-
Question 1
Incorrect
-
A 60-year-old male patient complains of chronic productive cough and difficulty breathing. He has been smoking 10 cigarettes per day for the past 30 years. What is the number of pack years equivalent to his smoking history?
Your Answer: 3000
Correct Answer: 15
Explanation:Pack Year Calculation
Pack year calculation is a tool used to estimate the risk of tobacco exposure. It is calculated by multiplying the number of packs of cigarettes smoked per day by the number of years of smoking. One pack of cigarettes contains 20 cigarettes. For instance, if a person smoked half a pack of cigarettes per day for 30 years, their pack year history would be 15 (1/2 x 30 = 15).
The pack year calculation is a standardized method of measuring tobacco exposure. It helps healthcare professionals to estimate the risk of developing smoking-related diseases such as lung cancer, chronic obstructive pulmonary disease (COPD), and heart disease. The higher the pack year history, the greater the risk of developing these diseases. Therefore, it is important for individuals who smoke or have a history of smoking to discuss their pack year history with their healthcare provider to determine appropriate screening and prevention measures.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 2
Incorrect
-
A 78-year-old man comes to the emergency department complaining of increasing difficulty in breathing over the past two days. He has a medical history of squamous cell lung cancer.
Upon examination, the trachea is observed to have shifted towards the left side, with dull percussion and absence of breath sounds throughout the left chest.
What is the probable diagnosis?Your Answer: Right massive pleural effusion
Correct Answer: Left lung collapse
Explanation:When a lung collapses, it can cause the trachea to shift towards the affected side, and there may be dullness on percussion and reduced breath sounds throughout the lung field. This is because the decrease in pressure on the affected side causes the mediastinum and trachea to move towards it.
A massive pleural effusion, on the other hand, would cause widespread dullness and absent breath sounds, but it would push the trachea away from the affected side due to increased pressure.
Pneumonia typically only affects one lung zone, so there would not be widespread dullness or absent breath sounds throughout the hemithorax. It also does not usually affect the position of the mediastinum or trachea.
Pneumothorax would be hyperresonant on percussion, not dull, and it may push the trachea away from the affected side in severe cases, but this is more common in tension pneumothoraces that occur after trauma.
A lobectomy may cause the trachea to shift towards the same side as the surgery due to decreased pressure, but it would not cause dullness or absent breath sounds throughout the lung fields.
Understanding White Lung Lesions on Chest X-Rays
When examining a chest x-ray, white shadowing in the lungs can indicate a variety of conditions. These may include consolidation, pleural effusion, collapse, pneumonectomy, specific lesions such as tumors, or fluid accumulation such as pulmonary edema. In cases where there is a complete white-out of one side of the chest, it is important to assess the position of the trachea. If the trachea is pulled towards the side of the white-out, it may indicate pneumonectomy, lung collapse, or pulmonary hypoplasia. If the trachea is pushed away from the white-out, it may indicate pleural effusion, a large thoracic mass, or a diaphragmatic hernia. Other signs of a positive mass effect may include leftward bowing of the azygo-oesophageal recess and splaying of the ribs on the affected side. Understanding the potential causes of white lung lesions on chest x-rays can aid in accurate diagnosis and treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 3
Correct
-
A 67-year-old man visits his doctor complaining of dyspnoea. He experiences shortness of breath after walking just a few meters, whereas he can usually walk up to 200m. The man appears cyanosed in his extremities and his pulse oximeter shows a reading of 83%. What is the primary mode of carbon dioxide transportation in the bloodstream?
Your Answer: Bound to haemoglobin as bicarbonate ions
Explanation:Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 4
Incorrect
-
What is the term used to describe the area between the vocal cords?
Your Answer: Piriform recess
Correct Answer: Rima glottidis
Explanation:The narrowest part of the laryngeal cavity is known as the rima glottidis.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 5
Correct
-
A 7-year-old boy is brought to the clinic by his father, who is worried about his son's hearing. The father has noticed that his son frequently asks him to repeat himself and tends to turn up the volume on the TV. During Weber's test, the patient indicates that the sound is louder on the right side. What conclusion can be drawn from this finding?
Your Answer: Can not tell which side is affected.
Explanation:The Weber test alone cannot determine which side of the patient’s hearing is affected. The test involves placing a tuning fork on the forehead and asking the patient to report if the sound is symmetrical or louder on one side. If the sound is louder on the left side, it could indicate a conductive hearing loss on the left or a sensorineural hearing loss on the right. To obtain more information, the Weber test should be performed in conjunction with the Rinne test, which involves comparing air conduction and bone conduction.
Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness
Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.
Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.
The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.
Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 6
Correct
-
A 65-year-old man presents with a persistent dry cough and unintentional weight loss of 5kg over the past 3 months. He denies experiencing chest pain, dyspnoea, fever or haemoptysis. The patient has a history of smoking 10 cigarettes a day for the last 50 years and has been diagnosed with COPD. A nodule is detected on chest x-ray, and biopsy results indicate a tumour originating from the bronchial glands.
What is the most probable diagnosis?Your Answer: Adenocarcinoma of the lung
Explanation:Adenocarcinoma has become the most prevalent form of lung cancer, originating from the bronchial glands as a type of non-small-cell lung cancer.
While a bronchogenic cyst may cause chest pain and dysphagia, it is typically diagnosed during childhood and does not stem from the bronchial glands.
Sarcoidosis may result in a persistent cough and weight loss, but it typically affects multiple systems and does not involve nodules originating from the bronchial glands.
