-
Question 1
Incorrect
-
A 12-day-old infant named Max is brought to the paediatric assessment unit due to yellowing of the skin that started 3 days ago. Max is currently in a bright and alert state and has not experienced any fever. The baby has been passing urine and stool normally, and the mother has not noticed any changes in this regard.
Apart from the jaundice, the mother has no other concerns, and Max has been thriving since birth. Max was born at term, is breastfed, and there are no other children in the house.
Hb: 140 g/L Male: (135-180) Female: (115 - 160)
Bilirubin: 30 µmol/L (3 - 17)
Upon further testing, it is revealed that Max's unconjugated bilirubin levels are 26 µmol/L. Based on these findings, what is the most likely cause of the jaundice in Max's case?Your Answer: Common bile duct obstruction
Correct Answer: Hepatic immaturity
Explanation:Neonatal jaundice caused by physiological factors is a result of the liver’s immaturity and the breakdown of fetal hemoglobin. To determine the cause of jaundice, both clinical symptoms and laboratory findings are crucial. In this case, the presence of isolated unconjugated hyperbilirubinemia without any clinical signs is indicative of physiological jaundice. This type of jaundice is common in the first few weeks of life and is caused by the immaturity of the liver and increased breakdown of hemoglobin. The fact that the baby is being breastfed also supports this diagnosis. Obstructive jaundice, on the other hand, would present with an obstructive picture and an elevated conjugated bilirubin level, which is not the case here. In MCQs, the history often provides clues, such as pale stools and dark urine.
Understanding Jaundice in Newborns
Jaundice is a common condition in newborns that occurs due to the accumulation of bilirubin in the blood. The severity and duration of jaundice can vary depending on the cause and age of the baby. Jaundice in the first 24 hours is always considered pathological and can be caused by conditions such as rhesus haemolytic disease, ABO haemolytic disease, hereditary spherocytosis, and glucose-6-phosphodehydrogenase deficiency.
Jaundice in the neonate from 2-14 days is usually physiological and affects up to 40% of babies. It is more commonly seen in breastfed babies and is due to a combination of factors such as more red blood cells, fragile red blood cells, and less developed liver function. However, if jaundice persists after 14 days (21 days if premature), a prolonged jaundice screen is performed to identify the cause. This includes tests for conjugated and unconjugated bilirubin, direct antiglobulin test, TFTs, FBC and blood film, urine for MC&S and reducing sugars, and U&Es and LFTs.
Prolonged jaundice can be caused by conditions such as biliary atresia, hypothyroidism, galactosaemia, urinary tract infection, breast milk jaundice, prematurity, and congenital infections like CMV and toxoplasmosis. Breast milk jaundice is more common in breastfed babies and is thought to be due to high concentrations of beta-glucuronidase, which increases the intestinal absorption of unconjugated bilirubin. It is important to identify the cause of prolonged jaundice as some conditions like biliary atresia require urgent surgical intervention, while others like hypothyroidism can lead to developmental delays if left untreated.
-
This question is part of the following fields:
- General Principles
-
-
Question 2
Correct
-
A 25-year-old male is undergoing treatment for a complex skin infection that has not improved with flucloxacillin and vancomycin. You contact microbiology for advice on the best antimicrobial therapy, and they suggest daptomycin due to its effective coverage against gram-positive bacteria.
What is the mechanism of action of this medication?Your Answer: Interferes with the outer membrane of gram positive bacteria resulting in cell death
Explanation:Daptomycin causes cell death in gram-positive bacteria by interfering with their outer membrane. Aminoglycosides are bactericidal antibiotics that bind to the 30s ribosome subunit, leading to the misreading of mRNA and the synthesis of abnormal peptides that accumulate intracellularly, ultimately resulting in cell death. Quinolones inhibit bacterial DNA from unwinding and duplicating by blocking DNA topoisomerase. Trimethoprim inhibits bacterial DNA synthesis by binding to dihydrofolate reductase and preventing the reduction of dihydrofolic acid (DHF) to tetrahydrofolic acid (THF), which is an essential precursor in the thymidine synthesis pathway. Terbinafine blocks the biosynthesis of ergosterol, a crucial component of fungal cell membranes, by inhibiting squalene epoxidase.
