00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - You evaluate the airway and breathing of a child who has been brought...

    Incorrect

    • You evaluate the airway and breathing of a child who has been brought into the emergency room by an ambulance after being rescued from a house fire. You suspect that the child may have signs of airway obstruction.
      Which of the following statements about managing the airway and breathing in burned patients is correct?

      Your Answer: 100% oxygen should be continued until carboxyhaemoglobin levels fall to <5%

      Correct Answer:

      Explanation:

      Patients who have suffered burns should receive high-flow oxygen (15 L) through a reservoir bag while their breathing is being evaluated. If intubation is necessary, it is crucial to use an appropriately sized endotracheal tube (ETT). Using a tube that is too small can make it difficult or even impossible to ventilate the patient, clear secretions, or perform bronchoscopy.

      According to the ATLS guidelines, adults should be intubated using an ETT with an internal diameter (ID) of at least 7.5 mm or larger. Children, on the other hand, should have an ETT with an ID of at least 4.5 mm. Once a patient has been intubated, it is important to continue administering 100% oxygen until their carboxyhemoglobin levels drop to less than 5%.

      To protect the lungs, it is recommended to use lung protective ventilation techniques. This involves using low tidal volumes (4-8 mL/kg) and ensuring that peak inspiratory pressures do not exceed 30 cmH2O.

    • This question is part of the following fields:

      • Trauma
      53.8
      Seconds
  • Question 2 - You are evaluating a 25-year-old male with a puncture wound to the stomach....

    Correct

    • You are evaluating a 25-year-old male with a puncture wound to the stomach. Which of the following is NOT a reason for immediate laparotomy in cases of penetrating abdominal injury?

      Your Answer: Negative diagnostic peritoneal lavage

      Explanation:

      Urgent laparotomy is necessary in cases of penetrating abdominal trauma when certain indications are present. These indications include peritonism, the presence of free air under the diaphragm on an upright chest X-ray, evisceration, hypotension or signs of unstable blood flow, a gunshot wound that has penetrated the peritoneum or retroperitoneum, gastrointestinal bleeding following penetrating trauma, genitourinary bleeding following penetrating trauma, the presence of a penetrating object that is still in place (as removal may result in significant bleeding), and the identification of free fluid on a focused assessment with sonography for trauma (FAST) or a positive diagnostic peritoneal lavage (DPL).

      Further Reading:

      Abdominal trauma can be classified into two categories: blunt trauma and penetrating trauma. Blunt trauma occurs when compressive or deceleration forces are applied to the abdomen, often resulting from road traffic accidents or direct blows during sports. The spleen and liver are the organs most commonly injured in blunt abdominal trauma. On the other hand, penetrating trauma involves injuries that pierce the skin and enter the abdominal cavity, such as stabbings, gunshot wounds, or industrial accidents. The bowel and liver are the organs most commonly affected in penetrating injuries.

      When it comes to imaging in blunt abdominal trauma, there are three main modalities that are commonly used: focused assessment with sonography in trauma (FAST), diagnostic peritoneal lavage (DPL), and computed tomography (CT). FAST is a non-invasive and quick method used to detect free intraperitoneal fluid, aiding in the decision on whether a laparotomy is needed. DPL is also used to detect intraperitoneal blood and can be used in both unstable blunt abdominal trauma and penetrating abdominal trauma. However, it is more invasive and time-consuming compared to FAST and has largely been replaced by it. CT, on the other hand, is the gold standard for diagnosing intra-abdominal pathology and is used in stable abdominal trauma patients. It offers high sensitivity and specificity but requires a stable and cooperative patient. It also involves radiation and may have delays in availability.

      In the case of penetrating trauma, it is important to assess these injuries with the help of a surgical team. Penetrating objects should not be removed in the emergency department as they may be tamponading underlying vessels. Ideally, these injuries should be explored in the operating theater.

      In summary, abdominal trauma can be classified into blunt trauma and penetrating trauma. Blunt trauma is caused by compressive or deceleration forces and commonly affects the spleen and liver. Penetrating trauma involves injuries that pierce the skin and commonly affect the bowel and liver. Imaging modalities such as FAST, DPL, and CT are used to assess and diagnose abdominal trauma, with CT being the gold standard. Penetrating injuries should be assessed by a surgical team and should ideally be explored in the operating theater.

    • This question is part of the following fields:

      • Trauma
      42.9
      Seconds
  • Question 3 - You are managing a 35 year old patient with severe burns. You determine...

    Incorrect

    • You are managing a 35 year old patient with severe burns. You determine that the patient needs urgent fluid replacement. The patient weighs 75 kg and has burns covering 15% of their total body surface area. How much fluid should be administered to the patient over a 24-hour period?

      Your Answer: 1600 ml

      Correct Answer: 6400 ml

      Explanation:

      To calculate the total fluid requirement over 24 hours, you need to multiply the TBSA (Total Body Surface Area) by the weight in kilograms. In this particular case, the calculation would be 4 multiplied by 20 multiplied by 80, resulting in a total of 6400 milliliters.

      Further Reading:

      Burn injuries can be classified based on their type (degree, partial thickness or full thickness), extent as a percentage of total body surface area (TBSA), and severity (minor, moderate, major/severe). Severe burns are defined as a >10% TBSA in a child and >15% TBSA in an adult.

      When assessing a burn, it is important to consider airway injury, carbon monoxide poisoning, type of burn, extent of burn, special considerations, and fluid status. Special considerations may include head and neck burns, circumferential burns, thorax burns, electrical burns, hand burns, and burns to the genitalia.

      Airway management is a priority in burn injuries. Inhalation of hot particles can cause damage to the respiratory epithelium and lead to airway compromise. Signs of inhalation injury include visible burns or erythema to the face, soot around the nostrils and mouth, burnt/singed nasal hairs, hoarse voice, wheeze or stridor, swollen tissues in the mouth or nostrils, and tachypnea and tachycardia. Supplemental oxygen should be provided, and endotracheal intubation may be necessary if there is airway obstruction or impending obstruction.

      The initial management of a patient with burn injuries involves conserving body heat, covering burns with clean or sterile coverings, establishing IV access, providing pain relief, initiating fluid resuscitation, measuring urinary output with a catheter, maintaining nil by mouth status, closely monitoring vital signs and urine output, monitoring the airway, preparing for surgery if necessary, and administering medications.

      Burns can be classified based on the depth of injury, ranging from simple erythema to full thickness burns that penetrate into subcutaneous tissue. The extent of a burn can be estimated using methods such as the rule of nines or the Lund and Browder chart, which takes into account age-specific body proportions.