Small cell carcinoma of the lung is a significant consideration, but given the description of a tumor originating from the bronchial glands, adenocarcinoma is the more probable diagnosis.
Lung cancer can be classified into two main types: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). SCLC is less common, accounting for only 15% of cases, but has a worse prognosis. NSCLC, on the other hand, is more prevalent and can be further broken down into different subtypes. Adenocarcinoma is now the most common type of lung cancer, likely due to the increased use of low-tar cigarettes. It is often seen in non-smokers and accounts for 62% of cases in ‘never’ smokers. Squamous cell carcinoma is another subtype, and cavitating lesions are more common in this type of lung cancer. Large cell carcinoma, alveolar cell carcinoma, bronchial adenoma, and carcinoid are other subtypes of NSCLC. Differentiating between these subtypes is crucial as different drugs are available to treat each subtype.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 7
Correct
-
A 50-year-old female presents to her GP with complaints of shortness of breath and weakness during mild-moderate exercise. She reports that these episodes have been getting progressively worse and now often result in dizziness. The patient has no significant medical history but was a previous smoker for 15 years, smoking 15 cigarettes per day. Spirometry testing reveals a restrictive lung pattern. What is the most probable diagnosis?
Your Answer: Myasthenia gravis
Explanation:Myasthenia gravis can result in a restrictive pattern of lung disease due to weakness of the respiratory muscles, which causes difficulty in breathing air in. Asthma and COPD are incorrect as they cause an obstructive pattern on spirometry, with asthma being characterized by small bronchiole obstruction from inflammation and increased mucus production, and COPD causing small airway inflammation and emphysema that restricts outward airflow. Alpha-1 antitrypsin deficiency also leads to an obstructive pattern, as it results in pulmonary tissue degradation and panlobular emphysema.
Understanding the Differences between Obstructive and Restrictive Lung Diseases
Obstructive and restrictive lung diseases are two distinct categories of respiratory conditions that affect the lungs in different ways. Obstructive lung diseases are characterized by a reduction in the flow of air through the airways due to narrowing or blockage, while restrictive lung diseases are characterized by a decrease in lung volume or capacity, making it difficult to breathe in enough air.
Spirometry is a common diagnostic tool used to differentiate between obstructive and restrictive lung diseases. In obstructive lung diseases, the ratio of forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) is less than 80%, indicating a reduced ability to exhale air. In contrast, restrictive lung diseases are characterized by an FEV1/FVC ratio greater than 80%, indicating a reduced ability to inhale air.
Examples of obstructive lung diseases include chronic obstructive pulmonary disease (COPD), chronic bronchitis, and emphysema, while asthma and bronchiectasis are also considered obstructive. Restrictive lung diseases include intrapulmonary conditions such as idiopathic pulmonary fibrosis, extrinsic allergic alveolitis, and drug-induced fibrosis, as well as extrapulmonary conditions such as neuromuscular diseases, obesity, and scoliosis.
Understanding the differences between obstructive and restrictive lung diseases is important for accurate diagnosis and appropriate treatment. While both types of conditions can cause difficulty breathing, the underlying causes and treatment approaches can vary significantly.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 8
Incorrect
-
A 45-year-old businessman is admitted to the emergency department with suspected pneumonia following a lower respiratory tract infection. The patient had returned to the UK three days ago from a business trip to China. He reports experiencing a productive cough and feeling extremely fatigued and short of breath upon waking up. He has no significant medical history and is a non-smoker and non-drinker.
He is taken for a chest X-ray, where he learns that several of his colleagues who were on the same business trip have also been admitted to the emergency department with similar symptoms. The X-ray shows opacification in the right middle and lower zones, indicating consolidation. Initial blood tests reveal hyponatraemia and lymphopenia. Based on his presentation and X-ray findings, he is diagnosed with pneumonia.
Which organism is most likely responsible for causing his pneumonia?Your Answer: Streptococcus pneumoniae
Correct Answer: Legionella pneumophila
Explanation:If multiple individuals in an air conditioned space develop pneumonia, Legionella pneumophila should be considered as a possible cause. Legionella pneumophila is often associated with hyponatremia and lymphopenia. Haemophilus influenzae is a frequent cause of lower respiratory tract infections in patients with COPD. Klebsiella pneumoniae is commonly found in patients with alcohol dependence. Pneumocystis jiroveci is typically observed in HIV-positive patients and is characterized by a dry cough and desaturation during exercise.
Pneumonia is a common condition that affects the alveoli of the lungs, usually caused by a bacterial infection. Other causes include viral and fungal infections. Streptococcus pneumoniae is the most common organism responsible for pneumonia, accounting for 80% of cases. Haemophilus influenzae is common in patients with COPD, while Staphylococcus aureus often occurs in patients following influenzae infection. Mycoplasma pneumoniae and Legionella pneumophilia are atypical pneumonias that present with dry cough and other atypical symptoms. Pneumocystis jiroveci is typically seen in patients with HIV. Idiopathic interstitial pneumonia is a group of non-infective causes of pneumonia.
Patients who develop pneumonia outside of the hospital have community-acquired pneumonia (CAP), while those who develop it within hospitals are said to have hospital-acquired pneumonia. Symptoms of pneumonia include cough, sputum, dyspnoea, chest pain, and fever. Signs of systemic inflammatory response, tachycardia, reduced oxygen saturations, and reduced breath sounds may also be present. Chest x-ray is used to diagnose pneumonia, with consolidation being the classical finding. Blood tests, such as full blood count, urea and electrolytes, and CRP, are also used to check for infection.
