experience weight loss, which can be beneficial for those with type 2 diabetes mellitus. Overall, it is important for patients to discuss the potential risks and benefits of SGLT-2 inhibitors with their healthcare provider before starting treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 8
Correct
-
A 60-year-old patient visits their doctor complaining of dehydration caused by vomiting and diarrhoea. The kidneys detect reduced renal perfusion, leading to activation of the renin-angiotensin-aldosterone system. What is the specific part of the adrenal gland required for this system?
Your Answer: Zona glomerulosa
Explanation:Aldosterone is produced in the zona glomerulosa of the adrenal gland.
Renin is released by juxtaglomerular cells located in the nephron.
ACE is produced by the pulmonary endothelium in the lungs.
The adrenal gland is composed of the zona glomerulosa, fasciculata, and reticularis.
Glucocorticoids are produced in the zona fasciculata.
Adrenal Physiology: Medulla and Cortex
The adrenal gland is composed of two main parts: the medulla and the cortex. The medulla is responsible for secreting the catecholamines noradrenaline and adrenaline, which are released in response to sympathetic nervous system stimulation. The chromaffin cells of the medulla are innervated by the splanchnic nerves, and the release of these hormones is triggered by the secretion of acetylcholine from preganglionic sympathetic fibers. Phaeochromocytomas, which are tumors derived from chromaffin cells, can cause excessive secretion of both adrenaline and noradrenaline.
The adrenal cortex is divided into three distinct zones: the zona glomerulosa, zona fasciculata, and zona reticularis. Each zone is responsible for secreting different hormones. The outer zone, zona glomerulosa, secretes aldosterone, which regulates electrolyte balance and blood pressure. The middle zone, zona fasciculata, secretes glucocorticoids, which are involved in the regulation of metabolism, immune function, and stress response. The inner zone, zona reticularis, secretes androgens, which are involved in the development and maintenance of male sex characteristics.
Most of the hormones secreted by the adrenal cortex, including glucocorticoids and aldosterone, are bound to plasma proteins in the circulation. Glucocorticoids are inactivated and excreted by the liver. Understanding the physiology of the adrenal gland is important for the diagnosis and treatment of various endocrine disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 9
Correct
-
A 30-year-old female with a two year history of type 1 diabetes presents with a two day history of colicky abdominal pain and vomiting. She has been relatively anorexic and has cut down on her insulin today as she has not been able to eat that much.
On examination she has a sweet smell to her breath, has some loss of skin turgor, has a pulse of 102 bpm regular and a blood pressure of 112/70 mmHg. Her abdomen is generally soft with some epigastric tenderness.
BM stix analysis reveals a glucose of 19 mmol/L (3.0-6.0).
What investigation would be the most important for this woman?Your Answer: Blood gas analysis
Explanation:Diabetic Ketoacidosis: Diagnosis and Investigations
Diabetic ketoacidosis (DKA) is a serious complication of diabetes that can lead to life-threatening consequences. Symptoms include ketotic breath, vomiting, abdominal pain, and dehydration. To confirm the diagnosis, it is essential to prove the presence of acidosis and ketosis. The most urgent and important investigation is arterial or venous blood gas analysis, which can reveal the level of acidosis and low bicarbonate.
Other investigations that can be helpful include a full blood count (FBC) to show haemoconcentration and a raised white cell count, and urinalysis to detect glucose and ketones. However, venous or capillary ketones are needed to confirm DKA. A plasma glucose test is also part of the investigation, but it is not as urgent as the blood gas analysis.
An abdominal x-ray is not useful in diagnosing DKA, and a chest x-ray is only indicated if there are signs of a lower respiratory tract infection. Blood cultures are unlikely to grow anything, and amylase levels are often raised but do not provide diagnostic information in this case.
It is important to note that DKA can occur even if the plasma glucose level is normal. Therefore, prompt diagnosis and treatment are crucial to prevent complications and improve outcomes.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 10
Correct
-
A 12-year-old girl, previously healthy, presents to the emergency department with symptoms of nausea, vomiting, and confusion. The patient's father reports his child appearing fatigued, and having increased thirst and urinary frequency over the past few days. Upon laboratory analysis, the patient's serum glucose is found to be 25 mmol/L and urinalysis is positive for ketones. The medical team initiates fluid resuscitation and insulin therapy.