      Fluid management is crucial in burn injuries due to significant fluid losses. Evaporative fluid loss from burnt skin and increased permeability of blood vessels can lead to reduced intravascular volume and tissue perfusion. Fluid resuscitation should be aggressive in severe burns, while burns <15% in adults and <10% in children may not require immediate fluid resuscitation. The Parkland formula can be used to calculate the intravenous fluid requirements for someone with a significant burn injury.

    • This question is part of the following fields:

      • Trauma
      82.3
      Seconds
  • Question 4 - A 42-year-old woman is brought in by ambulance following a high-speed car accident....

    Correct

    • A 42-year-old woman is brought in by ambulance following a high-speed car accident. There was a prolonged extraction at the scene, and a full trauma call is made. She is disoriented and slightly restless. Her vital signs are as follows: heart rate 125, blood pressure 83/45, oxygen saturation 98% on high-flow oxygen, respiratory rate 31, temperature 36.1°C. Her capillary refill time is 5 seconds, and her extremities appear pale and cool to the touch. Her cervical spine is immobilized with triple precautions. The airway is clear, and her chest examination is normal. Two large-bore needles have been inserted in her antecubital fossa, and a complete set of blood tests, including a request for a cross-match, has been sent to the laboratory. She experiences significant tenderness in the suprapubic area upon abdominal palpation, and noticeable bruising is evident around her pelvis. A pelvic X-ray reveals a vertical shear type pelvic fracture.
      What approximate percentage of her circulatory volume has she lost?

      Your Answer: 30-40%

      Explanation:

      This patient is currently experiencing moderate shock, classified as class III. This level of shock corresponds to a loss of 30-40% of their circulatory volume, which is equivalent to a blood loss of 1500-2000 mL.

      Hemorrhage can be categorized into four different classes based on physiological parameters and clinical signs. These classes are classified as class I, class II, class III, and class IV.

      In class I hemorrhage, the blood loss is up to 750 mL or up to 15% of the blood volume. The pulse rate is less than 100 beats per minute, and the systolic blood pressure is normal. The pulse pressure may be normal or increased, and the respiratory rate is within the range of 14-20 breaths per minute. The urine output is greater than 30 mL per hour, and the patient’s CNS/mental status is slightly anxious.

      In class II hemorrhage, the blood loss ranges from 750-1500 mL or 15-30% of the blood volume. The pulse rate is between 100-120 beats per minute, and the systolic blood pressure remains normal. The pulse pressure is decreased, and the respiratory rate increases to 20-30 breaths per minute. The urine output decreases to 20-30 mL per hour, and the patient may experience mild anxiety.

      The patient in this case is in class III hemorrhage, with a blood loss of 1500-2000 mL or 30-40% of the blood volume. The pulse rate is elevated, ranging from 120-140 beats per minute, and the systolic blood pressure is decreased. The pulse pressure is also decreased, and the respiratory rate is elevated to 30-40 breaths per minute. The urine output decreases significantly to 5-15 mL per hour, and the patient may experience anxiety and confusion.

      Class IV hemorrhage represents the most severe level of blood loss, with a loss of over 40% of the blood volume. The pulse rate is greater than 140 beats per minute, and the systolic blood pressure is significantly decreased. The pulse pressure is decreased, and the respiratory rate is over 40 breaths per minute. The urine output becomes negligible, and the patient may become confused and lethargic.

    • This question is part of the following fields:

      • Trauma
      63
      Seconds
  • Question 5 - A 32-year-old woman was involved in a car accident where her car collided...

    Incorrect

    • A 32-year-old woman was involved in a car accident where her car collided with a tree at high speed. She was not wearing a seatbelt and was thrown forward onto the steering wheel of her car. She has bruising over her anterior chest wall and is experiencing chest pain. A helical contrast-enhanced CT scan of the chest reveals a traumatic aortic injury. After receiving analgesia, which has effectively controlled her pain, her vital signs are as follows: HR 95, BP 128/88, SaO2 97% on room air, temperature is 37.4ºC.
      Which of the following medications would be most appropriate to administer next?

      Your Answer: Diamorphine

      Correct Answer: Esmolol

      Explanation:

      Traumatic aortic rupture, also known as traumatic aortic disruption or transection, occurs when the aorta is torn or ruptured due to physical trauma. This condition often leads to sudden death because of severe bleeding. Motor vehicle accidents and falls from great heights are the most common causes of this injury.

      The patients with the highest chances of survival are those who have an incomplete tear near the ligamentum arteriosum of the proximal descending aorta, close to where the left subclavian artery branches off. The presence of an intact adventitial layer or contained mediastinal hematoma helps maintain continuity and prevents immediate bleeding and death. If promptly identified and treated, survivors of these injuries can recover. In cases where traumatic aortic rupture leads to sudden death, approximately 50% of patients have damage at the aortic isthmus, while around 15% have damage in either the ascending aorta or the aortic arch.

      Initial chest X-rays may show signs consistent with a traumatic aortic injury. However, false-positive and false-negative results can occur, and sometimes there may be no abnormalities visible on the X-ray. Some of the possible X-ray findings include a widened mediastinum, hazy left lung field, obliteration of the aortic knob, fractures of the 1st and 2nd ribs, deviation of the trachea to the right, presence of a pleural cap, elevation and rightward shift of the right mainstem bronchus, depression of the left mainstem bronchus, obliteration of the space between the pulmonary artery and aorta, and deviation of the esophagus or NG tube to the right.

      A helical contrast-enhanced CT scan of the chest is the preferred initial investigation for suspected blunt aortic injury. It has proven to be highly accurate, with close to 100% sensitivity and specificity. CT scanning should be performed liberally, as chest X-ray findings can be unreliable. However, hemodynamically unstable patients should not be placed in a CT scanner. If the CT results are inconclusive, aortography or trans-oesophageal echo can be performed for further evaluation.

      Immediate surgical intervention is necessary for these injuries. Endovascular repair is the most common method used and has excellent short-term outcomes. Open repair may also be performed depending on the circumstances. It is important to control heart rate and blood pressure during stabilization to reduce the risk of rupture. Pain should be managed with appropriate analgesic

    • This question is part of the following fields:

      • Trauma
      66.8
      Seconds
  • Question 6 - A 32 year old male is brought into the emergency department following a...

    Correct

    • A 32 year old male is brought into the emergency department following a car accident. You evaluate the patient's risk of cervical spine injury using the Canadian C-spine rule. What is included in the assessment for the Canadian C-spine rule?

