00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - Which area is typically affected by an infarction that leads to locked-in syndrome?...

    Correct

    • Which area is typically affected by an infarction that leads to locked-in syndrome?

      Your Answer: Pons

      Explanation:

      Locked-in Syndrome: A Condition of Total Dependence on Caregivers

      Locked-in syndrome is a medical condition that renders a patient mute, quadriplegic, bedridden, and completely reliant on their caregivers. Despite their physical limitations, patients with locked-in syndrome remain alert and cognitively intact, and can communicate by moving their eyes. This condition typically occurs as a result of an infarction of the pons or medulla, which is often caused by an embolus blocking a branch of the basilar artery.

    • This question is part of the following fields:

      • Neurosciences
      10.5
      Seconds
  • Question 2 - What structure has been found to exhibit excessive activity in individuals with depression?...

    Correct

    • What structure has been found to exhibit excessive activity in individuals with depression?

      Your Answer: Amygdala

      Explanation:

      Neuroimaging and Depression

      Research on depression using neuroimaging has revealed several important findings. One such finding is that the volume of the amygdala decreases with an increasing number of depressive episodes. Additionally, studies using positron emission tomography (PET) have shown that individuals with depression have elevated baseline amygdala activity that is positively correlated with the severity of their depression. Furthermore, depressed individuals exhibit greater amygdala reactivity to negative emotional stimuli compared to healthy controls.

      Another area of interest is the subgenual anterior cingulate cortex (ACC), where increased levels of activity have been observed in depressed individuals. Several studies have also reported decreased volume in the subgenual ACC associated with depression. Finally, researchers have found that depressed individuals exhibit less reactivity in the dorsolateral prefrontal cortex (DLPFC) to affective stimuli compared to healthy controls.

      In summary, neuroimaging research suggests that the amygdala and subgenual ACC are overactive in depression, while the DLPFC is underactive. These findings provide important insights into the neural mechanisms underlying depression and may inform the development of more effective treatments.

    • This question is part of the following fields:

      • Neurosciences
      15.1
      Seconds
  • Question 3 - What is the embryonic structure that gives rise to the cerebellum and pons?...

    Incorrect

    • What is the embryonic structure that gives rise to the cerebellum and pons?

      Your Answer: Mesencephalon

      Correct Answer: Metencephalon

      Explanation:

      During fetal development, the neural tube at the cranial end gives rise to three major parts: the prosencephalon, mesencephalon, and rhombencephalon. The prosencephalon further divides into the telencephalon and diencephalon, forming the forebrain. The mesencephalon forms the midbrain, while the rhombencephalon splits into the metencephalon (which gives rise to the cerebellum and pons) and myelencephalon (which forms the medulla oblongata and spinal cord).

    • This question is part of the following fields:

      • Neurosciences
      10.1
      Seconds
  • Question 4 - Which statement about normal pressure hydrocephalus is incorrect? ...

    Correct

    • Which statement about normal pressure hydrocephalus is incorrect?

      Your Answer: CSF pressure is usually raised

      Explanation:

      Normal Pressure Hydrocephalus

      Normal pressure hydrocephalus is a type of chronic communicating hydrocephalus, which occurs due to the impaired reabsorption of cerebrospinal fluid (CSF) by the arachnoid villi. Although the CSF pressure is typically high, it remains within the normal range, and therefore, it does not cause symptoms of high intracranial pressure (ICP) such as headache and nausea. Instead, patients with normal pressure hydrocephalus usually present with a classic triad of symptoms, including incontinence, gait ataxia, and dementia, which is often referred to as wet, wobbly, and wacky. Unfortunately, this condition is often misdiagnosed as Parkinson’s of Alzheimer’s disease.

      The classic triad of normal pressure hydrocephalus, also known as Hakim’s triad, includes gait instability, urinary incontinence, and dementia. On the other hand, non-communicating hydrocephalus results from the obstruction of CSF flow in the third of fourth ventricle, which causes symptoms of raised intracranial pressure, such as headache, vomiting, hypertension, bradycardia, altered consciousness, and papilledema.

    • This question is part of the following fields:

      • Neurosciences
      16.6
      Seconds
  • Question 5 - What is a true statement about dopamine receptors? ...

    Correct

    • What is a true statement about dopamine receptors?

