00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A 28-year-old woman with a history of unknown cause dystonia visited the neurology...

    Correct

    • A 28-year-old woman with a history of unknown cause dystonia visited the neurology clinic with her mother for follow-up. Her muscle rigidity and spasms have been getting worse and more frequent over the past year, making them difficult to manage. Today, she is being evaluated for the placement of an intrathecal baclofen pump to alleviate her symptoms. What receptor does this medication target?

      Your Answer: Gamma Aminobutyric Acid (GABA)

      Explanation:

      Baclofen is a medication that is commonly prescribed to alleviate muscle spasticity in individuals with conditions like multiple sclerosis, cerebral palsy, and spinal cord injuries. It works by acting as an agonist of GABA receptors in the central nervous system, which includes both the brain and spinal cord. Essentially, this means that baclofen helps to enhance the effects of a neurotransmitter called GABA, which can help to reduce the activity of certain neurons and ultimately lead to a reduction in muscle spasticity. Overall, baclofen is an important medication for individuals with these conditions, as it can help to improve their quality of life and reduce the impact of muscle spasticity on their daily activities.

    • This question is part of the following fields:

      • Neurological System
      21.5
      Seconds
  • Question 2 - An 80-year-old man presents to the emergency department with complaints of headache, nausea,...

    Incorrect

    • An 80-year-old man presents to the emergency department with complaints of headache, nausea, and vomiting for the past 6 hours. His wife reports that he had a fall one week ago, but did not lose consciousness.

      Upon examination, the patient is oriented to person, but not to place and time. His vital signs are within normal limits except for a blood pressure of 150/90 mmHg. Deep tendon reflexes are 4+ on the right and 2+ on the left, and there is mild weakness of his left-sided muscles. Babinski's sign is present on the right. A non-contrast CT scan of the head reveals a hyperdense crescent across the left hemisphere.

      What is the likely underlying cause of this patient's presentation?

      Your Answer:

      Correct Answer: Rupture of bridging veins

      Explanation:

      Subdural hemorrhage occurs when damaged bridging veins between the cortex and venous sinuses bleed. In this patient’s CT scan, a hyperdense crescent-shaped collection is visible on the left hemisphere, indicating subdural hemorrhage. Given the patient’s age and symptoms, this diagnosis is likely.

      Ischemic stroke can result from blockage of the anterior or middle cerebral artery. The former typically presents with contralateral motor weakness, while the latter presents with contralateral motor weakness, sensory loss, and hemianopia. If the dominant hemisphere is affected, the patient may also experience aphasia, while hemineglect may occur if the non-dominant hemisphere is affected. Early CT scans may appear normal, but later scans may show hypodense areas in the contralateral parietal and temporal lobes.

      Subarachnoid hemorrhage is caused by an aneurysm rupture and presents acutely with a severe headache, photophobia, and meningism. The CT scan would show hyperdense material in the subarachnoid space.

      Epidural hematoma results from the rupture of the middle meningeal artery and appears as a biconvex hyperdense collection between the brain and skull.

      Understanding Subdural Haemorrhage

      Subdural haemorrhage is a condition where blood accumulates beneath the dural layer of the meninges. This type of bleeding is not within the brain tissue and is referred to as an extra-axial or extrinsic lesion. Subdural haematomas can be classified into three types based on their age: acute, subacute, and chronic.

      Acute subdural haematomas are caused by high-impact trauma and are associated with other brain injuries. Symptoms and severity of presentation vary depending on the size of the compressive acute subdural haematoma and the associated injuries. CT imaging is the first-line investigation, and surgical options include monitoring of intracranial pressure and decompressive craniectomy.

      Chronic subdural haematomas, on the other hand, are collections of blood within the subdural space that have been present for weeks to months. They are caused by the rupture of small bridging veins within the subdural space, which leads to slow bleeding. Elderly and alcoholic patients are particularly at risk of subdural haematomas due to brain atrophy and fragile or taut bridging veins. Infants can also experience subdural haematomas due to fragile bridging veins rupturing in shaken baby syndrome.

      Chronic subdural haematomas typically present with a progressive history of confusion, reduced consciousness, or neurological deficit. CT imaging shows a crescentic shape, not restricted by suture lines, and compresses the brain. Unlike acute subdurals, chronic subdurals are hypodense compared to the substance of the brain. Treatment options depend on the size and severity of the haematoma, with conservative management or surgical decompression with burr holes being the main options.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 3 - A 61-year-old woman comes to the Emergency Department with slurred speech and left-sided...

    Incorrect

    • A 61-year-old woman comes to the Emergency Department with slurred speech and left-sided facial drooping. You perform a cranial nerves examination and find that her vagus nerve has been impacted. What sign would you anticipate observing in this patient?

      Your Answer:

      Correct Answer: Uvula deviated to the left

      Explanation:

      The uvula is deviated to the left, indicating a right-sided stroke affecting the vagus nerve (CN X). This can cause a loss of gag reflex and uvula deviation away from the site of the lesion. Loss of taste (anterior 2/3) is a symptom of facial nerve (CN VII) lesions, while tongue deviation to the right is a symptom of hypoglossal nerve (CN XII) lesions. Vertigo is a symptom of vestibulocochlear nerve (CN VIII) lesions.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 4 - A 50-year old male visits the endocrinology clinic for a pituitary tumour diagnosis....

