00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A teenage boy is brought in with clinical indications of Herpes Simplex Virus...

    Correct

    • A teenage boy is brought in with clinical indications of Herpes Simplex Virus (HSV) encephalitis. In an MRI, where would the lesions be typically observed?

      Your Answer: Temporal lobes

      Explanation:

      HSV encephalitis is commonly linked with damage to the bitemporal lobes, but it can also affect the inferior frontal lobe. However, the parietal lobes, occipital lobes, and cerebellum are not typically affected by this condition.

      Herpes Simplex Encephalitis: Symptoms, Diagnosis, and Treatment

      Herpes simplex encephalitis is a common topic in medical exams. This viral infection affects the temporal lobes of the brain, causing symptoms such as fever, headache, seizures, and vomiting. Focal features like aphasia may also be present. It is important to note that peripheral lesions, such as cold sores, are not related to the presence of HSV encephalitis.

      HSV-1 is responsible for 95% of cases in adults and typically affects the temporal and inferior frontal lobes. Diagnosis is made through CSF analysis, PCR for HSV, and imaging studies like CT or MRI. EEG patterns may also show lateralized periodic discharges at 2 Hz.

      Early treatment with intravenous acyclovir is crucial for a good prognosis. Mortality rates can range from 10-20% with prompt treatment, but can approach 80% if left untreated. MRI is a better imaging modality for detecting changes in the medial temporal and inferior frontal lobes.

      In summary, herpes simplex encephalitis is a serious viral infection that affects the brain. It is important to recognize the symptoms and seek prompt medical attention for early diagnosis and treatment.

    • This question is part of the following fields:

      • Neurological System
      24.5
      Seconds
  • Question 2 - Which of the following nerves passes through the greater sciatic foramen and provides...

    Correct

    • Which of the following nerves passes through the greater sciatic foramen and provides innervation to the perineum?

      Your Answer: Pudendal

      Explanation:

      The pudendal nerve is divided into three branches: the rectal nerve, perineal nerve, and dorsal nerve of the penis/clitoris. All three branches pass through the greater sciatic foramen. The pudendal nerve provides innervation to the perineum and travels between the piriformis and coccygeus muscles, medial to the sciatic nerve.

      The gluteal region is composed of various muscles and nerves that play a crucial role in hip movement and stability. The gluteal muscles, including the gluteus maximus, medius, and minimis, extend and abduct the hip joint. Meanwhile, the deep lateral hip rotators, such as the piriformis, gemelli, obturator internus, and quadratus femoris, rotate the hip joint externally.

      The nerves that innervate the gluteal muscles are the superior and inferior gluteal nerves. The superior gluteal nerve controls the gluteus medius, gluteus minimis, and tensor fascia lata muscles, while the inferior gluteal nerve controls the gluteus maximus muscle.

      If the superior gluteal nerve is damaged, it can result in a Trendelenburg gait, where the patient is unable to abduct the thigh at the hip joint. This weakness causes the pelvis to tilt down on the opposite side during the stance phase, leading to compensatory movements such as trunk lurching to maintain a level pelvis throughout the gait cycle. As a result, the pelvis sags on the opposite side of the lesioned superior gluteal nerve.

    • This question is part of the following fields:

      • Neurological System
      8.9
      Seconds
  • Question 3 - Which one of the following structures is not transmitted by the jugular foramen?...

    Incorrect

    • Which one of the following structures is not transmitted by the jugular foramen?

      Your Answer: Vagus nerve

      Correct Answer: Hypoglossal nerve

      Explanation:

      The jugular foramen contains three compartments. The anterior compartment transmits the inferior petrosal sinus, the middle compartment transmits cranial nerves IX, X, and XI, and the posterior compartment transmits the sigmoid sinus and some meningeal branches from the occipital and ascending pharyngeal arteries.

      Foramina of the Base of the Skull

      The base of the skull contains several openings called foramina, which allow for the passage of nerves, blood vessels, and other structures. The foramen ovale, located in the sphenoid bone, contains the mandibular nerve, otic ganglion, accessory meningeal artery, and emissary veins. The foramen spinosum, also in the sphenoid bone, contains the middle meningeal artery and meningeal branch of the mandibular nerve. The foramen rotundum, also in the sphenoid bone, contains the maxillary nerve.