Patients with pneumonia require antibiotics to treat the underlying infection and supportive care, such as oxygen therapy and intravenous fluids. Risk stratification is done using a scoring system called CURB-65, which stands for confusion, respiration rate, blood pressure, age, and is used to determine the management of patients with community-acquired pneumonia. Home-based care is recommended for patients with a CRB65 score of 0, while hospital assessment is recommended for all other patients, particularly those with a CRB65 score of 2 or more. The CURB-65 score also correlates with an increased risk of mortality at 30 days.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 9
Correct
-
Sophie is a 15-year-old girl who has been brought to your GP clinic by her father. She has not yet started to develop breasts or have her first period. She does not seem worried, but her father is concerned. Sophie has a history of eczema and has been using topical steroids for several years. When her father leaves the room, she also admits to occasionally using tanning beds.
What could be a possible cause of delayed puberty in Sophie?Your Answer: Cystic fibrosis
Explanation:Delayed puberty can be caused by various factors, with constitutional delay being the most common cause. However, other causes must be ruled out before diagnosing constitutional delay. Some of these causes include chronic illnesses like kidney disease and Crohn’s disease, malnutrition from conditions such as anorexia nervosa, cystic fibrosis, and coeliac disease, excessive physical exercise, psychosocial deprivation, steroid therapy, hypothyroidism, tumours near the hypothalamo-pituitary axis, congenital anomalies like septo-optic dysplasia and congenital panhypopituitarism, irradiation treatment, and trauma such as surgery or head injury.
Understanding Cystic Fibrosis: Symptoms and Other Features
Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.
Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 10
Incorrect
-
A 72-year-old male has unfortunately been diagnosed with lung cancer after a brief illness during which he visited his GP with a cough and loss of weight. The GP has received the histology report after a recent bronchoscopy, which revealed a squamous cell carcinoma. What symptoms would you anticipate in this patient based on the diagnosis?
Your Answer: Excessive ACTH secretion
Correct Answer: Clubbing
Explanation:Hypertrophic pulmonary osteoarthropathy (HPOA) is linked to squamous cell carcinoma, while small cell carcinoma of the lung is associated with excessive secretion of ADH and may also cause hypertension, hyperglycemia, and hypokalemia due to excessive ACTH secretion (although this is not typical). Lambert-Eaton syndrome is also linked to small cell carcinoma, while adenocarcinoma of the lung is associated with gynecomastia.
Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 11
Incorrect
-
A 67-year-old man is admitted to the acute stroke unit following a haemorrhagic stroke. Three days after admission he complains of pain and swelling in the left calf. A Doppler ultrasound shows large DVT with extension into the upper leg. Given his recent stroke, anticoagulation is contraindicated, however, there is a significant risk of him developing a pulmonary embolus. The decision is made to insert an inferior vena cava (IVC) filter. The registrar inserting the filter is fairly junior, he plans to insert this just above the renal veins, however, asks the consultant if there are any landmarks he can use to guide him. The consultant advises him if he reaches the diaphragm he has gone too far!
At which vertebral level would the diaphragm be encountered when inserting an IVC filter?Your Answer: T10
Correct Answer: T8
Explanation:The point at which the inferior vena cava passes through the diaphragm is being asked in this question. The correct answer is T8, which is where the IVC crosses the diaphragm through the caval opening. The IVC is formed by the joining of the left and right common iliac veins at around L5.
In patients who are at high risk of pulmonary embolus and for whom anticoagulation is not effective or contraindicated, an IVC filter can be used. This filter is usually inserted above the renal veins, but it can be placed at any level, including the superior vena cava, if necessary.
The other options provided in the question, T6, T10, and T11, are not associated with any significant structures. The oesophagus passes through the diaphragm with the vagal trunk at T10.
Structures Perforating the Diaphragm
The diaphragm is a dome-shaped muscle that separates the thoracic and abdominal cavities. It plays a crucial role in breathing by contracting and relaxing to create negative pressure in the lungs. However, there are certain structures that perforate the diaphragm, allowing them to pass through from the thoracic to the abdominal cavity. These structures include the inferior vena cava at the level of T8, the esophagus and vagal trunk at T10, and the aorta, thoracic duct, and azygous vein at T12.
To remember these structures and their corresponding levels, a helpful mnemonic is I 8(ate) 10 EGGS AT 12. This means that the inferior vena cava is at T8, the esophagus and vagal trunk are at T10, and the aorta, thoracic duct, and azygous vein are at T12. Knowing these structures and their locations is important for medical professionals, as they may need to access or treat them during surgical procedures or diagnose issues related to them.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 12
Incorrect
-
A 23-year-old woman comes to your clinic with a complaint of ear pain and difficulty hearing on one side. During the examination, you observe that she has a fever and a bulging tympanic membrane. What nerve transmits pain from the middle ear?
Your Answer: Maxillary nerve
Correct Answer: Glossopharyngeal nerve
Explanation:The correct answer is the glossopharyngeal nerve, which is responsible for carrying sensation from the middle ear.
The ninth cranial nerve, or glossopharyngeal nerve, carries taste and sensation from the posterior one-third of the tongue, as well as sensation from various areas such as the pharyngeal wall, tonsils, pharyngotympanic tube, middle ear, tympanic membrane, external auditory canal, and auricle. It also provides motor fibers to the stylopharyngeus and parasympathetic fibers to the parotid gland. Additionally, it carries information from the baroreceptors and chemoreceptors of the carotid sinus.