The mechanism of action of antibiotics can be categorized into inhibiting cell wall formation, protein synthesis, DNA synthesis, and RNA synthesis. Beta-lactams such as penicillins and cephalosporins inhibit cell wall formation by blocking cross-linking of peptidoglycan cell walls. Antibiotics that inhibit protein synthesis include aminoglycosides, chloramphenicol, macrolides, tetracyclines, and fusidic acid. Quinolones, metronidazole, sulphonamides, and trimethoprim inhibit DNA synthesis, while rifampicin inhibits RNA synthesis.
-
This question is part of the following fields:
- General Principles
-
-
Question 3
Incorrect
-
A 20-year-old male arrives at the emergency department with a forehead laceration caused by a blunt object. His neurological examination is normal and CT scan of the head is unremarkable. The wound needs stitches and you clean it before administering lidocaine to numb the area.
What is the intended effect of lidocaine in this scenario?Your Answer:
Correct Answer: Ion channels
Explanation:Lidocaine is a drug that affects ion channels, specifically sodium ion channels. Its mechanism of action involves reducing the frequency of action potentials in neurons that transmit pain signals.
Other drugs that act on ion channels include amlodipine, while adenosine and oxymetazoline are examples of drugs that work on G protein-coupled receptors (GPCRs). Insulin and levothyroxin are drugs that act on tyrosine kinase receptors.
Adrenoreceptors are a type of GPCR, and drugs such as bisoprolol and doxazosin work on these receptors. Bisoprolol is a beta-blocker, while doxazosin is an alpha-blocker.
Pharmacodynamics refers to the effects of drugs on the body, as opposed to pharmacokinetics which is concerned with how the body processes drugs. Drugs typically interact with a target, which can be a protein located either inside or outside of cells. There are four main types of cellular targets: ion channels, G-protein coupled receptors, tyrosine kinase receptors, and nuclear receptors. The type of target determines the mechanism of action of the drug. For example, drugs that work on ion channels cause the channel to open or close, while drugs that activate tyrosine kinase receptors lead to cell growth and differentiation.
It is also important to consider whether a drug has a positive or negative impact on the receptor. Agonists activate the receptor, while antagonists block the receptor preventing activation. Antagonists can be competitive or non-competitive, depending on whether they bind at the same site as the agonist or at a different site. The binding affinity of a drug refers to how readily it binds to a specific receptor, while efficacy measures how well an agonist produces a response once it has bound to the receptor. Potency is related to the concentration at which a drug is effective, while the therapeutic index is the ratio of the dose of a drug resulting in an undesired effect compared to that at which it produces the desired effect.
The relationship between the dose of a drug and the response it produces is rarely linear. Many drugs saturate the available receptors, meaning that further increased doses will not cause any more response. Some drugs do not have a significant impact below a certain dose and are considered sub-therapeutic. Dose-response graphs can be used to illustrate the relationship between dose and response, allowing for easy comparison of different drugs. However, it is important to remember that dose-response varies between individuals.
-
This question is part of the following fields:
- General Principles
-
-
Question 4
Incorrect
-
A 49-year-old man presents to the hospital with complaints of weakness in his legs and tingling sensation in his feet. His wife noticed a problem with his gait over the past few weeks. The patient also reports increasing forgetfulness. During examination, the Romberg test is positive. The patient has a medical history of Crohn's disease and is currently on treatment with 5-aminosalicylic acid and prednisone. A peripheral blood smear shows the presence of larger than normal and pale red blood cells. What laboratory finding is most likely to be present in this patient?
Your Answer:
Correct Answer: Elevated methylmalonic acid levels
Explanation:Megaloblastic anemia can be caused by either folate deficiency or vitamin B12 deficiency, but it is important to differentiate between the two. In this case, the patient’s neurological symptoms suggest a diagnosis of vitamin B12 deficiency. This can be confirmed by checking methylmalonic acid levels, which are normal in folate deficiency but elevated in vitamin B12 deficiency. Homocysteine levels are raised in both conditions and cannot be used to differentiate between them. Reduced iron and elevated ferritin levels are common in anemia of chronic disease, which is associated with inflammatory and autoimmune conditions.