      The foramen lacerum, located in the sphenoid bone, is initially occluded by a cartilaginous plug and contains the internal carotid artery, nerve and artery of the pterygoid canal, and the base of the medial pterygoid plate. The jugular foramen, located in the temporal bone, contains the inferior petrosal sinus, glossopharyngeal, vagus, and accessory nerves, sigmoid sinus, and meningeal branches from the occipital and ascending pharyngeal arteries.

      The foramen magnum, located in the occipital bone, contains the anterior and posterior spinal arteries, vertebral arteries, and medulla oblongata. The stylomastoid foramen, located in the temporal bone, contains the stylomastoid artery and facial nerve. Finally, the superior orbital fissure, located in the sphenoid bone, contains the oculomotor nerve, recurrent meningeal artery, trochlear nerve, lacrimal, frontal, and nasociliary branches of the ophthalmic nerve, and abducent nerve.

    • This question is part of the following fields:

      • Neurological System
      84.7
      Seconds
  • Question 4 - A 28-year-old woman with a history of unknown cause dystonia visited the neurology...

    Correct

    • A 28-year-old woman with a history of unknown cause dystonia visited the neurology clinic with her mother for follow-up. Her muscle rigidity and spasms have been getting worse and more frequent over the past year, making them difficult to manage. Today, she is being evaluated for the placement of an intrathecal baclofen pump to alleviate her symptoms. What receptor does this medication target?

      Your Answer: Gamma Aminobutyric Acid (GABA)

      Explanation:

      Baclofen is a medication that is commonly prescribed to alleviate muscle spasticity in individuals with conditions like multiple sclerosis, cerebral palsy, and spinal cord injuries. It works by acting as an agonist of GABA receptors in the central nervous system, which includes both the brain and spinal cord. Essentially, this means that baclofen helps to enhance the effects of a neurotransmitter called GABA, which can help to reduce the activity of certain neurons and ultimately lead to a reduction in muscle spasticity. Overall, baclofen is an important medication for individuals with these conditions, as it can help to improve their quality of life and reduce the impact of muscle spasticity on their daily activities.

    • This question is part of the following fields:

      • Neurological System
      5.5
      Seconds
  • Question 5 - A senior citizen arrives at the emergency department complaining of abdominal pain, constipation,...

    Incorrect

    • A senior citizen arrives at the emergency department complaining of abdominal pain, constipation, and confusion. The blood tests reveal hypercalcemia, and the junior doctor suggests that a potential cause of this is an elevated level of parathyroid hormone (PTH) in the bloodstream. Can you provide the most accurate explanation of the functions of PTH?

      Your Answer: Increases calcium reabsorption in the gut

      Correct Answer: Increases bone resorption, increases renal reabsorption of calcium, increases synthesis of active vitamin D

      Explanation:

      The primary function of PTH is to elevate calcium levels and reduce phosphate levels. It exerts its influence on the bone and kidneys directly, while also indirectly affecting the intestine through vitamin D. PTH promotes bone resorption, enhances calcium reabsorption in the kidneys, and reduces phosphate reabsorption. Additionally, it stimulates the conversion of vitamin D to its active form, which in turn boosts calcium absorption in the intestine.

      Maintaining Calcium Balance in the Body

      Calcium ions are essential for various physiological processes in the body, and the largest store of calcium is found in the skeleton. The levels of calcium in the body are regulated by three hormones: parathyroid hormone (PTH), vitamin D, and calcitonin.

      PTH increases calcium levels and decreases phosphate levels by increasing bone resorption and activating osteoclasts. It also stimulates osteoblasts to produce a protein signaling molecule that activates osteoclasts, leading to bone resorption. PTH increases renal tubular reabsorption of calcium and the synthesis of 1,25(OH)2D (active form of vitamin D) in the kidney, which increases bowel absorption of calcium. Additionally, PTH decreases renal phosphate reabsorption.

      Vitamin D, specifically the active form 1,25-dihydroxycholecalciferol, increases plasma calcium and plasma phosphate levels. It increases renal tubular reabsorption and gut absorption of calcium, as well as osteoclastic activity. Vitamin D also increases renal phosphate reabsorption in the proximal tubule.

      Calcitonin, secreted by C cells of the thyroid, inhibits osteoclast activity and renal tubular absorption of calcium.

      Although growth hormone and thyroxine play a small role in calcium metabolism, the primary regulation of calcium levels in the body is through PTH, vitamin D, and calcitonin. Maintaining proper calcium balance is crucial for overall health and well-being.