On the other hand, the seventh cranial nerve, or facial nerve, innervates the muscles of facial expression, stylohyoid, stapedius, and the posterior belly of digastric. It carries sensation from part of the external acoustic meatus, auricle, and behind the auricle, and taste from the anterior two-thirds of the tongue. It also provides parasympathetic fibers to the submandibular, sublingual, nasal, and lacrimal glands.
The eighth cranial nerve, or vestibulocochlear nerve, has a vestibular component that carries balance information from the labyrinths of the inner ear and a cochlear component that carries hearing information from the cochlea of the inner ear.
The twelfth cranial nerve, or hypoglossal nerve, supplies motor innervation to all of the intrinsic muscles of the tongue and all of the extrinsic muscles of the tongue except for palatoglossus.
Lastly, the maxillary nerve is the second division of the trigeminal nerve, the fifth cranial nerve, which carries sensation from the upper teeth and gingivae, the nasal cavity, and skin across the lower eyelids and cheeks.
Based on the patient’s symptoms of ear pain, the most likely diagnosis is otitis media, as indicated by her fever and the presence of a bulging tympanic membrane on otoscopy.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 13
Incorrect
-
A 24-year-old male patient arrives at the Emergency Department complaining of abdominal pain, nausea, vomiting, and a decreased level of consciousness. Upon examination, the patient exhibits Kussmaul respiration and an acetone-like breath odor.
What type of metabolic disturbance is most consistent with the symptoms and presentation of this patient?Your Answer: Respiratory acidosis, oxygen dissociation curve shifts to the right
Correct Answer: Metabolic acidosis, oxygen dissociation curve shifts to the right
Explanation:The correct answer is that metabolic acidosis shifts the oxygen dissociation curve to the right. This is seen in the condition described in the question, diabetic ketoacidosis, which is associated with metabolic acidosis. Acidosis causes more oxygen to be unloaded from haemoglobin, leading to a rightward shift in the curve. The other answer options are incorrect, as they either describe a different type of acidosis or an incorrect direction of the curve shift.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 14
Correct
-
A 60-year-old diabetic patient presents to the clinic with a chief complaint of hearing loss. After conducting a Webber’s and Rinne’s test, the following results were obtained:
- Webber’s test: lateralizes to the left ear
- Rinne’s test (left ear): bone conduction > air conduction
- Rinne’s test (right ear): air conduction > bone conduction
Based on these findings, what is the probable cause of the patient's hearing loss?Your Answer: Otitis media with effusion
Explanation:The Weber test lateralises to the side with bone conduction > air conduction, indicating conductive hearing loss on that side. The options given include acoustic neuroma (sensorineural hearing loss), otitis media with effusion (conductive hearing loss), temporal lobe epilepsy (no conductive hearing loss), and Meniere’s disease (vertigo, tinnitus, and fluctuating hearing loss). The correct answer is otitis media with effusion.
Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness
Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.
Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.
The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.
Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 15
Incorrect
-
A 42-year-old man from Turkey visits his doctor complaining of chronic breathlessness and a dry cough that has been worsening over the past 7 months. He has no significant medical history except for an allergy to penicillin. He is a non-smoker and does not consume alcohol. He works as a taxi driver and lives alone, but he is an avid collector of exotic pigeons and enjoys a cup of coffee every morning. The doctor suspects that his symptoms may be due to exposure to what causes pigeon fancier's lung?
Your Answer: Mycobacterium avium
Correct Answer: Avian proteins
Explanation:Bird fanciers’ lung is caused by avian proteins found in bird droppings, which can lead to hypersensitivity pneumonitis. This is a type of pulmonary disorder that results from an inflammatory reaction to inhaling an allergen, which can be organic or inorganic particles such as animal or plant proteins, certain chemicals, or microbes. Similarly, other types of lung diseases such as tobacco worker’s lung, farmer’s lung, and hot tub lung are also caused by exposure to specific allergens in the environment.
Extrinsic allergic alveolitis, also known as hypersensitivity pneumonitis, is a condition that occurs when the lungs are damaged due to hypersensitivity to inhaled organic particles. This damage is thought to be caused by immune-complex mediated tissue damage, although delayed hypersensitivity may also play a role. Examples of this condition include bird fanciers’ lung, farmers lung, malt workers’ lung, and mushroom workers’ lung. Symptoms can be acute or chronic and include dyspnoea, dry cough, fever, lethargy, and weight loss. Diagnosis is made through imaging, bronchoalveolar lavage, and serologic assays for specific IgG antibodies. Management involves avoiding the triggering factors and oral glucocorticoids.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 16
Incorrect
-
A 10-year-old boy is recuperating the day after a tonsillectomy. His parents report that he hasn't had anything to eat for 6 hours prior to the surgery and he is feeling famished. However, he is declining any attempts to consume food or water. There are no prescribed medications or known drug allergies listed on his medical records.
What would be the most appropriate first step to take?Your Answer: Wait and review in 2 hours time
Correct Answer: Prescribe analgesia and encourage oral intake
Explanation:Effective pain management is crucial after a tonsillectomy to promote the consumption of food and fluids.
Prescribing analgesics and encouraging oral intake is the best course of action. This will alleviate pain and enable the patient to eat and drink, which is essential for a speedy recovery.