What electrolyte changes are anticipated following the treatment of this patient?Your Answer: Decrease in potassium levels
Explanation:The Na+/K+ ATPase pump is stimulated by insulin, leading to a decrease in serum potassium levels. This effect is particularly relevant in patients with diabetic ketoacidosis, who experience insulin deficiency and hyperkalemia. It is important to monitor serum potassium levels closely during the management of diabetic ketoacidosis to avoid the potential complications of hypokalemia. Insulin does not cause a decrease in sodium levels, and its effects on calcium and phosphate homeostasis are minimal. The resolution of ketoacidosis with insulin and fluids will result in an increase in serum bicarbonate levels back to normal range.
Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 11
Correct
-
Which of the following is the least probable cause of hypercalcemia?
Your Answer: Coeliac disease
Explanation:Patients with coeliac disease are prone to developing hypocalcaemia as a result of calcium malabsorption by the bowel.
Understanding the Causes of Hypercalcaemia
Hypercalcaemia is a medical condition characterized by high levels of calcium in the blood. The two most common causes of hypercalcaemia are primary hyperparathyroidism and malignancy. Primary hyperparathyroidism is the most common cause in non-hospitalized patients, while malignancy is the most common cause in hospitalized patients. Malignancy-related hypercalcaemia may be due to various processes, including PTHrP from the tumor, bone metastases, and myeloma. Measuring parathyroid hormone levels is crucial in diagnosing hypercalcaemia.
Other causes of hypercalcaemia include sarcoidosis, tuberculosis, histoplasmosis, vitamin D intoxication, acromegaly, thyrotoxicosis, milk-alkali syndrome, drugs such as thiazides and calcium-containing antacids, dehydration, Addison’s disease, and Paget’s disease of the bone. Paget’s disease of the bone usually results in normal calcium levels, but hypercalcaemia may occur with prolonged immobilization.
In summary, hypercalcaemia can be caused by various medical conditions, with primary hyperparathyroidism and malignancy being the most common. It is essential to identify the underlying cause of hypercalcaemia to provide appropriate treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 12
Incorrect
-
A woman in her early 50s complains of headaches, anxiety and weight loss. Upon examination, she displays hypertension, tachycardia and pallor. The diagnosis is phaeochromocytoma. What is the most common location for these tumors to occur?
Your Answer:
Correct Answer: Adrenal medulla
Explanation:Phaeochromocytoma is a condition characterized by uncommon tumours that secrete catecholamines in the adrenal medulla. Although they are seldom detected outside the adrenal medulla, if they do occur, they are more likely to be malignant.
Phaeochromocytoma: A Rare Tumor that Secretes Catecholamines
Phaeochromocytoma is a type of tumor that secretes catecholamines and is considered rare. It is familial in about 10% of cases and may be associated with certain syndromes such as MEN type II, neurofibromatosis, and von Hippel-Lindau syndrome. This tumor can be bilateral in 10% of cases and malignant in 10%. It can also occur outside of the adrenal gland, with the most common site being the organ of Zuckerkandl, which is adjacent to the bifurcation of the aorta.
The symptoms of phaeochromocytoma are typically episodic and include hypertension (which is present in around 90% of cases and may be sustained), headaches, palpitations, sweating, and anxiety. To diagnose this condition, a 24-hour urinary collection of metanephrines is preferred over a 24-hour urinary collection of catecholamines due to its higher sensitivity (97%).
Surgery is the definitive management for phaeochromocytoma. However, before surgery, the patient must first be stabilized with medical management, which includes an alpha-blocker (such as phenoxybenzamine) given before a beta-blocker (such as propranolol).
-
This question is part of the following fields:
- Endocrine System
-
-
Question 13
Incorrect
-
A 26-year-old male patient comes to the follow-up clinic after undergoing surgery to remove an endocrine gland. He had been experiencing symptoms such as profuse sweating, headaches, palpitations, and high blood pressure (200/120mmHg) prior to the decision for surgery. What type of cells would be revealed through histological staining of the removed organ?
Your Answer:
Correct Answer: Chromaffin cells
Explanation:The man’s initial symptoms are consistent with a diagnosis of phaeochromocytoma, a type of neuroendocrine tumor that affects the chromaffin cells in the adrenal medulla. This condition leads to an overproduction of adrenaline and noradrenaline, resulting in an excessive sympathetic response.
Calcitonin is secreted by the parafollicular C cells in the thyroid gland.
The anterior pituitary gland contains gonadotropes, lactotropes, and thyrotropes, which secrete gonadotropins (FSH, LH), prolactin, and TSH, respectively.
Phaeochromocytoma: A Rare Tumor that Secretes Catecholamines
Phaeochromocytoma is a type of tumor that secretes catecholamines and is considered rare. It is familial in about 10% of cases and may be associated with certain syndromes such as MEN type II, neurofibromatosis, and von Hippel-Lindau syndrome. This tumor can be bilateral in 10% of cases and malignant in 10%. It can also occur outside of the adrenal gland, with the most common site being the organ of Zuckerkandl, which is adjacent to the bifurcation of the aorta.