      Your Answer: Ask patient to rotate their neck 45 degrees to the left and right

      Explanation:

      The Canadian C-spine assessment includes evaluating for tenderness along the midline of the spine, checking for any abnormal sensations in the limbs, and assessing the ability to rotate the neck 45 degrees to the left and right. While a significant portion of the assessment relies on gathering information from the patient’s history, there are also physical examination components involved. These include testing for tenderness along the midline of the cervical spine, asking the patient to perform neck rotations, ensuring they are comfortable in a sitting position, and assessing for any sensory deficits in the limbs. It is important to note that any reported paraesthesia in the upper or lower limbs can also be taken into consideration during the assessment.

      Further Reading:

      When assessing for cervical spine injury, it is recommended to use the Canadian C-spine rules. These rules help determine the risk level for a potential injury. High-risk factors include being over the age of 65, experiencing a dangerous mechanism of injury (such as a fall from a height or a high-speed motor vehicle collision), or having paraesthesia in the upper or lower limbs. Low-risk factors include being involved in a minor rear-end motor vehicle collision, being comfortable in a sitting position, being ambulatory since the injury, having no midline cervical spine tenderness, or experiencing a delayed onset of neck pain. If a person is unable to actively rotate their neck 45 degrees to the left and right, their risk level is considered low. If they have one of the low-risk factors and can actively rotate their neck, their risk level remains low.

      If a high-risk factor is identified or if a low-risk factor is identified and the person is unable to actively rotate their neck, full in-line spinal immobilization should be maintained and imaging should be requested. Additionally, if a patient has risk factors for thoracic or lumbar spine injury, imaging should be requested. However, if a patient has low-risk factors for cervical spine injury, is pain-free, and can actively rotate their neck, full in-line spinal immobilization and imaging are not necessary.

      NICE recommends CT as the primary imaging modality for cervical spine injury in adults aged 16 and older, while MRI is recommended as the primary imaging modality for children under 16.

      Different mechanisms of spinal trauma can cause injury to the spine in predictable ways. The majority of cervical spine injuries are caused by flexion combined with rotation. Hyperflexion can result in compression of the anterior aspects of the vertebral bodies, stretching and tearing of the posterior ligament complex, chance fractures (also known as seatbelt fractures), flexion teardrop fractures, and odontoid peg fractures. Flexion and rotation can lead to disruption of the posterior ligament complex and posterior column, fractures of facet joints, lamina, transverse processes, and vertebral bodies, and avulsion of spinous processes. Hyperextension can cause injury to the anterior column, anterior fractures of the vertebral body, and potential retropulsion of bony fragments or discs into the spinal canal. Rotation can result in injury to the posterior ligament complex and facet joint dislocation.

    • This question is part of the following fields:

      • Trauma
      16.1
      Seconds
  • Question 7 - A female trauma victim that has experienced substantial blood loss is estimated to...

    Incorrect

    • A female trauma victim that has experienced substantial blood loss is estimated to have experienced a grade IV hemorrhage. The patient's weight is approximately 60 kg.
      Which of the following physiological indicators aligns with a diagnosis of grade IV hemorrhage?

      Your Answer: Heart rate of 130 bpm

      Correct Answer: Blood loss of greater than 2 L in a 70 kg male

      Explanation:

      Recognizing the extent of blood loss based on vital sign and mental status abnormalities is a crucial skill. The Advanced Trauma Life Support (ATLS) classification for hemorrhagic shock correlates the amount of blood loss with expected physiological responses in a healthy individual weighing 70 kg. In terms of body weight, the total circulating blood volume accounts for approximately 7%, which is roughly equivalent to five liters in an average 70 kg male patient.

      The ATLS classification for hemorrhagic shock is as follows:

      CLASS I:
      – Blood loss: Up to 750 mL
      – Blood loss (% blood volume): Up to 15%
      – Pulse rate: Less than 100 beats per minute (bpm)
      – Systolic blood pressure: Normal
      – Pulse pressure: Normal (or increased)
      – Respiratory rate: 14-20 breaths per minute
      – Urine output: Greater than 30 mL/hr
      – CNS/mental status: Slightly anxious

      CLASS II:
      – Blood loss: 750-1500 mL
      – Blood loss (% blood volume): 15-30%
      – Pulse rate: 100-120 bpm
      – Systolic blood pressure: Normal
      – Pulse pressure: Decreased
      – Respiratory rate: 20-30 breaths per minute
      – Urine output: 20-30 mL/hr
      – CNS/mental status: Mildly anxious

      CLASS III:
      – Blood loss: 1500-2000 mL
      – Blood loss (% blood volume): 30-40%
      – Pulse rate: 120-140 bpm
      – Systolic blood pressure: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: 30-40 breaths per minute
      – Urine output: 5-15 mL/hr
      – CNS/mental status: Anxious, confused

      CLASS IV:
      – Blood loss: More than 2000 mL
      – Blood loss (% blood volume): More than 40%
      – Pulse rate: More than 140 bpm
      – Systolic blood pressure: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: More than 40 breaths per minute
      – Urine output: Negligible
      – CNS/mental status: Confused, lethargic

    • This question is part of the following fields:

      • Trauma
      24
      Seconds
  • Question 8 - A 47-year-old man with a past medical history of alcohol-related visits to the...

    Correct

    • A 47-year-old man with a past medical history of alcohol-related visits to the emergency department presents to the ED after falling while intoxicated. He has a 6 cm laceration on the occipital region of his scalp. You examine the wound under local anesthesia. As you remove the dressing and clean away a significant blood clot, you notice pulsatile bleeding from the wound. Which arteries provide blood supply to the posterior scalp?

      Your Answer: External carotid

      Explanation:

      The scalp is primarily supplied with blood from branches of the external carotid artery. The posterior half of the scalp is specifically supplied by three branches of the external carotid artery. These branches are the superficial temporal artery, which supplies blood to the frontal and temporal regions of the scalp, the posterior auricular artery, which supplies blood to the area above and behind the external ear, and the occipital artery, which supplies blood to the back of the scalp.

      Further Reading:

      The scalp is the area of the head that is bordered by the face in the front and the neck on the sides and back. It consists of several layers, including the skin, connective tissue, aponeurosis, loose connective tissue, and periosteum of the skull. These layers provide protection and support to the underlying structures of the head.

      The blood supply to the scalp primarily comes from branches of the external carotid artery and the ophthalmic artery, which is a branch of the internal carotid artery. These arteries provide oxygen and nutrients to the scalp tissues.

      The scalp also has a complex venous drainage system, which is divided into superficial and deep networks. The superficial veins correspond to the arterial branches and are responsible for draining blood from the scalp. The deep venous network is drained by the pterygoid venous plexus.

      In terms of innervation, the scalp receives sensory input from branches of the trigeminal nerve and the cervical nerves. These nerves transmit sensory information from the scalp to the brain, allowing us to perceive touch, pain, and temperature in this area.