Starting maintenance fluids or partial nutritional feeds, obtaining IV access, or waiting for two hours before reviewing the patient are not the most appropriate options. Analgesia should be the primary consideration to facilitate oral fluid therapy and promote healing.
Tonsillitis and Tonsillectomy: Complications and Indications
Tonsillitis is a condition that can lead to various complications, including otitis media, peritonsillar abscess, and, in rare cases, rheumatic fever and glomerulonephritis. Tonsillectomy, the surgical removal of the tonsils, is a controversial procedure that should only be considered if the person meets specific criteria. According to NICE, surgery should only be considered if the person experiences sore throats due to tonsillitis, has five or more episodes of sore throat per year, has been experiencing symptoms for at least a year, and the episodes of sore throat are disabling and prevent normal functioning. Other established indications for a tonsillectomy include recurrent febrile convulsions, obstructive sleep apnoea, stridor, dysphagia, and peritonsillar abscess if unresponsive to standard treatment.
Despite the benefits of tonsillectomy, the procedure also carries some risks. Primary complications, which occur within 24 hours of the surgery, include haemorrhage and pain. Secondary complications, which occur between 24 hours to 10 days after the surgery, include haemorrhage (most commonly due to infection) and pain. Therefore, it is essential to weigh the benefits and risks of tonsillectomy before deciding to undergo the procedure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 17
Correct
-
A 25-year-old female presents to the emergency department with complaints of shortness of breath that started 2 hours ago. She has no medical history. The results of her arterial blood gas (ABG) test are as follows:
Normal range
pH: 7.49 (7.35 - 7.45)
pO2: 12.2 (10 - 14)kPa
pCO2: 3.4 (4.5 - 6.0)kPa
HCO3: 22 (22 - 26)mmol/l
BE: +2 (-2 to +2)mmol/l
Her temperature is 37ºC, and her pulse is 98 beats/minute and regular. Based on this information, what is the most likely diagnosis?Your Answer: Anxiety hyperventilation
Explanation:The patient is exhibiting symptoms and ABG results consistent with respiratory alkalosis. However, it is important to conduct a thorough history and physical examination to rule out any underlying pulmonary pathology or infection. Based on the patient’s history, anxiety-induced hyperventilation is the most probable cause of her condition.
Respiratory Alkalosis: Causes and Examples
Respiratory alkalosis is a condition that occurs when the blood pH level rises above the normal range due to excessive breathing. This can be caused by various factors, including anxiety, pulmonary embolism, CNS disorders, altitude, and pregnancy. Salicylate poisoning can also lead to respiratory alkalosis, but it may also cause metabolic acidosis in the later stages. In this case, the respiratory centre is stimulated early, leading to respiratory alkalosis, while the direct acid effects of salicylates combined with acute renal failure may cause acidosis later on. It is important to identify the underlying cause of respiratory alkalosis to determine the appropriate treatment. Proper management can help prevent complications and improve the patient’s overall health.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 18
Correct
-
A 59-year-old man comes to see his GP complaining of vertigo that has been going on for three days. He also reports experiencing left-sided ear pain and a change in his sense of taste, as well as constant ringing in his left ear. He took paracetamol on his own, but the vertigo persisted, so he decided to seek medical attention.
During the examination, the doctor observes that the man has a drooping left face with involvement of the forehead. Upon otoscopic examination, vesicles are seen in the external auditory canal of the left ear. A neurological examination is performed, which is normal except for the left facial paralysis.
What is the appropriate treatment for this man's condition?Your Answer: Oral acyclovir and corticosteroids
Explanation:Ramsay Hunt syndrome is treated with a combination of oral acyclovir and corticosteroids. This condition is caused by the varicella zoster virus, as evidenced by the presence of vesicles on the left ear and involvement of the seventh and eighth cranial nerves. Symptoms include facial paralysis and hearing impairments. Treatment typically involves a seven to ten day course of oral acyclovir and a five day course of corticosteroids, such as prednisolone.
It is important to note that oseltamivir (tamiflu) is an antiviral used for influenzae, while chloroquine is typically used for malaria. Amoxicillin is an antibiotic and is not effective in treating viral infections. While corticosteroids can provide relief from inflammation, they are not the primary treatment for Ramsay Hunt syndrome when used alone.
Understanding Ramsay Hunt Syndrome
Ramsay Hunt syndrome, also known as herpes zoster oticus, is a condition that occurs when the varicella zoster virus reactivates in the geniculate ganglion of the seventh cranial nerve. The first symptom of this syndrome is often auricular pain, followed by facial nerve palsy and a vesicular rash around the ear. Other symptoms may include vertigo and tinnitus.
To manage Ramsay Hunt syndrome, doctors typically prescribe oral acyclovir and corticosteroids. These medications can help reduce the severity of symptoms and prevent complications.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 19
Incorrect
-
A 35-year-old woman presents to the medical assessment unit with sudden onset shortness of breath. She reports no cough or fever and has no other associated symptoms. She recently returned from a hiking trip in France and takes the oral contraceptive pill but no other regular medications. She smokes 10 cigarettes a day but drinks no alcohol. On examination, she is tachypnoeic and tachycardic with an elevated JVP. Her calves are soft and non-tender with no pitting oedema. Initial blood tests show a positive D-dimer and elevated CRP. What is the appropriate treatment for this patient?