      Your Answer: Activation of D1 receptors activates adenylyl cyclase

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      23.8
      Seconds
  • Question 6 - What waveform represents a frequency range of 12-30Hz? ...

    Incorrect

    • What waveform represents a frequency range of 12-30Hz?

      Your Answer: Theta

      Correct Answer: Beta

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      54.8
      Seconds
  • Question 7 - From where does the nerve that originates in the medulla oblongata come? ...

    Correct

    • From where does the nerve that originates in the medulla oblongata come?

      Your Answer: Vagus

      Explanation:

      Overview of Cranial Nerves and Their Functions

      The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.

      The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.

      The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.

      The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.

      The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.

      The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.

      The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.

      The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.

    • This question is part of the following fields:

      • Neurosciences
      14
      Seconds
  • Question 8 - A 65-year-old woman is experiencing memory difficulties and has been diagnosed with Alzheimer's...

    Correct

    • A 65-year-old woman is experiencing memory difficulties and has been diagnosed with Alzheimer's disease. Which anatomical structure is most likely to exhibit atrophy in this scenario?

      Your Answer: Hippocampus

      Explanation:

      The frontal lobe is located at the front of the cerebrum and is responsible for managing executive functions and working memory. The hippocampus plays a role in spatial navigation and the consolidation of short term memory to long term memory, but is often the first region of the brain to suffer damage in Alzheimer’s disease. The corpus callosum is a bundle of nerve fibers that connects the left and right cerebral hemispheres, facilitating communication between them. The thalamus is a symmetrical midline structure that relays sensory and motor signals to the cerebral cortex, while also regulating consciousness, alertness, and sleep. Broca’s area, which is typically located in the inferior frontal gyrus, is a key region involved in language production.

    • This question is part of the following fields:

      • Neurosciences
      7.9
      Seconds
  • Question 9 - What pathological finding is indicative of multisystem atrophy? ...

    Correct

    • What pathological finding is indicative of multisystem atrophy?

      Your Answer: Shrinkage of the putamen

      Explanation:

      Multisystem Atrophy: A Parkinson Plus Syndrome

      Multisystem atrophy is a type of Parkinson plus syndrome that is characterized by three main features: Parkinsonism, autonomic failure, and cerebellar ataxia. It can present in three different ways, including Shy-Drager Syndrome, Striatonigral degeneration, and Olivopontocerebellar atrophy, each with varying degrees of the three main features.

      Macroscopic features of multisystem atrophy include pallor of the substantia nigra, greenish discoloration and atrophy of the putamen, and cerebellar atrophy. Microscopic features include the presence of Papp-Lantos bodies, which are alpha-synuclein inclusions found in oligodendrocytes in the substantia nigra, cerebellum, and basal ganglia.

      Overall, multisystem atrophy is a complex and debilitating condition that affects multiple systems in the body, leading to a range of symptoms and challenges for patients and their caregivers.

    • This question is part of the following fields:

      • Neurosciences
      12.7
      Seconds
  • Question 10 - What is a correct statement about the blood brain barrier? ...

    Correct

    • What is a correct statement about the blood brain barrier?

      Your Answer: Nasally administered drugs can bypass the blood brain barrier

      Explanation:

      Understanding the Blood Brain Barrier

      The blood brain barrier (BBB) is a crucial component of the brain’s defense system against harmful chemicals and ion imbalances. It is a semi-permeable membrane formed by tight junctions of endothelial cells in the brain’s capillaries, which separates the blood from the cerebrospinal fluid. However, certain areas of the BBB, known as circumventricular organs, are fenestrated to allow neurosecretory products to enter the blood.

      When it comes to MRCPsych questions, the focus is on the following aspects of the BBB: the tight junctions between endothelial cells, the ease with which lipid-soluble molecules pass through compared to water-soluble ones, the difficulty large and highly charged molecules face in passing through, the increased permeability of the BBB during inflammation, and the theoretical ability of nasally administered drugs to bypass the BBB.

      It is important to remember the specific circumventricular organs where the BBB is fenestrated, including the posterior pituitary and the area postrema. Understanding the BBB’s function and characteristics is essential for medical professionals to diagnose and treat neurological disorders effectively.

    • This question is part of the following fields:

      • Neurosciences
      10.6
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurosciences (8/10) 80%
Passmed