    Incorrect

    • A 50-year old male visits the endocrinology clinic for a pituitary tumour diagnosis. He needs to undergo a transsphenoidal surgery to remove the pituitary gland. How is the pituitary gland connected to the brain to ensure the transportation of pituitary hormones?

      Your Answer:

      Correct Answer: Pituitary portal system

      Explanation:

      The endocrine system is primarily regulated by the pituitary gland, which is itself controlled by the hypothalamus. The neurohypophysis is influenced by the hypothalamus because its cell bodies are located within the hypothalamus, while the adenohypophysis is regulated by neuroendocrine cells in the hypothalamus that release trophic hormones into the pituitary portal vessels. The pituitary gland subsequently secretes various hormones that impact different parts of the body.

      The pituitary gland is a small gland located within the sella turcica in the sphenoid bone of the middle cranial fossa. It weighs approximately 0.5g and is covered by a dural fold. The gland is attached to the hypothalamus by the infundibulum and receives hormonal stimuli from the hypothalamus through the hypothalamo-pituitary portal system. The anterior pituitary, which develops from a depression in the wall of the pharynx known as Rathkes pouch, secretes hormones such as ACTH, TSH, FSH, LH, GH, and prolactin. GH and prolactin are secreted by acidophilic cells, while ACTH, TSH, FSH, and LH are secreted by basophilic cells. On the other hand, the posterior pituitary, which is derived from neuroectoderm, secretes ADH and oxytocin. Both hormones are produced in the hypothalamus before being transported by the hypothalamo-hypophyseal portal system.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 5 - When conducting minor surgery on the scalp, which region is considered a hazardous...

    Incorrect

    • When conducting minor surgery on the scalp, which region is considered a hazardous area in terms of infection spreading to the central nervous system (CNS)?

      Your Answer:

      Correct Answer: Loose areolar tissue

      Explanation:

      The risk of infection spreading easily makes this area highly dangerous. The emissary veins that drain this region could facilitate the spread of sepsis to the cranial cavity.

      Patients with head injuries should be managed according to ATLS principles and extracranial injuries should be managed alongside cranial trauma. Different types of traumatic brain injury include extradural hematoma, subdural hematoma, and subarachnoid hemorrhage. Primary brain injury may be focal or diffuse, while secondary brain injury occurs when cerebral edema, ischemia, infection, tonsillar or tentorial herniation exacerbates the original injury. Management may include IV mannitol/furosemide, decompressive craniotomy, and ICP monitoring. Pupillary findings can provide information on the location and severity of the injury.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 6 - A 6-year-old boy arrives at the Emergency Department accompanied by his mother, reporting...

    Incorrect

    • A 6-year-old boy arrives at the Emergency Department accompanied by his mother, reporting a deteriorating headache, vomiting, and muscle weakness that has been developing over the past few months. Upon examination, you observe ataxia and unilateral muscle weakness. The child is otherwise healthy, with no significant medical history, and is apyrexial. Imaging tests reveal a medulla oblongata brainstem tumor.

      From which embryonic component does the affected structure originate?

      Your Answer:

      Correct Answer: Myelencephalon

      Explanation:

      The myelencephalon gives rise to the medulla oblongata and the inferior part of the fourth ventricle. The telencephalon gives rise to the cerebral cortex, lateral ventricles, and basal ganglia. The diencephalon gives rise to the thalamus, hypothalamus, optic nerves, and third ventricle. The metencephalon gives rise to the pons, cerebellum, and the superior part of the fourth ventricle. The mesencephalon gives rise to the midbrain and cerebral aqueduct.

      Embryonic Development of the Nervous System

      The nervous system develops from the embryonic neural tube, which gives rise to the brain and spinal cord. The neural tube is divided into five regions, each of which gives rise to specific structures in the nervous system. The telencephalon gives rise to the cerebral cortex, lateral ventricles, and basal ganglia. The diencephalon gives rise to the thalamus, hypothalamus, optic nerves, and third ventricle. The mesencephalon gives rise to the midbrain and cerebral aqueduct. The metencephalon gives rise to the pons, cerebellum, and superior part of the fourth ventricle. The myelencephalon gives rise to the medulla and inferior part of the fourth ventricle.

      The neural tube is also divided into two plates: the alar plate and the basal plate. The alar plate gives rise to sensory neurons, while the basal plate gives rise to motor neurons. This division of the neural tube into different regions and plates is crucial for the proper development and function of the nervous system. Understanding the embryonic development of the nervous system is important for understanding the origins of neurological disorders and for developing new treatments for these disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 7 - A 65-year-old man presents to his doctor with a complaint of speech difficulty...

    Incorrect

    • A 65-year-old man presents to his doctor with a complaint of speech difficulty that has been ongoing for two months. He reports difficulty in producing speech and frequently experiences word-finding difficulties, but has no trouble comprehending written or spoken language.