Your Answer: Await further imaging before deciding on treatment
Correct Answer: Low molecular weight heparin
Explanation:Treatment for Suspected Pulmonary Embolism
When a patient presents with risk factors for pulmonary embolism (PE) such as recent travel and oral contraceptive pill use, along with symptoms like tachypnea, tachycardia, and hypoxia, it is important to consider the possibility of a significant PE. In such cases, treatment with low molecular weight heparin should be given promptly to prevent further complications. A low-grade fever is also common in venothromboembolic disease. Elevated JVP signifies significant right heart strain due to a significant PE, but maintained blood pressure is a positive sign.
The most common ECG finding in PE is an isolated sinus tachycardia, while the CXR may be clear, but prominent pulmonary arteries reflect pulmonary hypertension due to clot load in the pulmonary tree. A D-dimer test is recommended if the Wells score for PE is less than 4.
According to NICE guidelines on venous thromboembolic diseases, low molecular weight heparin is the appropriate initial treatment for suspected PE. It is important not to delay treatment to await CTPA unless it can be performed immediately. There is no evidence of pneumonia to warrant IV antibiotics. Unfractionated heparin may be considered for patients with an eGFR of less than 30, high risk of bleeding, or those undergoing thrombolysis, but this is not the case with this patient. Thrombolysis is not indicated unless there is haemodynamic instability, even in suspected large PEs.
In summary, prompt treatment with low molecular weight heparin is crucial in suspected cases of PE, and other treatment options should be considered based on individual patient factors.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 20
Correct
-
A 32-year-old male presents to the GP clinic complaining of vertigo. He mentions having a mild upper respiratory tract infection one week prior. Which structure is most likely responsible for the accompanying nausea?
Your Answer: Vestibular system of the inner ear
Explanation:Based on the symptoms presented, it is probable that the patient is experiencing viral labyrinthitis, which is a common condition that occurs after an upper respiratory tract infection. This condition causes inflammation in the vestibular system of the inner ear, leading to confusion or failure of proprioceptive signals to the brain, resulting in vertigo.
During retching, the antrum of the stomach contracts while the cardia and fundus relax. Although vagal stimulation can arise from the stomach, it does not cause the spinning sensation associated with vertigo.
The area postrema is located in the medulla and contains the chemoreceptor trigger zone, which is involved in receiving and transmitting signals related to the vomiting reflex. However, the specific signal for vertigo arises from the vestibular system. The pons also plays a role in communicating sensory inputs related to vomiting.
Vertigo is a condition characterized by a false sensation of movement in the body or environment. There are various causes of vertigo, each with its own unique characteristics. Viral labyrinthitis, for example, is typically associated with a recent viral infection, sudden onset, nausea and vomiting, and possible hearing loss. Vestibular neuronitis, on the other hand, is characterized by recurrent vertigo attacks lasting hours or days, but with no hearing loss. Benign paroxysmal positional vertigo is triggered by changes in head position and lasts for only a few seconds. Meniere’s disease, meanwhile, is associated with hearing loss, tinnitus, and a feeling of fullness or pressure in the ears. Elderly patients with vertigo may be experiencing vertebrobasilar ischaemia, which is accompanied by dizziness upon neck extension. Acoustic neuroma, which is associated with hearing loss, vertigo, and tinnitus, is also a possible cause of vertigo. Other causes include posterior circulation stroke, trauma, multiple sclerosis, and ototoxicity from medications like gentamicin.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 21
Incorrect
-
A 35-year-old female smoker presents with acute severe asthma.
The patient's SaO2 levels are at 91% even with 15 L of oxygen, and her pO2 is at 8.2 kPa (10.5-13). There is widespread expiratory wheezing throughout her chest.
The medical team administers IV hydrocortisone, 100% oxygen, and 5 mg of nebulised salbutamol and 500 micrograms of nebulised ipratropium, but there is little response. Nebulisers are repeated 'back-to-back,' but the patient remains tachypnoeic with wheezing, although there is good air entry.
What should be the next step in the patient's management?Your Answer: Oral prednisolone
Correct Answer: IV Magnesium
Explanation:Acute Treatment of Asthma
When dealing with acute asthma, the initial approach should be SOS, which stands for Salbutamol, Oxygen, and Steroids (IV). It is also important to organize a CXR to rule out pneumothorax. If the patient is experiencing bronchoconstriction, further efforts to treat it should be considered. If the patient is tiring or has a silent chest, ITU review may be necessary. Magnesium is recommended at a dose of 2 g over 30 minutes to promote bronchodilation, as low magnesium levels in bronchial smooth muscle can favor bronchoconstriction. IV theophylline may also be considered, but magnesium is typically preferred. While IV antibiotics may be necessary, promoting bronchodilation should be the initial focus. IV potassium may also be required as beta agonists can push down potassium levels. Oral prednisolone can wait, as IV hydrocortisone is already part of the SOS approach. Non-invasive ventilation is not recommended for the acute management of asthma.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 22
Incorrect
-
During a consultant-led ward round in the early morning, a patient recovering from endovascular thrombectomy for acute mesenteric ischemia is examined. The reports indicate an embolus in the superior mesenteric artery.
What is the correct description of the plane at which the superior mesenteric artery branches off the abdominal aorta and its corresponding vertebral body?Your Answer: Trans-tubercular plane - L5
Correct Answer: Transpyloric plane - L1
Explanation:The superior mesenteric artery originates from the abdominal aorta at the transpyloric plane, which is an imaginary axial plane located at the level of the L1 vertebral body and midway between the jugular notch and superior border of the pubic symphysis. Another transverse plane commonly used in anatomy is the subcostal plane, which passes through the 10th costal margin and the vertebral body L3. Additionally, the trans-tubercular plane, which is a horizontal plane passing through the iliac tubercles and in line with the 5th lumbar vertebrae, is often used to delineate abdominal regions in surface anatomy.