The symptoms of phaeochromocytoma are typically episodic and include hypertension (which is present in around 90% of cases and may be sustained), headaches, palpitations, sweating, and anxiety. To diagnose this condition, a 24-hour urinary collection of metanephrines is preferred over a 24-hour urinary collection of catecholamines due to its higher sensitivity (97%).
Surgery is the definitive management for phaeochromocytoma. However, before surgery, the patient must first be stabilized with medical management, which includes an alpha-blocker (such as phenoxybenzamine) given before a beta-blocker (such as propranolol).
-
This question is part of the following fields:
- Endocrine System
-
-
Question 14
Incorrect
-
A 38-year-old woman is diagnosed with hyperthyroidism and started on carbimazole. What is the mechanism of action of this medication?
Your Answer:
Correct Answer: Prevents iodination of the tyrosine residue on thyroglobulin
Explanation:Carbimazole is a medication used to treat thyrotoxicosis, a condition where the thyroid gland produces too much thyroid hormone. It is usually given in high doses for six weeks until the patient’s thyroid hormone levels become normal, after which the dosage is reduced. The drug works by blocking thyroid peroxidase, an enzyme that is responsible for coupling and iodinating the tyrosine residues on thyroglobulin, which ultimately leads to a reduction in thyroid hormone production. In contrast, propylthiouracil has a dual mechanism of action, inhibiting both thyroid peroxidase and 5′-deiodinase, which reduces the peripheral conversion of T4 to T3.
However, carbimazole is not without its adverse effects. One of the most serious side effects is agranulocytosis, a condition where the body’s white blood cell count drops significantly, making the patient more susceptible to infections. Additionally, carbimazole can cross the placenta and affect the developing fetus, although it may be used in low doses during pregnancy under close medical supervision. Overall, carbimazole is an effective medication for managing thyrotoxicosis, but its potential side effects should be carefully monitored.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 15
Incorrect
-
A 23-year-old male comes to his doctor with a 5-month history of headaches, palpitations, and excessive sweating. He also mentions unintentional weight loss. Upon examination, the patient is found to be tachycardic and sweating profusely. The doctor suspects that the man may have a tumor affecting the tissue responsible for producing adrenaline.
What is the probable location of the tumor?Your Answer:
Correct Answer: Adrenal medulla
Explanation:The secretion of adrenaline is primarily carried out by the adrenal medulla. A patient with a phaeochromocytoma, a type of cancer that affects the adrenal medulla, may experience symptoms such as tachycardia, headaches, and sweating due to excess adrenaline production.
The adrenal cortex, which surrounds the adrenal medulla, is not involved in adrenaline synthesis. It is responsible for producing mineralocorticoids, glucocorticoids, and androgens.
The medulla oblongata, located in the brainstem, regulates essential bodily functions but is not responsible for adrenaline secretion.
The parathyroid gland, which produces parathyroid hormone to regulate calcium metabolism, is not related to adrenaline secretion.
The Function of Adrenal Medulla
The adrenal medulla is responsible for producing almost all of the adrenaline in the body, along with small amounts of noradrenaline. Essentially, it is a specialized and enlarged sympathetic ganglion. This gland plays a crucial role in the body’s response to stress and danger, as adrenaline is a hormone that prepares the body for the fight or flight response. When the body perceives a threat, the adrenal medulla releases adrenaline into the bloodstream, which increases heart rate, blood pressure, and respiration, while also dilating the pupils and increasing blood flow to the muscles. This response helps the body to react quickly and effectively to danger. Overall, the adrenal medulla is an important component of the body’s stress response system.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 16
Incorrect
-
A 55-year-old man with a smoking history of over 30 years presented to the emergency department with acute confusion and disorientation. He was unable to recognize his family members and relatives. He had been experiencing unexplained weight loss, loss of appetite, and occasional episodes of haemoptysis for the past few months. Urgent blood tests were performed, revealing abnormal levels of electrolytes and renal function.
Based on the likely diagnosis, what is the mechanism of action of the hormone that is being secreted excessively in this case?Your Answer:
Correct Answer: Insertion of aquaporin-2 channels
Explanation:Antidiuretic hormone (ADH) plays a crucial role in promoting water reabsorption by inserting aquaporin-2 channels in principal cells. In small-cell lung cancer patients, decreased serum sodium levels are commonly caused by the paraneoplastic syndrome of inadequate ADH secretion (SIADH) or ADH released during the initial lysis of tumour cells after chemotherapy. It is important to note that arteriolar vasodilation, promoting water excretion, decreased urine osmolarity, and increased portal blood flow are not functions of ADH.