    • This question is part of the following fields:

      • Neurological System
      37.2
      Seconds
  • Question 6 - A 25-year-old man is scheduled for an open appendicectomy via a lanz incision....

    Correct

    • A 25-year-old man is scheduled for an open appendicectomy via a lanz incision. The surgeon plans to place the incision at the level of the anterior superior iliac spine to improve cosmesis. However, during the procedure, the appendix is found to be retrocaecal, and the incision is extended laterally. What is the nerve that is at the highest risk of injury during this surgery?

      Your Answer: Ilioinguinal

      Explanation:

      The Ilioinguinal Nerve: Anatomy and Function

      The ilioinguinal nerve is a nerve that arises from the first lumbar ventral ramus along with the iliohypogastric nerve. It passes through the psoas major and quadratus lumborum muscles before piercing the internal oblique muscle and passing deep to the aponeurosis of the external oblique muscle. The nerve then enters the inguinal canal and passes through the superficial inguinal ring to reach the skin.

      The ilioinguinal nerve supplies the muscles of the abdominal wall through which it passes. It also provides sensory innervation to the skin and fascia over the pubic symphysis, the superomedial part of the femoral triangle, the surface of the scrotum, and the root and dorsum of the penis or labia majora in females.

      Understanding the anatomy and function of the ilioinguinal nerve is important for medical professionals, as damage to this nerve can result in pain and sensory deficits in the areas it innervates. Additionally, knowledge of the ilioinguinal nerve is relevant in surgical procedures involving the inguinal region.

    • This question is part of the following fields:

      • Neurological System
      23.9
      Seconds
  • Question 7 - At which stage does the aorta divide into the left and right common...

    Incorrect

    • At which stage does the aorta divide into the left and right common iliac arteries?

      Your Answer: L2

      Correct Answer: L4

      Explanation:

      The point of bifurcation of the aorta is typically at the level of L4, which is a consistent location and is frequently assessed in examinations.

      Anatomical Planes and Levels in the Human Body

      The human body can be divided into different planes and levels to aid in anatomical study and medical procedures. One such plane is the transpyloric plane, which runs horizontally through the body of L1 and intersects with various organs such as the pylorus of the stomach, left kidney hilum, and duodenojejunal flexure. Another way to identify planes is by using common level landmarks, such as the inferior mesenteric artery at L3 or the formation of the IVC at L5.

      In addition to planes and levels, there are also diaphragm apertures located at specific levels in the body. These include the vena cava at T8, the esophagus at T10, and the aortic hiatus at T12. By understanding these planes, levels, and apertures, medical professionals can better navigate the human body during procedures and accurately diagnose and treat various conditions.

    • This question is part of the following fields:

      • Neurological System
      6.9
      Seconds
  • Question 8 - A 63-year-old man arrives at the emergency department with difficulty speaking and weakness...

    Correct

    • A 63-year-old man arrives at the emergency department with difficulty speaking and weakness on his right side. The symptoms appeared suddenly, and he did not experience any trauma or pain. During the examination, you observe weakness in his right upper limb. Although he comprehends your inquiries, he struggles to find the right words to respond. There are no alterations in his sensation. You suspect that he has suffered a stroke. Which region of the brain is responsible for expressive dysphasia?

      Your Answer: Broca's area

      Explanation:

      Broca’s area, located in the inferior posterior frontal lobe, is associated with expressive dysphasia, which is characterized by difficulty producing language and non-fluent speech. This condition is sometimes referred to as Broca’s dysphasia. On the other hand, the primary motor cortex, located in the posterior frontal lobe, is responsible for motor control, and lesions in this area can result in motor deficits affecting the opposite side of the body.

      Wernicke’s area, another brain region involved in speech, is primarily responsible for language comprehension and understanding. Lesions in this area can lead to receptive dysphasia, which is characterized by a lack of comprehension and understanding of language. Patients with receptive dysphasia may speak fluently, but their sentences may not make sense and may include neologisms.

      The occipital lobe, located at the back of the brain, is responsible for visual processing. Lesions in this area can result in homonymous hemianopia (with sparing of the macula), agnosias, and cortical blindness.

      Finally, the primary sensory cortex, located in the anterior region of the parietal lobe, receives sensory innervation. Lesions in this area can lead to loss of sensation, proprioception, fine touch, and vibration sense on the opposite side of the body.

      Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.

      In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.