Vitamin B12 is a type of water-soluble vitamin that belongs to the B complex group. Unlike other vitamins, it can only be found in animal-based foods. The human body typically stores enough vitamin B12 to last for up to 5 years. This vitamin plays a crucial role in various bodily functions, including acting as a co-factor for the conversion of homocysteine into methionine through the enzyme homocysteine methyltransferase, as well as for the isomerization of methylmalonyl CoA to Succinyl Co A via the enzyme methylmalonyl mutase. Additionally, it is used to regenerate folic acid in the body.
However, there are several causes of vitamin B12 deficiency, including pernicious anaemia, Diphyllobothrium latum infection, and Crohn’s disease. When the body lacks vitamin B12, it can lead to macrocytic, megaloblastic anaemia and peripheral neuropathy. To prevent these consequences, it is important to ensure that the body has enough vitamin B12 through a balanced diet or supplements.
-
This question is part of the following fields:
- General Principles
-
-
Question 5
Incorrect
-
A 4-month-old child presents with a cleft palate, recurrent infections, and hypocalcemia. On chest x-ray, there is a decreased thymic shadow. The diagnosis is a primary immunodeficiency disorder. Which embryological structure abnormal development is most likely responsible for this condition?
Your Answer:
Correct Answer: 3rd and 4th branchial pouches
Explanation:Abnormal development of the 3rd and 4th branchial pouches is the underlying cause of 22q11 deletion syndromes, including DiGeorge syndrome. This patient exhibits clinical symptoms consistent with DiGeorge syndrome, which is characterized by the improper formation of these pouches.
The 3rd branchial pouch typically develops into the thymus and inferior parathyroids, while the 4th branchial pouch gives rise to the superior parathyroids. When the thymus fails to develop properly, it can result in a deficiency of T cells and recurrent infections. Additionally, inadequate parathyroid development can lead to hypocalcemia.
DiGeorge syndrome, also known as velocardiofacial syndrome and 22q11.2 deletion syndrome, is a primary immunodeficiency disorder that results from a microdeletion of a section of chromosome 22. This autosomal dominant condition is characterized by T-cell deficiency and dysfunction, which puts individuals at risk of viral and fungal infections. Other features of DiGeorge syndrome include hypoplasia of the parathyroid gland, which can lead to hypocalcaemic tetany, and thymic hypoplasia.
The presentation of DiGeorge syndrome can vary, but it can be remembered using the mnemonic CATCH22. This stands for cardiac abnormalities, abnormal facies, thymic aplasia, cleft palate, hypocalcaemia/hypoparathyroidism, and the fact that it is caused by a deletion on chromosome 22. Overall, DiGeorge syndrome is a complex disorder that affects multiple systems in the body and requires careful management and monitoring.
-
This question is part of the following fields:
- General Principles
-
-
Question 6
Incorrect
-
A 9-year-old girl is taken to her doctor by her father with intense throat discomfort and is diagnosed with a probable bacterial throat infection. The doctor prescribes an antibiotic that specifically targets bacterial protein synthesis.
What is the name of the prescribed antibiotic?Your Answer:
Correct Answer: Erythromycin
Explanation:Bacterial protein synthesis is the target of erythromycin.
Bacterial division is inhibited by ciprofloxacin through targeting DNA gyrase.
The production of bacterial cell wall is inhibited by penicillin through targeting the beta-lactam ring.
The activation of folic acid in susceptible organisms is inhibited by trimethoprim.
The mechanism of action of antibiotics can be categorized into inhibiting cell wall formation, protein synthesis, DNA synthesis, and RNA synthesis. Beta-lactams such as penicillins and cephalosporins inhibit cell wall formation by blocking cross-linking of peptidoglycan cell walls. Antibiotics that inhibit protein synthesis include aminoglycosides, chloramphenicol, macrolides, tetracyclines, and fusidic acid. Quinolones, metronidazole, sulphonamides, and trimethoprim inhibit DNA synthesis, while rifampicin inhibits RNA synthesis.