Understanding Antidiuretic Hormone (ADH)
Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.
ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.
Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.
Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 17
Incorrect
-
A 45-year-old patient comes in with symptoms of weight loss, nausea, vomiting, abdominal pain, and hyperpigmentation of the skin. The doctor orders a urea & electrolyte test and a short Synacthen test which comes back abnormal and diagnoses the patient with Addison's disease.
What electrolyte abnormality is most likely to be observed in this patient?Your Answer:
Correct Answer: Hyperkalaemia & hyponatraemia
Explanation:In Addison’s disease, there is a deficiency in the production of both aldosterone and cortisol.
Aldosterone plays a crucial role in the reabsorption of sodium and the excretion of potassium.
Therefore, the absence of aldosterone leads to an imbalance in the levels of sodium and potassium in the body, resulting in hyperkalemia (high potassium levels) and hyponatremia (low sodium levels).
Addison’s disease is the most common cause of primary hypoadrenalism in the UK, with autoimmune destruction of the adrenal glands being the main culprit, accounting for 80% of cases. This results in reduced production of cortisol and aldosterone. Symptoms of Addison’s disease include lethargy, weakness, anorexia, nausea and vomiting, weight loss, and salt-craving. Hyperpigmentation, especially in palmar creases, vitiligo, loss of pubic hair in women, hypotension, hypoglycemia, and hyponatremia and hyperkalemia may also be observed. In severe cases, a crisis may occur, leading to collapse, shock, and pyrexia.
Other primary causes of hypoadrenalism include tuberculosis, metastases (such as bronchial carcinoma), meningococcal septicaemia (Waterhouse-Friderichsen syndrome), HIV, and antiphospholipid syndrome. Secondary causes include pituitary disorders, such as tumours, irradiation, and infiltration. Exogenous glucocorticoid therapy can also lead to hypoadrenalism.
It is important to note that primary Addison’s disease is associated with hyperpigmentation, while secondary adrenal insufficiency is not.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 18
Incorrect
-
A 10-year-old girl with type 1 diabetes arrives at the emergency department with vomiting. After a brief history, you discover she had a recent bout of strep throat. Upon examination, you detect ketones in her urine and elevated blood sugar levels, indicating a likely case of diabetic ketoacidosis. What is the primary ketone body implicated in diabetic ketoacidosis?
Your Answer:
Correct Answer: Acetoacetate
Explanation:The liver produces water-soluble molecules called ketone bodies from fatty acids, with acetoacetate being the primary ketone body involved in diabetic ketoacidosis, along with beta-hydroxybutyrate and acetone. Ketone bodies are generated during fasting/starvation, intense exercise, or untreated type 1 diabetes mellitus. These molecules are taken up by extra-hepatic tissues and transformed into acetyl-CoA, which enters the citric acid cycle and is oxidized in the mitochondria to produce energy.
Diabetic ketoacidosis (DKA) is a serious complication of type 1 diabetes mellitus, accounting for around 6% of cases. It can also occur in rare cases of extreme stress in patients with type 2 diabetes mellitus. DKA is caused by uncontrolled lipolysis, resulting in an excess of free fatty acids that are converted to ketone bodies. The most common precipitating factors of DKA are infection, missed insulin doses, and myocardial infarction. Symptoms include abdominal pain, polyuria, polydipsia, dehydration, Kussmaul respiration, and breath that smells like acetone. Diagnostic criteria include glucose levels above 11 mmol/l or known diabetes mellitus, pH below 7.3, bicarbonate below 15 mmol/l, and ketones above 3 mmol/l or urine ketones ++ on dipstick.
Management of DKA involves fluid replacement, insulin, and correction of electrolyte disturbance. Fluid replacement is necessary as most patients with DKA are deplete around 5-8 litres. Isotonic saline is used initially, even if the patient is severely acidotic. Insulin is administered through an intravenous infusion, and correction of electrolyte disturbance is necessary. Long-acting insulin should be continued, while short-acting insulin should be stopped. Complications may occur from DKA itself or the treatment, such as gastric stasis, thromboembolism, arrhythmias, acute respiratory distress syndrome, acute kidney injury, and cerebral edema. Children and young adults are particularly vulnerable to cerebral edema following fluid resuscitation in DKA and often need 1:1 nursing to monitor neuro-observations, headache, irritability, visual disturbance, focal neurology, etc.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 19
Incorrect
-
A 38-year-old woman presents with symptoms of irritability and changes in bowel habits. During examination, a smooth enlargement of the thyroid gland is noted. Thyroid function tests are ordered and the results are as follows:
TSH 0.1 mug/l
Free T4 35 pmol/l
What is the most likely underlying diagnosis?Your Answer:
Correct Answer: Graves disease
Explanation:When TSH receptor antibodies are present, they stimulate the thyroid to produce T4. This results in a decrease in TSH levels due to negative feedback on the pituitary. However, in cases where hyperthyroidism is caused by pregnancy, the TSH levels are usually elevated.