    • This question is part of the following fields:

      • Trauma
      31.1
      Seconds
  • Question 9 - A 21 year old patient is brought into the emergency department with burns...

    Correct

    • A 21 year old patient is brought into the emergency department with burns to the left arm. The patient informs you that one of their friends had accidentally set their sleeve on fire with a lighter, causing the material to quickly burn and stick to their skin. The patient's entire left arm is burned, with the front part experiencing superficial partial thickness burns and the back part having areas of deep partial thickness and full thickness burns. What is the estimated total body surface area of burn in this patient?

      Your Answer: 9%

      Explanation:

      To estimate the total body surface area of burn, we need to consider the rule of nines. This rule divides the body into different regions, each representing a certain percentage of the total body surface area. According to the rule of nines, the left arm accounts for 9% of the total body surface area. Therefore, the estimated total body surface area of burn in this patient is 9%.

      Further Reading:

      Burn injuries can be classified based on their type (degree, partial thickness or full thickness), extent as a percentage of total body surface area (TBSA), and severity (minor, moderate, major/severe). Severe burns are defined as a >10% TBSA in a child and >15% TBSA in an adult.

      When assessing a burn, it is important to consider airway injury, carbon monoxide poisoning, type of burn, extent of burn, special considerations, and fluid status. Special considerations may include head and neck burns, circumferential burns, thorax burns, electrical burns, hand burns, and burns to the genitalia.

      Airway management is a priority in burn injuries. Inhalation of hot particles can cause damage to the respiratory epithelium and lead to airway compromise. Signs of inhalation injury include visible burns or erythema to the face, soot around the nostrils and mouth, burnt/singed nasal hairs, hoarse voice, wheeze or stridor, swollen tissues in the mouth or nostrils, and tachypnea and tachycardia. Supplemental oxygen should be provided, and endotracheal intubation may be necessary if there is airway obstruction or impending obstruction.

      The initial management of a patient with burn injuries involves conserving body heat, covering burns with clean or sterile coverings, establishing IV access, providing pain relief, initiating fluid resuscitation, measuring urinary output with a catheter, maintaining nil by mouth status, closely monitoring vital signs and urine output, monitoring the airway, preparing for surgery if necessary, and administering medications.

      Burns can be classified based on the depth of injury, ranging from simple erythema to full thickness burns that penetrate into subcutaneous tissue. The extent of a burn can be estimated using methods such as the rule of nines or the Lund and Browder chart, which takes into account age-specific body proportions.

      Fluid management is crucial in burn injuries due to significant fluid losses. Evaporative fluid loss from burnt skin and increased permeability of blood vessels can lead to reduced intravascular volume and tissue perfusion. Fluid resuscitation should be aggressive in severe burns, while burns <15% in adults and <10% in children may not require immediate fluid resuscitation. The Parkland formula can be used to calculate the intravenous fluid requirements for someone with a significant burn injury.

    • This question is part of the following fields:

      • Trauma
      32.4
      Seconds
  • Question 10 - A 52 year old male visits the emergency department after crashing into the...

    Correct

    • A 52 year old male visits the emergency department after crashing into the side of a car while riding his bicycle downhill at a fast pace. The handlebars were forcefully pushed into his abdomen, resulting in a noticeable large contusion on the front of his abdominal wall. The patient's vital signs are as follows:

      Blood pressure: 92/60 mmHg
      Pulse rate: 104 bpm
      Temperature: 37.1ºC
      SpO2: 97% on room air

      Which two abdominal organs are most commonly affected in cases of blunt abdominal trauma?

      Your Answer: Liver and spleen

      Explanation:

      Blunt abdominal trauma often results in injury to the liver and spleen, which are the two organs most commonly affected. The liver, being the largest and located in a vulnerable position, is particularly prone to injury in such cases.

      Further Reading:

      Abdominal trauma can be classified into two categories: blunt trauma and penetrating trauma. Blunt trauma occurs when compressive or deceleration forces are applied to the abdomen, often resulting from road traffic accidents or direct blows during sports. The spleen and liver are the organs most commonly injured in blunt abdominal trauma. On the other hand, penetrating trauma involves injuries that pierce the skin and enter the abdominal cavity, such as stabbings, gunshot wounds, or industrial accidents. The bowel and liver are the organs most commonly affected in penetrating injuries.

      When it comes to imaging in blunt abdominal trauma, there are three main modalities that are commonly used: focused assessment with sonography in trauma (FAST), diagnostic peritoneal lavage (DPL), and computed tomography (CT). FAST is a non-invasive and quick method used to detect free intraperitoneal fluid, aiding in the decision on whether a laparotomy is needed. DPL is also used to detect intraperitoneal blood and can be used in both unstable blunt abdominal trauma and penetrating abdominal trauma. However, it is more invasive and time-consuming compared to FAST and has largely been replaced by it. CT, on the other hand, is the gold standard for diagnosing intra-abdominal pathology and is used in stable abdominal trauma patients. It offers high sensitivity and specificity but requires a stable and cooperative patient. It also involves radiation and may have delays in availability.

      In the case of penetrating trauma, it is important to assess these injuries with the help of a surgical team. Penetrating objects should not be removed in the emergency department as they may be tamponading underlying vessels. Ideally, these injuries should be explored in the operating theater.

      In summary, abdominal trauma can be classified into blunt trauma and penetrating trauma. Blunt trauma is caused by compressive or deceleration forces and commonly affects the spleen and liver. Penetrating trauma involves injuries that pierce the skin and commonly affect the bowel and liver. Imaging modalities such as FAST, DPL, and CT are used to assess and diagnose abdominal trauma, with CT being the gold standard. Penetrating injuries should be assessed by a surgical team and should ideally be explored in the operating theater.

    • This question is part of the following fields:

      • Trauma
      37.4
      Seconds
  • Question 11 - A 42-year-old woman is brought in by ambulance following a severe car accident....

    Incorrect

    • A 42-year-old woman is brought in by ambulance following a severe car accident. There was a prolonged extraction at the scene, and a complete trauma call is initiated. She is disoriented and slightly restless. Her vital signs are as follows: heart rate 125, blood pressure 83/45, oxygen saturation 98% on high-flow oxygen, respiratory rate 31, temperature 36.1°C. Her capillary refill time is 5 seconds, and her extremities appear pale and cool to the touch. Her cervical spine is immobilized with triple precautions. The airway is clear, and her chest examination is normal. Two large-bore cannulas have been inserted in her antecubital fossa, and a comprehensive set of blood tests, including a request for a cross-match, has been sent to the laboratory. She experiences significant tenderness in the suprapubic area upon abdominal palpation, and noticeable bruising is evident around her pelvis. A pelvic X-ray reveals a vertical shear type pelvic fracture.
      Approximately how much blood has she lost?