-
This question is part of the following fields:
- General Principles
-
-
Question 7
Incorrect
-
A 39-year-old man visits his GP with a recent cut on his left forearm surrounded by erythema. The GP prescribes a short course of antibiotics. However, after 5 days, the man goes to the local hospital with a 24-hour history of progressive fatigue, headaches, and fevers. On examination, his vital signs are within normal limits except for a temperature of 38.2 ºC. The erythema has spread to his left axilla. Blood cultures reveal the presence of a bacterium containing beta-lactamase. Which antibiotic was most likely prescribed by the GP?
Your Answer:
Correct Answer: Amoxicillin
Explanation:The resistance mechanism of penicillins involves the production of beta-lactamase, an enzyme that breaks down the beta-lactam ring present in the antibiotic. This confers resistance to bacteria that possess the enzyme, rendering the antimicrobial therapy ineffective. In this case, the patient’s infection worsened due to the breakdown of amoxicillin by beta-lactamase. However, co-amoxiclav, a combination of amoxicillin and clavulanic acid, can protect amoxicillin from beta-lactamase activity. On the other hand, ciprofloxacin, doxycycline, and minocycline belong to different classes of antibiotics and are not affected by beta-lactamase activity.
Antibiotic Resistance Mechanisms
Antibiotics are drugs that are used to treat bacterial infections. However, over time, bacteria have developed mechanisms to resist the effects of antibiotics. These mechanisms vary depending on the type of antibiotic being used.
For example, penicillins are often rendered ineffective by bacterial penicillinase, an enzyme that cleaves the β-lactam ring in the antibiotic. Cephalosporins, another type of antibiotic, can become ineffective due to changes in the penicillin-binding-proteins (PBPs) that they target. Macrolides, on the other hand, can be resisted by bacteria that have undergone post-transcriptional methylation of the 23S bacterial ribosomal RNA.
Fluoroquinolones can be resisted by bacteria that have mutations to DNA gyrase or efflux pumps that reduce the concentration of the antibiotic within the cell. Tetracyclines can be resisted by bacteria that have increased efflux through plasmid-encoded transport pumps or ribosomal protection. Aminoglycosides can be resisted by bacteria that have plasmid-encoded genes for acetyltransferases, adenyltransferases, and phosphotransferases.
Sulfonamides can be resisted by bacteria that increase the synthesis of PABA or have mutations in the gene encoding dihydropteroate synthetase. Vancomycin can be resisted by bacteria that have altered the terminal amino acid residues of the NAM/NAG-peptide subunits to which the antibiotic binds. Rifampicin can be resisted by bacteria that have mutations altering residues of the rifampicin binding site on RNA polymerase. Finally, isoniazid and pyrazinamide can be resisted by bacteria that have mutations in the katG and pncA genes, respectively, which reduce the ability of the catalase-peroxidase to activate the pro-drug.
In summary, bacteria have developed various mechanisms to resist the effects of antibiotics, making it increasingly difficult to treat bacterial infections.
-
This question is part of the following fields:
- General Principles
-
-
Question 8
Incorrect
-
A 70-year-old man visits his GP with a persistent ulcer in his buccal mucosa. He has experienced a weight loss of 1 stone in the past 3 months and has a smoking history of 40 pack-years. The GP is worried and decides to refer him to the urgent 2-week pathway. Can you identify the virus that is a recognized risk factor for the development of this condition?
Your Answer:
Correct Answer: Human papillomavirus 16/18
Explanation:Oropharyngeal cancer is often associated with human papillomavirus 16/18 as a risk factor. The presence of persistent ulcers, a history of smoking, and weight loss are all concerning symptoms. The virus can infect cells in the oropharynx and cause cellular changes that may lead to cancer if left untreated.
Human herpes virus 6 is not typically linked to cancer. Instead, it is commonly associated with roseola infantum, a condition characterized by a high fever and rash in young children.