Understanding Thyroid Disease and its Management
Thyroid disease can present with various manifestations, which can be classified based on the presence or absence of clinical signs of thyroid dysfunction and the presence of a mass. To assess thyroid disease, a thorough history and examination, including ultrasound, are necessary. If a nodule is identified, it should be sampled through an image-guided fine needle aspiration. Radionucleotide scanning is not very useful.
Thyroid tumors can be papillary, follicular, anaplastic, medullary, or lymphoma. Multinodular goitre is a common reason for presentation, and if the patient is asymptomatic and euthyroid, they can be reassured. However, if they have compressive symptoms, surgery is required, and total thyroidectomy is the best option. Patients with endocrine dysfunction are initially managed by physicians, and surgery may be offered alongside radioiodine for those with Graves disease that fails with medical management or in patients who prefer not to be irradiated. Patients with hypothyroidism do not generally get offered a thyroidectomy.
Complications following surgery include anatomical damage to the recurrent laryngeal nerve, bleeding, and damage to the parathyroid glands resulting in hypocalcaemia. For further information, the Association of Clinical Biochemistry guidelines for thyroid function tests and the British Association of Endocrine Surgeons website can be consulted.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 20
Incorrect
-
A 23-year-old man was diagnosed with maturity-onset diabetes of the young (MODY) type 1 and has been on an oral anti-diabetic agent for the past year. What is the mechanism of action of the drug he is most likely taking?
Your Answer:
Correct Answer: Binding to ATP-dependent K+ channel on the pancreatic beta cell membrane
Explanation:The patient is likely taking a sulfonylurea medication, which works by binding to the ATP-dependent K+ channel on the pancreatic beta-cell membrane to promote endogenous insulin secretion. This is the recommended first-line treatment for patients with MODY type 1, as their genetic defect results in reduced insulin secretion. Thiazolidinediones (glitazones) activate peroxisome proliferator-activated receptor-gamma (PPARγ) and are not typically used in this population. Metformin (biguanide class) inhibits hepatic glucose production and increases peripheral uptake, but is less effective than sulfonylureas in MODY type 1. Acarbose inhibits intestinal alpha-glucosidase and is not used in MODY patients. Dipeptidyl peptidase-4 inhibitors (gliptins) are commonly used in type 2 diabetes but are not first-line treatment for MODY.
Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).
While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.
It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 21
Incorrect
-
A 39-year old male visits the GP complaining of nipple discharge. Upon examination, it is found that his serum prolactin levels are significantly high. Besides prolactin releasing hormone, which other hypothalamic hormone can stimulate the secretion of prolactin?
Your Answer:
Correct Answer: Thyrotropin releasing hormone (TRH)
Explanation:Understanding Prolactin and Its Functions
Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.
The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.
Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 22
Incorrect
-
Which one of the following does not trigger insulin secretion?
Your Answer:
Correct Answer: Atenolol
Explanation:The release of insulin is prevented by beta blockers.
Factors that trigger insulin release include glucose, amino acids, vagal cholinergic stimulation, secretin/gastrin/CCK, fatty acids, and beta adrenergic drugs.
Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 23
Incorrect
-
A 28-year-old female patient presents to her GP with concerns about the appearance of lumps in her lower abdomen. She has been diagnosed with type 1 diabetes and has been using insulin for more than a decade. The lumps have developed in the areas where she administers her insulin injections.
What is the probable cause of the lumps?Your Answer:
Correct Answer: Lipodystrophy
Explanation:Small subcutaneous lumps at injection sites, known as lipodystrophy, can be caused by insulin.
The type and location of the lump suggest that lipodystrophy is the most probable cause.
Deposits of insulin and glucose are not responsible for the formation of these lumps.
While a lipoma could also cause similar lumps, it is less likely than lipodystrophy, which is a known complication of insulin injections, especially at the injection site. These lumps can occur in multiple locations.