      Your Answer: 2000-2500 mL

      Correct Answer: 1500-2000 mL

      Explanation:

      This patient is currently experiencing moderate shock, classified as class III. This level of shock corresponds to a loss of 30-40% of their circulatory volume, which is equivalent to a blood loss of 1500-2000 mL.

      Hemorrhage can be categorized into four different classes based on physiological parameters and clinical signs. These classes are classified as class I, class II, class III, and class IV.

      In class I hemorrhage, the blood loss is up to 750 mL or up to 15% of the blood volume. The pulse rate is less than 100 beats per minute, and the systolic blood pressure is normal. The pulse pressure may be normal or increased, and the respiratory rate is within the range of 14-20 breaths per minute. The urine output is greater than 30 mL per hour, and the patient’s CNS/mental status is slightly anxious.

      In class II hemorrhage, the blood loss ranges from 750-1500 mL or 15-30% of the blood volume. The pulse rate is between 100-120 beats per minute, and the systolic blood pressure remains normal. The pulse pressure is decreased, and the respiratory rate increases to 20-30 breaths per minute. The urine output decreases to 20-30 mL per hour, and the patient may experience mild anxiety.

      The patient in this case is in class III hemorrhage, with a blood loss of 1500-2000 mL or 30-40% of the blood volume. The pulse rate is elevated, ranging from 120-140 beats per minute, and the systolic blood pressure is decreased. The pulse pressure is also decreased, and the respiratory rate is elevated to 30-40 breaths per minute. The urine output decreases significantly to 5-15 mL per hour, and the patient may experience anxiety and confusion.

      Class IV hemorrhage represents the most severe level of blood loss, with a loss of over 40% of the blood volume. The pulse rate is greater than 140 beats per minute, and the systolic blood pressure is significantly decreased. The pulse pressure is decreased, and the respiratory rate is over 40 breaths per minute. The urine output becomes negligible, and the patient may become confused and lethargic.

    • This question is part of the following fields:

      • Trauma
      65.3
      Seconds
  • Question 12 - You are overseeing the care of a 70-year-old male who suffered extensive burns...

    Correct

    • You are overseeing the care of a 70-year-old male who suffered extensive burns in a residential fire. After careful calculation, you have determined that the patient's fluid requirement for the next 24 hours is 6 liters. How would you prescribe this amount?

      Your Answer: 50% (3 litres in this case) over first 8 hours then remaining 50% (3 litres in this case) over following 16 hours

      Explanation:

      Burn injuries can be classified based on their type (degree, partial thickness or full thickness), extent as a percentage of total body surface area (TBSA), and severity (minor, moderate, major/severe). Severe burns are defined as a >10% TBSA in a child and >15% TBSA in an adult.

      When assessing a burn, it is important to consider airway injury, carbon monoxide poisoning, type of burn, extent of burn, special considerations, and fluid status. Special considerations may include head and neck burns, circumferential burns, thorax burns, electrical burns, hand burns, and burns to the genitalia.

      Airway management is a priority in burn injuries. Inhalation of hot particles can cause damage to the respiratory epithelium and lead to airway compromise. Signs of inhalation injury include visible burns or erythema to the face, soot around the nostrils and mouth, burnt/singed nasal hairs, hoarse voice, wheeze or stridor, swollen tissues in the mouth or nostrils, and tachypnea and tachycardia. Supplemental oxygen should be provided, and endotracheal intubation may be necessary if there is airway obstruction or impending obstruction.

      The initial management of a patient with burn injuries involves conserving body heat, covering burns with clean or sterile coverings, establishing IV access, providing pain relief, initiating fluid resuscitation, measuring urinary output with a catheter, maintaining nil by mouth status, closely monitoring vital signs and urine output, monitoring the airway, preparing for surgery if necessary, and administering medications.

      Burns can be classified based on the depth of injury, ranging from simple erythema to full thickness burns that penetrate into subcutaneous tissue. The extent of a burn can be estimated using methods such as the rule of nines or the Lund and Browder chart, which takes into account age-specific body proportions.

      Fluid management is crucial in burn injuries due to significant fluid losses. Evaporative fluid loss from burnt skin and increased permeability of blood vessels can lead to reduced intravascular volume and tissue perfusion. Fluid resuscitation should be aggressive in severe burns, while burns <15% in adults and <10% in children may not require immediate fluid resuscitation. The Parkland formula can be used to calculate the intravenous fluid requirements for someone with a significant burn injury.

    • This question is part of the following fields:

      • Trauma
      42.7
      Seconds
  • Question 13 - You are present at a trauma call for an elderly pedestrian who has...

    Incorrect

    • You are present at a trauma call for an elderly pedestrian who has been hit by a vehicle. She exhibits bruising on the right side of her chest. The primary survey has been conducted, and you have been tasked with conducting a secondary survey.
      As per the ATLS guidelines, which of the following would be considered a potentially life-threatening chest injury that should be identified and addressed during the SECONDARY survey?

      Your Answer: Tracheobronchial tree injury

      Correct Answer: Traumatic aortic disruption

      Explanation:

      The ATLS guidelines categorize chest injuries in trauma into two groups: life-threatening injuries that require immediate identification and treatment in the primary survey, and potentially life-threatening injuries that should be identified and treated in the secondary survey.

      During the primary survey, the focus is on identifying and treating life-threatening thoracic injuries. These include airway obstruction, tracheobronchial tree injury, tension pneumothorax, open pneumothorax, massive haemothorax, and cardiac tamponade. Prompt recognition and intervention are crucial in order to prevent further deterioration and potential fatality.

      In the secondary survey, attention is given to potentially life-threatening injuries that may not be immediately apparent. These include simple pneumothorax, haemothorax, flail chest, pulmonary contusion, blunt cardiac injury, traumatic aortic disruption, traumatic diaphragmatic injury, and blunt oesophageal rupture. These injuries may not pose an immediate threat to life, but they still require identification and appropriate management to prevent complications and ensure optimal patient outcomes.

      By dividing chest injuries into these two categories and addressing them in a systematic manner, healthcare providers can effectively prioritize and manage trauma patients, ultimately improving their chances of survival and recovery.

    • This question is part of the following fields:

      • Trauma
      55.4
      Seconds
  • Question 14 - A 35-year-old woman is brought in by ambulance after being hit by a...

    Incorrect

    • A 35-year-old woman is brought in by ambulance after being hit by a car while walking. She is brought to the resuscitation area of your Emergency Department complaining of abdominal and pain on the left side of her chest. There is bruising on the left side of her chest but no visible open wounds. She is experiencing severe shortness of breath, and her vital signs are HR 112, BP 88/51, SaO2 88% on high flow oxygen. Upon examining her chest, you observe that her trachea is deviated to the right and there are no breath sounds and a hyper-resonant percussion note on the left side of her chest. Additionally, she has distended neck veins.
      What is the SINGLE most likely diagnosis?