    • This question is part of the following fields:

      • Neurological System
      19.2
      Seconds
  • Question 9 - A 50-year-old man is brought to the emergency department after falling from a...

    Correct

    • A 50-year-old man is brought to the emergency department after falling from a ladder while replacing roof tiles. He has a reduced Glasgow coma scale (GCS) and has vomited 4 times. According to his partner, he was unconscious for about 5 minutes before waking up and becoming increasingly drowsy over the next few hours.

      A CT head scan reveals a skull fracture and a hyper-dense biconvex lesion. Which of the meningeal layers is responsible for the biconvex shape of the bleed?

      Your Answer: Dura mater

      Explanation:

      The outermost layer of the meninges is known as the dura mater. A hyperdense biconvex lesion on a CT head, combined with the patient’s medical history, strongly suggests the presence of an extradural haemorrhage. This type of haemorrhage occurs between the dura mater and the inner surface of the skull, and the biconvex shape is due to the dura mater’s strong attachment to the suture lines. The arachnoid mater is a thin meningeal layer that adheres to the internal surface of the dura mater, while the bone is not a meningeal layer but is fused with the outer layer of the dura through the inner layer of the periosteum of the skull. It’s important to note that the pia dura is not a layer of the meninges, and should not be confused with the pia mater or dura mater.

      The Three Layers of Meninges

      The meninges are a group of membranes that cover the brain and spinal cord, providing support to the central nervous system and the blood vessels that supply it. These membranes can be divided into three distinct layers: the dura mater, arachnoid mater, and pia mater.

      The outermost layer, the dura mater, is a thick fibrous double layer that is fused with the inner layer of the periosteum of the skull. It has four areas of infolding and is pierced by small areas of the underlying arachnoid to form structures called arachnoid granulations. The arachnoid mater forms a meshwork layer over the surface of the brain and spinal cord, containing both cerebrospinal fluid and vessels supplying the nervous system. The final layer, the pia mater, is a thin layer attached directly to the surface of the brain and spinal cord.

      The meninges play a crucial role in protecting the brain and spinal cord from injury and disease. However, they can also be the site of serious medical conditions such as subdural and subarachnoid haemorrhages. Understanding the structure and function of the meninges is essential for diagnosing and treating these conditions.

    • This question is part of the following fields:

      • Neurological System
      24.4
      Seconds
  • Question 10 - A 35-year-old man is brought to the emergency department by ambulance after being...

    Incorrect

    • A 35-year-old man is brought to the emergency department by ambulance after being found unresponsive at his home. He is vomiting, confused, and drowsy with pinpoint pupils. The patient is only responsive to pain, has a respiratory rate of 6/min with shallow breaths, a blood pressure of 65/90mmHg, and a heart rate of 50bpm. It is suspected that he has overdosed. What receptor does the drug class likely agonize?

      Your Answer: Dopamine receptors

      Correct Answer: Mu, delta and kappa receptors

      Explanation:

      Understanding Opioids: Types, Receptors, and Clinical Uses

      Opioids are a class of chemical compounds that act upon opioid receptors located within the central nervous system (CNS). These receptors are G-protein coupled receptors that have numerous actions throughout the body. There are three clinically relevant groups of opioid receptors: mu (µ), kappa (κ), and delta (δ) receptors. Endogenous opioids, such as endorphins, dynorphins, and enkephalins, are produced by specific cells within the CNS and their actions depend on whether µ-receptors or δ-receptors and κ-receptors are their main target.

      Drugs targeted at opioid receptors are the largest group of analgesic drugs and form the second and third steps of the WHO pain ladder of managing analgesia. The choice of which opioid drug to use depends on the patient’s needs and the clinical scenario. The first step of the pain ladder involves non-opioids such as paracetamol and non-steroidal anti-inflammatory drugs. The second step involves weak opioids such as codeine and tramadol, while the third step involves strong opioids such as morphine, oxycodone, methadone, and fentanyl.

      The strength, routes of administration, common uses, and significant side effects of these opioid drugs vary. Weak opioids have moderate analgesic effects without exposing the patient to as many serious adverse effects associated with strong opioids. Strong opioids have powerful analgesic effects but are also more liable to cause opioid-related side effects such as sedation, respiratory depression, constipation, urinary retention, and addiction. The sedative effects of opioids are also useful in anesthesia with potent drugs used as part of induction of a general anesthetic.

    • This question is part of the following fields:

      • Neurological System
      179.9
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurological System (6/10) 60%
Passmed