Insulin therapy can have side-effects that patients should be aware of. One of the most common side-effects is hypoglycaemia, which can cause sweating, anxiety, blurred vision, confusion, and aggression. Patients should be taught to recognize these symptoms and take 10-20g of a short-acting carbohydrate, such as a glass of Lucozade or non-diet drink, three or more glucose tablets, or glucose gel. It is also important for every person treated with insulin to have a glucagon kit for emergencies where the patient is not able to orally ingest a short-acting carbohydrate. Patients who have frequent hypoglycaemic episodes may develop reduced awareness, and beta-blockers can further reduce hypoglycaemic awareness.
Another potential side-effect of insulin therapy is lipodystrophy, which typically presents as atrophy or lumps of subcutaneous fat. This can be prevented by rotating the injection site, as using the same site repeatedly can cause erratic insulin absorption. It is important for patients to be aware of these potential side-effects and to discuss any concerns with their healthcare provider. By monitoring their blood sugar levels and following their treatment plan, patients can manage the risks associated with insulin therapy and maintain good health.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 24
Incorrect
-
A young man comes to the clinic with symptoms suggestive of mania. After further inquiry and assessment, he is found to have tachycardia, sweaty palms, and a recent bout of diarrhea. What is the probable diagnosis?
Your Answer:
Correct Answer: Grave's disease
Explanation:The correct diagnosis for this patient is Grave’s disease, which is characterized by hyperthyroidism. While mania may be a symptom, it is important to note that tachycardia, sweaty hands, and exophthalmos are specific to Grave’s disease.
Bipolar disorder may also present with manic episodes, but it does not typically include the other symptoms associated with hyperthyroidism.
Hashimoto’s thyroiditis is another autoimmune thyroid disorder, but it causes hypothyroidism instead of hyperthyroidism. Symptoms of hypothyroidism may include bradycardia and dry skin.
Graves’ Disease: Common Features and Unique Signs
Graves’ disease is the most frequent cause of thyrotoxicosis, which is commonly observed in women aged 30-50 years. The condition presents typical features of thyrotoxicosis, such as weight loss, palpitations, and heat intolerance. However, Graves’ disease also displays specific signs that are not present in other causes of thyrotoxicosis. These include eye signs, such as exophthalmos and ophthalmoplegia, as well as pretibial myxoedema and thyroid acropachy. The latter is a triad of digital clubbing, soft tissue swelling of the hands and feet, and periosteal new bone formation.
Graves’ disease is characterized by the presence of autoantibodies, including TSH receptor stimulating antibodies in 90% of patients and anti-thyroid peroxidase antibodies in 75% of patients. Thyroid scintigraphy reveals a diffuse, homogenous, and increased uptake of radioactive iodine. These features help distinguish Graves’ disease from other causes of thyrotoxicosis and aid in its diagnosis.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 25
Incorrect
-
A 15-year-old girl is brought to her pediatrician by her father who is worried that his daughter has not yet had a menstrual period. The girl reports that she has been unable to smell for as long as she can remember but is otherwise in good health. During the examination, the girl is found to have underdeveloped breasts and no pubic hair. Her vital signs and body mass index are within normal limits.
What is the probable reason for the girl's condition?Your Answer:
Correct Answer: Kallman syndrome
Explanation:The most likely diagnosis for this girl is Kallmann syndrome, which is characterized by a combination of hypogonadotropic hypogonadism and anosmia. This genetic disorder occurs due to a failure in neuron migration, resulting in deficient hypothalamic gonadotropin releasing hormone (GnRH) and a lack of secondary sexual characteristics. Anosmia is a distinguishing feature of Kallmann syndrome compared to other causes of hypogonadotropic hypogonadism. Congenital adrenal hypoplasia, which results in insufficient cortisol production due to adrenal cortex enzyme deficiency, can also cause hypogonadotropic hypogonadism but is less likely in this case due to the presence of anosmia. Imperforate hymen, which presents with lower abdominal/pelvic pain without vaginal bleeding, is not consistent with this patient’s symptoms. Malnutrition is not indicated as a possible diagnosis.
Kallmann’s syndrome is a condition that can cause delayed puberty due to hypogonadotropic hypogonadism. It is often inherited as an X-linked recessive trait and is believed to be caused by a failure of GnRH-secreting neurons to migrate to the hypothalamus. One of the key indicators of Kallmann’s syndrome is anosmia, or a lack of smell, in boys with delayed puberty. Other features may include hypogonadism, cryptorchidism, low sex hormone levels, and normal or above-average height. Some patients may also have cleft lip/palate and visual/hearing defects.