      Your Answer: Cardiac tamponade

      Correct Answer: Tension pneumothorax

      Explanation:

      A tension pneumothorax occurs when there is an air leak from the lung or chest wall that acts like a one-way valve. This causes air to build up in the pleural space without any way to escape. As a result, the pressure in the pleural space increases and pushes the mediastinum into the opposite side of the chest. If left untreated, this can lead to cardiovascular instability and even cardiac arrest.

      The clinical features that are typically seen in tension pneumothorax include respiratory distress and cardiovascular instability. Tracheal deviation away from the side of injury, unilateral absence of breath sounds on the affected side, and a hyper-resonant percussion note are also characteristic. Other signs may include distended neck veins and cyanosis, although cyanosis is usually a late sign.

      Both tension pneumothorax and massive haemothorax can cause decreased breath sounds on auscultation. However, they can be differentiated by percussion. Hyper-resonance suggests tension pneumothorax, while dullness indicates a massive haemothorax.

      It is important to note that tension pneumothorax is a clinical diagnosis and treatment should not be delayed for radiological confirmation. Immediate decompression through needle thoracocentesis is the recommended treatment. Traditionally, a large-bore needle or cannula is inserted into the 2nd intercostal space in the midclavicular line of the affected side. However, studies have shown that using the 4th or 5th intercostal space in the midaxillary line has better success in reaching the thoracic cavity in adult patients. ATLS now recommends this location for needle decompression in adults. The location for children remains the same, and the 2nd intercostal space in the midclavicular line should still be used. It is important to remember that needle thoracocentesis is a temporary measure and definitive treatment involves the insertion of a chest drain.

    • This question is part of the following fields:

      • Trauma
      24.2
      Seconds
  • Question 15 - A 35-year-old woman is brought in by ambulance following a car accident where...

    Correct

    • A 35-year-old woman is brought in by ambulance following a car accident where her car was struck by a truck. She has suffered severe facial injuries and shows signs of airway obstruction. Her neck is immobilized. She has suffered significant midface trauma, and the anesthesiologist decides to secure a definitive airway by intubating the patient. He is unable to pass an endotracheal tube, and he decides to perform a needle cricothyroidotomy.

      Which of the following statements about needle cricothyroidotomy is correct?

      Your Answer: Evidence of local infection is a valid contraindication

      Explanation:

      A needle cricothyroidotomy is a procedure used in emergency situations to provide oxygenation when intubation and oxygenation are not possible. It is typically performed when a patient cannot be intubated or oxygenated. There are certain conditions that make this procedure contraindicated, such as local infection, distorted anatomy, previous failed attempts, and swelling or mass lesions.

      To perform a needle cricothyroidotomy, the necessary equipment should be assembled and prepared. The patient should be positioned supine with their neck in a neutral position. The neck should be cleaned in a sterile manner using antiseptic swabs. If time allows, the area should be anesthetized locally. A 12 or 14 gauge over-the-needle catheter should be assembled to a 10 mL syringe.

      The cricothyroid membrane, located between the thyroid and cricoid cartilage, should be identified anteriorly. The trachea should be stabilized with the thumb and forefinger of one hand. Using the other hand, the skin should be punctured in the midline with the needle over the cricothyroid membrane. The needle should be directed at a 45° angle caudally while negative pressure is applied to the syringe. Needle aspiration should be maintained as the needle is inserted through the lower half of the cricothyroid membrane, with air aspiration indicating entry into the tracheal lumen.

      Once the needle is in place, the syringe and needle should be removed while the catheter is advanced to the hub. The oxygen catheter should be attached and the airway secured. It is important to be aware of possible complications, such as technique failure, cannula obstruction or dislodgement, injury to local structures, and surgical emphysema if high flow oxygen is administered through a malpositioned cannula.

    • This question is part of the following fields:

      • Trauma
      72.9
      Seconds
  • Question 16 - You evaluate the airway and breathing of a patient who has been brought...

    Incorrect

    • You evaluate the airway and breathing of a patient who has been brought into the emergency department by an ambulance after being rescued from a house fire. You suspect that the patient may have an obstructed airway.
      Which of the following statements about managing the airway and breathing in burn patients is NOT true?

      Your Answer: Peak inspiratory pressures <30 cmH2O should be used in intubated patients

      Correct Answer: High tidal volumes should be used in intubated patients

      Explanation:

      Patients who have suffered burns should receive high-flow oxygen (15 L) through a reservoir bag while their breathing is being evaluated. If intubation is necessary, it is crucial to use an appropriately sized endotracheal tube (ETT). Using a tube that is too small can make it difficult or even impossible to ventilate the patient, clear secretions, or perform bronchoscopy.

      According to the ATLS guidelines, adults should be intubated using an ETT with an internal diameter (ID) of at least 7.5 mm or larger. Children, on the other hand, should have an ETT with an ID of at least 4.5 mm. Once a patient has been intubated, it is important to continue administering 100% oxygen until their carboxyhemoglobin levels drop to less than 5%.

      To protect the lungs, it is recommended to use lung protective ventilation techniques. This involves using low tidal volumes (4-8 mL/kg) and ensuring that peak inspiratory pressures do not exceed 30 cmH2O.

    • This question is part of the following fields:

      • Trauma
      65.7
      Seconds
  • Question 17 - A 35-year-old woman that has been involved in a car accident is estimated...

    Incorrect

    • A 35-year-old woman that has been involved in a car accident is estimated to have suffered a class II haemorrhage according to the Advanced Trauma Life Support (ATLS) haemorrhagic shock classification. The patient weighs approximately 60 kg.
      Which of the following physiological parameters is consistent with a diagnosis of class II haemorrhage?

      Your Answer: Respiratory rate of 14 breaths/minute

      Correct Answer: Heart rate of 110 bpm

      Explanation:

      Recognizing the extent of blood loss based on vital sign and mental status abnormalities is a crucial skill. The Advanced Trauma Life Support (ATLS) classification for hemorrhagic shock correlates the amount of blood loss with expected physiological responses in a healthy individual weighing 70 kg. In terms of body weight, the total circulating blood volume accounts for approximately 7%, which is roughly equivalent to five liters in an average 70 kg male patient.