The Transpyloric Plane and its Anatomical Landmarks
The transpyloric plane is an imaginary horizontal line that passes through the body of the first lumbar vertebrae (L1) and the pylorus of the stomach. It is an important anatomical landmark used in clinical practice to locate various organs and structures in the abdomen.
Some of the structures that lie on the transpyloric plane include the left and right kidney hilum (with the left one being at the same level as L1), the fundus of the gallbladder, the neck of the pancreas, the duodenojejunal flexure, the superior mesenteric artery, and the portal vein. The left and right colic flexure, the root of the transverse mesocolon, and the second part of the duodenum also lie on this plane.
In addition, the upper part of the conus medullaris (the tapered end of the spinal cord) and the spleen are also located on the transpyloric plane. Knowing the location of these structures is important for various medical procedures, such as abdominal surgeries and diagnostic imaging.
Overall, the transpyloric plane serves as a useful reference point for clinicians to locate important anatomical structures in the abdomen.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 23
Incorrect
-
A 19-year-old male is admitted with acute asthma. He has been treated with steroid, bronchodilators and 15 l/min of oxygen.
His pulse rate is 125/min, oxygen saturation 89%, respiratory rate 24/min, blood pressure 140/88 mmHg and he has a peak flow rate of 150 l/min. On auscultation of his chest, he has bilateral wheezes.
Arterial blood gas (ABG) result taken on 15 l/min oxygen shows:
pH 7.42 (7.36-7.44)
PaO2 8.4 kPa (11.3-12.6)
PaCO2 5.3 kPa (4.7-6.0)
Standard HCO3 19 mmol/L (20-28)
Base excess −4 (+/-2)
Oxygen saturation 89%
What is the most appropriate action for this man?Your Answer: Repeat arterial blood gas analysis, as it is likely to be a venous sample
Correct Answer: Call ITU to consider intubation
Explanation:Urgent Need for Ventilation in Life-Threatening Asthma
This patient is experiencing life-threatening asthma with a dangerously low oxygen saturation level of less than 92%. Despite having a normal PaCO2 level, the degree of hypoxia is inappropriate and requires immediate consideration for ventilation. The arterial blood gas (ABG) result is consistent with the clinical presentation, making a venous blood sample unnecessary. Additionally, the ABG and bedside oxygen saturation readings are identical, indicating an arterialised sample.
It is crucial to note that in cases of acute asthma, reducing the amount of oxygen below the maximum available is not recommended. Hypoxia can be fatal and must be addressed promptly. Therefore, urgent intervention is necessary to ensure the patient’s safety and well-being.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 24
Correct
-
A 19-year-old male presents to the emergency department with complaints of breathing difficulty. Upon examination, his chest appears normal, but his respiratory rate is 32 breaths per minute. The medical team suspects he may be experiencing a panic attack and subsequent hyperventilation. What impact will this have on his blood gas levels?
Your Answer: Respiratory alkalosis
Explanation:The patient is experiencing a respiratory alkalosis due to their hyperventilation, which is causing a decrease in carbon dioxide levels and resulting in an alkaline state.
Respiratory Alkalosis: Causes and Examples
Respiratory alkalosis is a condition that occurs when the blood pH level rises above the normal range due to excessive breathing. This can be caused by various factors, including anxiety, pulmonary embolism, CNS disorders, altitude, and pregnancy. Salicylate poisoning can also lead to respiratory alkalosis, but it may also cause metabolic acidosis in the later stages. In this case, the respiratory centre is stimulated early, leading to respiratory alkalosis, while the direct acid effects of salicylates combined with acute renal failure may cause acidosis later on. It is important to identify the underlying cause of respiratory alkalosis to determine the appropriate treatment. Proper management can help prevent complications and improve the patient’s overall health.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 25
Correct
-
A 26-year-old man is brought to the emergency department after being rescued at sea following a sailing accident. He is currently unresponsive with a Glasgow Coma Score of 9 (E2 V3 M4).
His vital signs include a heart rate of 110 beats per minute, blood pressure of 110/76 mmHg, oxygen saturation of 93%, and temperature of 34.8 ºC. An ECG is unremarkable and venous blood indicates type 2 respiratory failure. The patient's oxygen dissociation curve shows a leftward shift.
What is the cause of the leftward shift in this 26-year-old patient's oxygen dissociation curve?Your Answer: Hypothermia
Explanation:The only answer that causes a leftward shift in the oxygen dissociation curve is hypothermia. When tissues undergo aerobic respiration, they generate heat, which changes the shape of the haemoglobin molecule and reduces its affinity for oxygen. This results in the release of oxygen at respiring tissues. In contrast, lower temperatures in the lungs cause a leftward shift in the oxygen dissociation curve, which increases the binding of oxygen to haemoglobin.
Hypercapnia is not the correct answer because it causes a rightward shift in the oxygen dissociation curve. Hypercapnia lowers blood pH, which changes the shape of haemoglobin and reduces its affinity for oxygen.
Hypoxaemia is not the correct answer because the partial pressure of oxygen does not affect the oxygen dissociation curve. The partial pressure of oxygen does not change the affinity of haemoglobin for oxygen.