Management of Kallmann’s syndrome typically involves testosterone supplementation. Gonadotrophin supplementation may also be used to stimulate sperm production if fertility is desired later in life. It is important for individuals with Kallmann’s syndrome to receive appropriate medical care and monitoring to manage their symptoms and ensure optimal health outcomes.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 26
Incorrect
-
A 65-year-old man with type 2 diabetes mellitus has been taking metformin 1g twice daily for the past 6 months. Despite this, his HbA1c has remained above target at 64 mmol/mol (8.0%).
He has a history of left ventricular failure following a myocardial infarction 2 years ago. He has been trying to lose weight since but still has a body mass index of 33 kg/m². He is also prone to recurrent urinary tract infections.
You intend to intensify treatment by adding a second medication.
What is the mechanism of action of the most appropriate anti-diabetic drug for him?Your Answer:
Correct Answer: Inhibition of dipeptidyl peptidase-4 (DPP-4) to increase incretin levels
Explanation:Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 27
Incorrect
-
A 39-year-old woman presents to the endocrine clinic after being referred by her GP due to a blood pressure reading of 178/101 mm Hg. Upon blood tests, it is discovered that she has hypernatremia and hypokalaemia, along with an elevated aldosterone level. An inconclusive CT scan of the abdomen has been performed to determine if there is an adenoma present.
What is the most suitable investigation to identify if one of the adrenal glands is producing an excess of hormones?Your Answer:
Correct Answer: Adrenal venous sampling (AVS)
Explanation:Adrenal venous sampling (AVS) is the most appropriate investigation to differentiate between unilateral adenoma and bilateral hyperplasia in primary hyperaldosteronism. This method involves catheterizing the adrenal veins and collecting blood samples from each, which can be tested for hormone levels. The affected side can then be surgically removed if necessary. Other options such as surgical removal of adrenals and immunohistochemistry, adrenal biopsy, or repeat CT scan are not as suitable or effective in this scenario.
Primary hyperaldosteronism is a condition characterized by hypertension, hypokalaemia, and alkalosis. It was previously believed that adrenal adenoma, also known as Conn’s syndrome, was the most common cause of this condition. However, recent studies have shown that bilateral idiopathic adrenal hyperplasia is responsible for up to 70% of cases. It is important to differentiate between the two causes as it determines the appropriate treatment. Adrenal carcinoma is an extremely rare cause of primary hyperaldosteronism.
To diagnose primary hyperaldosteronism, the 2016 Endocrine Society recommends a plasma aldosterone/renin ratio as the first-line investigation. This test should show high aldosterone levels alongside low renin levels due to negative feedback from sodium retention caused by aldosterone. If the results are positive, a high-resolution CT abdomen and adrenal vein sampling are used to differentiate between unilateral and bilateral sources of aldosterone excess. If the CT is normal, adrenal venous sampling (AVS) can be used to distinguish between unilateral adenoma and bilateral hyperplasia.
The management of primary hyperaldosteronism depends on the underlying cause. Adrenal adenoma is treated with surgery, while bilateral adrenocortical hyperplasia is managed with an aldosterone antagonist such as spironolactone. It is important to accurately diagnose and manage primary hyperaldosteronism to prevent complications such as cardiovascular disease and stroke.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 28
Incorrect
-
A 9-year-old girl is being treated by a paediatrician for bedwetting at night. Non-invasive methods have not yielded any results and her family is interested in trying medication. The paediatrician has approved a trial of desmopressin.
What is the site of action of this drug?Your Answer:
Correct Answer: The collecting ducts of the kidney
Explanation:Desmopressin is a synthetic version of antidiuretic hormone (ADH) that acts on the collecting ducts in the kidneys. ADH is released by the posterior pituitary gland in response to increased blood osmolality. By increasing the reabsorption of solute-free water in the collecting ducts, ADH reduces blood osmolality and produces small volumes of concentrated urine. This mechanism is effective in reducing the volume of urine produced overnight in cases of nocturnal enuresis (bed-wetting). The distal tubule, glomerulus, and proximal tubule are not sites of ADH action. Although the posterior pituitary gland produces ADH, it exerts its effects on the kidneys.
Understanding Antidiuretic Hormone (ADH)
Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.
ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.
Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.
Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 29
Incorrect
-
A 63-year-old male presents with a sudden onset of double vision that has been ongoing for eight hours. He has a medical history of hypertension, which is managed with amlodipine and atenolol, and type 2 diabetes that is controlled through diet. Upon examination, the patient displays watering of the right eye, a slight droop of the eyelid, and displacement of the eye to the right. The left eye appears to have a full range of movements, and the pupil size is the same as on the left. What is the probable cause of his symptoms?