      The ATLS classification for hemorrhagic shock is as follows:

      CLASS I:
      – Blood loss: Up to 750 mL
      – Blood loss (% blood volume): Up to 15%
      – Pulse rate: Less than 100 beats per minute (bpm)
      – Systolic blood pressure: Normal
      – Pulse pressure: Normal (or increased)
      – Respiratory rate: 14-20 breaths per minute
      – Urine output: Greater than 30 mL/hr
      – CNS/mental status: Slightly anxious

      CLASS II:
      – Blood loss: 750-1500 mL
      – Blood loss (% blood volume): 15-30%
      – Pulse rate: 100-120 bpm
      – Systolic blood pressure: Normal
      – Pulse pressure: Decreased
      – Respiratory rate: 20-30 breaths per minute
      – Urine output: 20-30 mL/hr
      – CNS/mental status: Mildly anxious

      CLASS III:
      – Blood loss: 1500-2000 mL
      – Blood loss (% blood volume): 30-40%
      – Pulse rate: 120-140 bpm
      – Systolic blood pressure: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: 30-40 breaths per minute
      – Urine output: 5-15 mL/hr
      – CNS/mental status: Anxious, confused

      CLASS IV:
      – Blood loss: More than 2000 mL
      – Blood loss (% blood volume): More than 40%
      – Pulse rate: More than 140 bpm
      – Systolic blood pressure: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: More than 40 breaths per minute
      – Urine output: Negligible
      – CNS/mental status: Confused, lethargic

    • This question is part of the following fields:

      • Trauma
      22.3
      Seconds
  • Question 18 - A 48 year old welder is admitted to the emergency department with burns...

    Incorrect

    • A 48 year old welder is admitted to the emergency department with burns to the chest after sparks from the welding machine ignited some gasoline-soaked rags that were nearby on the ground, causing his T-shirt to catch fire. Upon examination, the patient presents with full thickness burns encircling the chest. What would be the primary complication you would be most worried about in this case?

      Your Answer: Carbon monoxide poisoning

      Correct Answer: Impaired ventilation

      Explanation:

      Circumferential burns on the thorax can limit the expansion of the chest and hinder proper ventilation. When burns penetrate deeply, they can cause the formation of dead tissue called eschar, which is usually white or black in color. This eschar is contracted and inflexible compared to healthy tissue, leading to restricted movement and impaired breathing. In some cases, burns on the thorax can result in respiratory failure. Marjolin’s ulcer, a rare condition, refers to the development of squamous cell carcinoma in burnt or scarred tissue. Burn injuries often lead to the release of excess potassium into the bloodstream, which can cause hyperkalemia. Carbon monoxide poisoning typically occurs when someone inhales CO over a prolonged period, usually due to incomplete combustion of hydrocarbons. However, the history provided in this case does not align with prolonged exposure to carbon monoxide.

      Further Reading:

      Burn injuries can be classified based on their type (degree, partial thickness or full thickness), extent as a percentage of total body surface area (TBSA), and severity (minor, moderate, major/severe). Severe burns are defined as a >10% TBSA in a child and >15% TBSA in an adult.

      When assessing a burn, it is important to consider airway injury, carbon monoxide poisoning, type of burn, extent of burn, special considerations, and fluid status. Special considerations may include head and neck burns, circumferential burns, thorax burns, electrical burns, hand burns, and burns to the genitalia.

      Airway management is a priority in burn injuries. Inhalation of hot particles can cause damage to the respiratory epithelium and lead to airway compromise. Signs of inhalation injury include visible burns or erythema to the face, soot around the nostrils and mouth, burnt/singed nasal hairs, hoarse voice, wheeze or stridor, swollen tissues in the mouth or nostrils, and tachypnea and tachycardia. Supplemental oxygen should be provided, and endotracheal intubation may be necessary if there is airway obstruction or impending obstruction.

      The initial management of a patient with burn injuries involves conserving body heat, covering burns with clean or sterile coverings, establishing IV access, providing pain relief, initiating fluid resuscitation, measuring urinary output with a catheter, maintaining nil by mouth status, closely monitoring vital signs and urine output, monitoring the airway, preparing for surgery if necessary, and administering medications.

      Burns can be classified based on the depth of injury, ranging from simple erythema to full thickness burns that penetrate into subcutaneous tissue. The extent of a burn can be estimated using methods such as the rule of nines or the Lund and Browder chart, which takes into account age-specific body proportions.

      Fluid management is crucial in burn injuries due to significant fluid losses. Evaporative fluid loss from burnt skin and increased permeability of blood vessels can lead to reduced intravascular volume and tissue perfusion. Fluid resuscitation should be aggressive in severe burns, while burns <15% in adults and <10% in children may not require immediate fluid resuscitation. The Parkland formula can be used to calculate the intravenous fluid requirements for someone with a significant burn injury.

    • This question is part of the following fields:

      • Trauma
      14.8
      Seconds
  • Question 19 - A 35-year-old man is brought in by ambulance following a car crash. A...

    Incorrect

    • A 35-year-old man is brought in by ambulance following a car crash. A FAST scan is conducted to assess for the presence of a haemoperitoneum.
      Where is free fluid most likely to be observed if a haemoperitoneum is present?

      Your Answer: Para-colic

      Correct Answer: Liver

      Explanation:

      A Focussed Assessment with Sonography for Trauma (FAST) scan is a point-of-care ultrasound examination conducted when a trauma patient arrives. Its primary purpose is to identify the presence of intra-abdominal free fluid, which is typically assumed to be haemoperitoneum in the context of trauma. This information is crucial for making decisions regarding further management of the patient.

      The sensitivity of FAST scanning for detecting intraperitoneal fluid is approximately 90%, while its specificity is around 95%. However, its sensitivity for detecting solid organ injuries is much lower. As a result, FAST scanning has largely replaced diagnostic peritoneal lavage as the preferred initial method for assessing haemoperitoneum.

      During a standard FAST scan, four regions are examined. The subxiphoid transverse view is used to assess for pericardial effusion and left lobe liver injuries. The longitudinal view of the right upper quadrant helps identify right liver injuries, right kidney injury, and fluid in the hepatorenal recess (Morison’s pouch). The longitudinal view of the left upper quadrant is used to assess for splenic injury and left kidney injury. Lastly, the transverse and longitudinal views of the suprapubic region are used to examine the bladder and fluid in the pouch of Douglas.

      In addition to the standard FAST scan, an extended FAST or eFAST may be performed to assess the left and right thoracic regions. This helps determine the presence of pneumothorax and haemothorax.

      The hepatorenal recess is the deepest part of the peritoneal cavity when the patient is lying flat. Consequently, it is the most likely area for fluid to accumulate.

    • This question is part of the following fields:

      • Trauma
      13.6
      Seconds
  • Question 20 - A 45 year old is brought into the emergency department after sustaining a...