Increased concentration of 2,3-diphosphoglycerate (2,3-DPG) is not the correct answer because higher concentrations of 2,3-DPG reduce haemoglobin’s affinity for oxygen, causing a right shift in the oxygen dissociation curve.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 26
Correct
-
A 29-year-old pregnant woman is admitted to the hospital and delivers a baby girl at 32 weeks gestation. The newborn displays signs of distress including tachypnoea, tachycardia, expiratory grunting, nasal flaring, and chest wall recession.
What is the cell type responsible for producing the substance that the baby is lacking?Your Answer: Type 2 pneumocytes
Explanation:Types of Pneumocytes and Their Functions
Pneumocytes are specialized cells found in the lungs that play a crucial role in gas exchange. There are two main types of pneumocytes: type 1 and type 2. Type 1 pneumocytes are very thin squamous cells that cover around 97% of the alveolar surface. On the other hand, type 2 pneumocytes are cuboidal cells that secrete surfactant, a substance that reduces surface tension in the alveoli and prevents their collapse during expiration.
Type 2 pneumocytes start to develop around 24 weeks gestation, but adequate surfactant production does not take place until around 35 weeks. This is why premature babies are prone to respiratory distress syndrome. In addition, type 2 pneumocytes can differentiate into type 1 pneumocytes during lung damage, helping to repair and regenerate damaged lung tissue.
Apart from pneumocytes, there are also club cells (previously termed Clara cells) found in the bronchioles. These non-ciliated dome-shaped cells have a varied role, including protecting against the harmful effects of inhaled toxins and secreting glycosaminoglycans and lysozymes. Understanding the different types of pneumocytes and their functions is essential in comprehending the complex mechanisms involved in respiration.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 27
Correct
-
A 49-year-old patient presents to the rheumatology clinic with weight loss, fever, and night sweats. The individual is also experiencing shortness of breath. The following blood test results are obtained:
- Hemoglobin (Hb): 140 g/l
- Platelets: 192 * 109/l
- White cell count (WCC): 5.3 * 109/l
- Creatinine: 154 umol/l
- Urea: 9 mmol/l
- cANCA positive
The white cell differential count is reported as normal. What is the most likely diagnosis?Your Answer: Granulomatosis with polyangiitis
Explanation:The most likely diagnosis for this patient is granulomatosis with polyangiitis, as indicated by the presence of cANCA and the involvement of multiple organs including the lungs, skin, kidneys, and upper respiratory tract. This condition is known to cause inflammation in the glomeruli, leading to renal impairment. Churg-Strauss disease and Alport’s syndrome are unlikely due to normal eosinophil levels and cANCA positivity, respectively. Goodpasture’s syndrome is also unlikely as the patient does not present with haematuria or haemoptysis.
Granulomatosis with Polyangiitis: An Autoimmune Condition
Granulomatosis with polyangiitis, previously known as Wegener’s granulomatosis, is an autoimmune condition that affects the upper and lower respiratory tract as well as the kidneys. It is characterized by a necrotizing granulomatous vasculitis. The condition presents with various symptoms such as epistaxis, sinusitis, nasal crusting, dyspnoea, haemoptysis, and rapidly progressive glomerulonephritis. Other symptoms include a saddle-shape nose deformity, vasculitic rash, eye involvement, and cranial nerve lesions.
To diagnose granulomatosis with polyangiitis, doctors perform various investigations such as cANCA and pANCA tests, chest x-rays, and renal biopsies. The cANCA test is positive in more than 90% of cases, while the pANCA test is positive in 25% of cases. Chest x-rays show a wide variety of presentations, including cavitating lesions. Renal biopsies reveal epithelial crescents in Bowman’s capsule.
The management of granulomatosis with polyangiitis involves the use of steroids, cyclophosphamide, and plasma exchange. Cyclophosphamide has a 90% response rate. The median survival rate for patients with this condition is 8-9 years.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 28
Correct
-
During a neck dissection, a nerve is observed to pass behind the medial aspect of the second rib. Which nerve from the list below is the most probable?
Your Answer: Phrenic nerve
Explanation:The crucial aspect to note is that the phrenic nerve travels behind the inner side of the first rib. Towards the top, it is situated on the exterior of scalenus anterior.
The Phrenic Nerve: Origin, Path, and Supplies
The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.
The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.
Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 29
Correct
-
A 65-year-old man presents with respiratory symptoms and is referred to his primary care physician for pulmonary function testing. The estimated vital capacity is 3.5 liters. What does the measurement of vital capacity involve?
Your Answer: Inspiratory reserve volume + Tidal volume + Expiratory reserve volume
Explanation:Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 30
Correct
-
A 25-year-old man with a history of asthma since childhood visited his doctor for his routine check-up. He is planning to go on a hiking trip with his friends in a month and wants to ensure that it is safe for him. Can you describe the scenarios that accurately depict the hemoglobin saturation of blood and the ability of body tissues to extract oxygen from the blood in response to different situations?
Your Answer: If the man is not able to breathe properly and, his blood carbon dioxide level increases, this will cause his body tissues to extract more oxygen from his blood
Explanation:Hypercapnia causes a shift in the oxygen dissociation curve to the right. This means that for the same partial pressure of oxygen, the hemoglobin saturation will be less. Other factors that can cause a right shift in the curve include high altitudes, anaerobic metabolism resulting in the production of lactic acid, physical activity, and an increase in temperature. These shifts allow the body tissues to extract more oxygen from the blood, resulting in a lower hemoglobin saturation of the blood leaving the body tissues. Carbon dioxide is also known to produce a right shift in the curve, further contributing to this effect.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)