Your Answer:
Correct Answer: Diabetes
Explanation:Causes of Painless Partial Third Nerve Palsy
A painless partial third nerve palsy with pupil sparing is most likely caused by diabetes mononeuropathy. This condition is thought to be due to a microangiopathy that leads to the occlusion of the vasa nervorum. On the other hand, an aneurysm of the posterior communicating artery is associated with a painful third nerve palsy, and pupillary dilatation is typical. Cerebral infarction, on the other hand, does not usually cause pain. Hypertension, which is a common condition, would normally cause signs of CVA or TIA. Lastly, cerebral vasculitis can cause symptoms of CVA/TIA, but they usually cause more global neurological symptoms.
In summary, a painless partial third nerve palsy with pupil sparing is most likely caused by diabetes mononeuropathy. Other conditions such as aneurysm of the posterior communicating artery, cerebral infarction, hypertension, and cerebral vasculitis can also cause similar symptoms, but they have different characteristics and causes. It is important to identify the underlying cause of the condition to provide appropriate treatment and management.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 30
Incorrect
-
A 29-year-old female presents to the emergency department after a mixed overdose. According to her parents, she had locked herself in her room after an argument and they found her drowsy on the floor after forcing open the door. The patient has a history of depression and previous suicide attempts. Her grandmother's medical box, containing paracetamol, gliclazide, bisoprolol, and atorvastatin, was found empty, but the amount ingested is unknown. On examination, the patient is sweaty with a global tremor and is confused. She is tachycardic and appears generally weak.
Which molecule is likely to be the first produced by the patient in response to the overdose?Your Answer:
Correct Answer: Glucagon
Explanation:The initial hormone response to hypoglycaemia is the secretion of glucagon. In the case of a suspected gliclazide overdose, the most likely presentation would be hypoglycaemia, as evidenced by the patient’s sudden onset of sweating, weakness, and confusion. Other medications ingested are unlikely to produce these symptoms. When the body experiences hypoglycaemia, it first reduces insulin production and then increases glucagon secretion, which promotes gluconeogenesis to raise blood glucose levels.
Glycogen synthase is an enzyme involved in glycogenesis, the process of converting glucose into glycogen for storage in the body. However, in the case of hypoglycaemia caused by gliclazide ingestion, the body would carry out gluconeogenesis to release glucose, rather than glycogenesis.
While cortisol is released in response to hypoglycaemia, it is a later response and is secreted after glucagon. Cortisol is a glucocorticoid hormone that also promotes gluconeogenesis and glucose production.
Glutathione is an antioxidant found in the liver that helps neutralize and eliminate the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI) produced by paracetamol. In cases of paracetamol overdose, glutathione levels are depleted, but this patient’s symptoms are too acute for a paracetamol overdose. Liver failure resulting from paracetamol overdose takes several hours to develop and even longer before physical symptoms appear. The antidote treatment for paracetamol overdose is acetylcysteine, which replenishes glutathione levels.
Understanding Hypoglycaemia: Causes, Features, and Management
Hypoglycaemia is a condition characterized by low blood sugar levels, which can lead to a range of symptoms and complications. There are several possible causes of hypoglycaemia, including insulinoma, liver failure, Addison’s disease, and alcohol consumption. The physiological response to hypoglycaemia involves hormonal and sympathoadrenal responses, which can result in autonomic and neuroglycopenic symptoms. While blood glucose levels and symptom severity are not always correlated, common symptoms of hypoglycaemia include sweating, shaking, hunger, anxiety, nausea, weakness, vision changes, confusion, and dizziness. In severe cases, hypoglycaemia can lead to convulsions or coma.
Managing hypoglycaemia depends on the severity of the symptoms and the setting in which it occurs. In the community, individuals with diabetes who inject insulin may be advised to consume oral glucose or a quick-acting carbohydrate such as GlucoGel or Dextrogel. A ‘HypoKit’ containing glucagon may also be prescribed for home use. In a hospital setting, treatment may involve administering a quick-acting carbohydrate or subcutaneous/intramuscular injection of glucagon for unconscious or unable to swallow patients. Alternatively, intravenous glucose solution may be given through a large vein.
Overall, understanding the causes, features, and management of hypoglycaemia is crucial for individuals with diabetes or other conditions that increase the risk of low blood sugar levels. Prompt and appropriate treatment can help prevent complications and improve outcomes.
-
This question is part of the following fields:
- Endocrine System
-
00
Correct
00
Incorrect
00
:
00
:
0
00
Session Time
00
:
00
Average Question Time (
Secs)