On the other hand, human herpes virus 8 is known to be associated with Kaposi’s sarcoma, a type of cancer that usually affects immunocompromised individuals. This cancer is characterized by pink or purple plaques on the skin, mouth, and sometimes internal organs.
Understanding Oncoviruses and Their Associated Cancers
Oncoviruses are viruses that have the potential to cause cancer. These viruses can be detected through blood tests and prevented through vaccination. There are several types of oncoviruses, each associated with a specific type of cancer.
The Epstein-Barr virus, for example, is linked to Burkitt’s lymphoma, Hodgkin’s lymphoma, post-transplant lymphoma, and nasopharyngeal carcinoma. Human papillomavirus 16/18 is associated with cervical cancer, anal cancer, penile cancer, vulval cancer, and oropharyngeal cancer. Human herpes virus 8 is linked to Kaposi’s sarcoma, while hepatitis B and C viruses are associated with hepatocellular carcinoma. Finally, human T-lymphotropic virus 1 is linked to tropical spastic paraparesis and adult T cell leukemia.
It is important to understand the link between oncoviruses and cancer so that appropriate measures can be taken to prevent and treat these diseases. Vaccination against certain oncoviruses, such as HPV, can significantly reduce the risk of developing associated cancers. Regular screening and early detection can also improve outcomes for those who do develop cancer as a result of an oncovirus.
-
This question is part of the following fields:
- General Principles
-
-
Question 9
Incorrect
-
A 26-year-old female presents with a fever of 38ºC, a widespread maculopapular rash, chills and a headache. The signs and symptoms appeared a few hours earlier. The patient was given a single antibiotic dose earlier that day, which completed the required course.
What is the most probable infection that she is suffering from?Your Answer:
Correct Answer: Syphilis
Explanation:Managing Syphilis
Syphilis can be managed through the administration of intramuscular benzathine penicillin, which is the first-line treatment. In cases where this is not possible, doxycycline may be used as an alternative. After treatment, it is important to monitor nontreponemal titres (such as rapid plasma reagin or Venereal Disease Research Laboratory) to assess the response. A fourfold decline in titres is often considered an adequate response to treatment.
It is important to note that the Jarisch-Herxheimer reaction may occur following treatment. This is characterized by symptoms such as fever, rash, and tachycardia after the first dose of antibiotic. Unlike anaphylaxis, there is no wheezing or hypotension. This reaction is thought to be due to the release of endotoxins following bacterial death and typically occurs within a few hours of treatment. No treatment is needed for this reaction other than antipyretics if required.
-
This question is part of the following fields:
- General Principles
-
-
Question 10
Incorrect
-
A 65-year-old woman comes to your clinic with symptoms of depression, weight gain, and dry skin. You suspect that she might be experiencing hypothyroidism.
What is the origin of the organ responsible for her symptoms, from an embryological perspective?Your Answer:
Correct Answer: Endoderm
Explanation:The thyroid, parathyroid, and thymus glands are all derived from the endodermal layer of the germ layer. Conversely, the ectoderm gives rise to the nails and lens of the eye, while the neural crest tissue is responsible for the development of the nervous system. Finally, the mesoderm is responsible for the formation of muscle and connective tissues.
Embryological Layers and Their Derivatives
Embryonic development involves the formation of three primary germ layers: ectoderm, mesoderm, and endoderm. Each layer gives rise to specific tissues and organs in the developing embryo. The ectoderm forms the surface ectoderm, which gives rise to the epidermis, mammary glands, and lens of the eye, as well as the neural tube, which gives rise to the central nervous system (CNS) and associated structures such as the posterior pituitary and retina. The neural crest, which arises from the neural tube, gives rise to a variety of structures including autonomic nerves, cranial nerves, facial and skull bones, and adrenal cortex. The mesoderm gives rise to connective tissue, muscle, bones (except facial and skull), and organs such as the kidneys, ureters, gonads, and spleen. The endoderm gives rise to the epithelial lining of the gastrointestinal tract, liver, pancreas, thyroid, parathyroid, and thymus.
-
This question is part of the following fields:
- General Principles
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)