      To investigate the cause of his symptoms, a CT scan of the head is ordered.

      Based on his symptoms, where would you anticipate a lesion to be located?

      Your Answer:

      Correct Answer: Left inferior frontal gyrus

      Explanation:

      Broca’s aphasia results from a lesion in the inferior frontal gyrus, specifically in Broca’s area. This area is connected to Wernicke’s area by the arcuate fasciculus and is responsible for expressive language functions. Lesions to other areas, such as the angular gyrus or fusiform gyrus, would not cause expressive aphasia. Wernicke’s area, located in the superior temporal lobe, is responsible for receptive language functions and a lesion here would result in a receptive aphasia. The sylvian fissure separates the frontal and temporal lobes and a lesion here may cause seizures but not aphasia.

      Types of Aphasia: Understanding the Different Forms of Language Impairment

      Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.

      Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.

      Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.

      Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 8 - A 72-year-old male with Parkinson's disease is experiencing non-motor symptoms. Which of the...

    Incorrect

    • A 72-year-old male with Parkinson's disease is experiencing non-motor symptoms. Which of the following symptoms is most likely associated with Parkinson's disease?

      Your Answer:

      Correct Answer: REM sleep disturbance

      Explanation:

      Dr. James Parkinson first identified Parkinson’s disease as a condition characterized by tremors and reduced muscle strength in inactive body parts, often accompanied by a tendency to lean forward and switch from walking to running. Early symptoms of Parkinson’s typically include issues with smell, sleep, and bowel movements. In addition to motor problems, non-motor symptoms may include depression, memory loss, pain, anxiety, sleep disturbances, and balance issues.

      Parkinson’s disease is a progressive neurodegenerative disorder that occurs due to the degeneration of dopaminergic neurons in the substantia nigra. This leads to a classic triad of symptoms, including bradykinesia, tremor, and rigidity, which are typically asymmetrical. The disease is more common in men and is usually diagnosed around the age of 65. Bradykinesia is characterized by a poverty of movement, shuffling steps, and difficulty initiating movement. Tremors are most noticeable at rest and typically occur in the thumb and index finger. Rigidity can be either lead pipe or cogwheel, and other features include mask-like facies, flexed posture, and drooling of saliva. Psychiatric features such as depression, dementia, and sleep disturbances may also occur. Diagnosis is usually clinical, but if there is difficulty differentiating between essential tremor and Parkinson’s disease, 123I‑FP‑CIT single photon emission computed tomography (SPECT) may be considered.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 9 - A 16-year-old female arrives at the emergency department accompanied by her father. According...

    Incorrect

    • A 16-year-old female arrives at the emergency department accompanied by her father. According to him, she was watching TV when she suddenly complained of a tingling sensation on the left side of her body. She then reported that her leg had gone numb. Her father mentions that both he and his sister have epilepsy. Given her altered spatial perception and sensation, you suspect that she may have experienced a seizure. What type of seizure is most probable?

      Your Answer:

      Correct Answer: Parietal lobe seizure

      Explanation:

      Paresthesia is a symptom that can help identify a parietal lobe seizure.

      When a patient experiences a parietal lobe seizure, they may feel a tingling sensation on one side of their body or even experience numbness in certain areas. This type of seizure is not very common and is typically associated with sensory symptoms.

      On the other hand, occipital lobe seizures tend to cause visual disturbances like seeing flashes or floaters. Temporal lobe seizures can lead to hallucinations, which can affect the senses of hearing, taste, and smell. Additionally, they may cause repetitive movements like lip smacking or grabbing.

      Absence seizures are more commonly seen in children between the ages of 3 and 10. These seizures are brief and cause the person to stop what they are doing and stare off into space with a blank expression. Fortunately, most children with absence seizures will outgrow them by adolescence.

      Finally, frontal lobe seizures often cause movements of the head or legs and can result in a period of weakness after the seizure has ended.

      Localising Features of Focal Seizures in Epilepsy

      Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.

      On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 10 - An 80-year-old man arrives at the emergency department with intense shooting pain on...

    Incorrect

    • An 80-year-old man arrives at the emergency department with intense shooting pain on one side of his face that is aggravated by chewing. Which of the following accurately identifies the location where the maxillary (V2) and mandibular nerves (V3) exit the skull?

      Your Answer:

      Correct Answer: V2 - foramen rotundum, V3 - foramen ovale

      Explanation:

      Trigeminal nerve branches exit the skull with Standing Room Only:
      V1 – Superior orbital fissure
      V2 – Foramen rotundum
      V3 – Foramen ovale

      The trigeminal nerve is the main sensory nerve of the head and also innervates the muscles of mastication. It has sensory distribution to the scalp, face, oral cavity, nose and sinuses, and dura mater, and motor distribution to the muscles of mastication, mylohyoid, anterior belly of digastric, tensor tympani, and tensor palati. The nerve originates at the pons and has three branches: ophthalmic, maxillary, and mandibular. The ophthalmic and maxillary branches are sensory only, while the mandibular branch is both sensory and motor. The nerve innervates various muscles, including the masseter, temporalis, and pterygoids.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurological System (1/1) 100%
Passmed