    Correct

    • A 45 year old is brought into the emergency department after sustaining a head injury after falling from a staircase. The patient opens his eyes to voice and localises to pain. The patient's speech is slurred and he appears disoriented. What is this patient's Glasgow Coma Score (GCS)?

      Your Answer: 12

      Explanation:

      In this case, the patient opens his eyes to voice, which corresponds to a score of 3 on the eye opening component. The patient localizes to pain, indicating a purposeful motor response, which corresponds to a score of 5 on the motor response component. However, the patient’s speech is slurred and he appears disoriented, suggesting an impaired verbal response. This would correspond to a score of 4 on the verbal response component.

      To calculate the GCS, we sum up the scores from each component. In this case, the patient’s GCS would be 3 + 4 + 5 = 12

      Further Reading:

      Indications for CT Scanning in Head Injuries (Adults):
      – CT head scan should be performed within 1 hour if any of the following features are present:
      – GCS < 13 on initial assessment in the ED
      – GCS < 15 at 2 hours after the injury on assessment in the ED
      – Suspected open or depressed skull fracture
      – Any sign of basal skull fracture (haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, Battle’s sign)
      – Post-traumatic seizure
      – New focal neurological deficit
      – > 1 episode of vomiting

      Indications for CT Scanning in Head Injuries (Children):
      – CT head scan should be performed within 1 hour if any of the features in List 1 are present:
      – Suspicion of non-accidental injury
      – Post-traumatic seizure but no history of epilepsy
      – GCS < 14 on initial assessment in the ED for children more than 1 year of age
      – Paediatric GCS < 15 on initial assessment in the ED for children under 1 year of age
      – At 2 hours after the injury, GCS < 15
      – Suspected open or depressed skull fracture or tense fontanelle
      – Any sign of basal skull fracture (haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, Battle’s sign)
      – New focal neurological deficit
      – For children under 1 year, presence of bruise, swelling or laceration of more than 5 cm on the head

      – CT head scan should be performed within 1 hour if none of the above features are present but two or more of the features in List 2 are present:
      – Loss of consciousness lasting more than 5 minutes (witnessed)
      – Abnormal drowsiness
      – Three or more discrete episodes of vomiting
      – Dangerous mechanism of injury (high-speed road traffic accident, fall from a height.

    • This question is part of the following fields:

      • Trauma
      41.7
      Seconds
  • Question 21 - A 42-year-old woman was involved in a car accident where her vehicle collided...

    Incorrect

    • A 42-year-old woman was involved in a car accident where her vehicle collided with a wall at a high speed. She was not wearing a seatbelt and was thrown forward onto the steering wheel. She is experiencing severe bruising on her anterior chest wall and is complaining of chest pain. A chest X-ray reveals a significantly widened mediastinum, tracheal deviation to the right, and fractures of the first and second ribs. Her vital signs are as follows: heart rate of 94, blood pressure of 128/73, and oxygen saturation of 99% on high flow oxygen.

      What is the SINGLE most likely diagnosis?

      Your Answer: Tension pneumothorax

      Correct Answer: Traumatic aortic rupture

      Explanation:

      Traumatic aortic rupture is a relatively common cause of sudden death following major trauma, especially high-speed road traffic accidents (RTAs). It is estimated that 15-20% of deaths from RTAs are due to this injury. If the aortic rupture is promptly recognized and treated, patients who survive the initial injury can fully recover.

      Surviving patients often have an incomplete laceration near the ligamentum arteriosum of the aorta. The continuity is maintained by either an intact adventitial layer or a contained mediastinal hematoma, which prevents immediate exsanguination and death.

      Detecting traumatic aortic rupture can be challenging as many patients do not exhibit specific symptoms, and other injuries may also be present, making the diagnosis unclear.

      Chest X-ray findings can aid in the diagnosis and include fractures of the 1st and 2nd ribs, a grossly widened mediastinum, a hazy left lung field, obliteration of the aortic knob, deviation of the trachea to the right, presence of a pleural cap, elevation and rightward shift of the right mainstem bronchus, depression of the left mainstem bronchus, obliteration of the space between the pulmonary artery and aorta, and deviation of the esophagus (or NG tube) to the right.

      Helical contrast-enhanced CT scanning is highly sensitive and specific for detecting aortic rupture, but it should only be performed on hemodynamically stable patients.

      Treatment options include primary repair or resection of the torn segment with replacement using an interposition graft. Endovascular repair is also now considered an acceptable alternative approach.

    • This question is part of the following fields:

      • Trauma
      55.7
      Seconds
  • Question 22 - A 45-year-old woman is brought into the emergency room by an ambulance with...

    Correct

    • A 45-year-old woman is brought into the emergency room by an ambulance with sirens blaring after being involved in a car accident. She was hit by a truck while crossing the street and is suspected to have a pelvic injury. Her blood pressure is unstable, and the hospital has initiated the massive transfusion protocol. You decide to administer tranexamic acid as well.
      What is the recommended time frame for administering tranexamic acid in a trauma situation?

      Your Answer: Within 3 hours

      Explanation:

      ATLS guidelines now suggest administering only 1 liter of crystalloid fluid during the initial assessment. If patients do not respond to the crystalloid, it is recommended to quickly transition to blood products. Studies have shown that infusing more than 1.5 liters of crystalloid fluid is associated with higher mortality rates in trauma cases. Therefore, it is advised to prioritize the early use of blood products and avoid large volumes of crystalloid fluid in trauma patients. In cases where it is necessary, massive transfusion should be considered, defined as the transfusion of more than 10 units of blood in 24 hours or more than 4 units of blood in one hour. For patients with evidence of Class III and IV hemorrhage, early resuscitation with blood and blood products in low ratios is recommended.

      Based on the findings of significant trials, such as the CRASH-2 study, the use of tranexamic acid is now recommended within 3 hours. This involves administering a loading dose of 1 gram intravenously over 10 minutes, followed by an infusion of 1 gram over eight hours. In some regions, tranexamic acid is also being utilized in the prehospital setting.

    • This question is part of the following fields:

      • Trauma
      20.3
      Seconds
  • Question 23 - A 45-year-old presents to the emergency department following a seemingly minor rear-end car...

    Correct

    • A 45-year-old presents to the emergency department following a seemingly minor rear-end car accident. There are no reported sensory deficits. What clinical finding would indicate the need for radiological evaluation of the cervical spine in this scenario?

      Your Answer: Patient unable to actively rotate their neck 45 degrees to the left and right

      Explanation:

      The ability to rotate the neck actively by 45 degrees to the left and right is a crucial distinction between the ‘no risk’ and ‘low risk’ categories when applying the Canadian C-spine rules. In this case, the patient does not exhibit any high-risk factors for cervical spine injury according to the Canadian C-spine rule. However, they do have a low-risk factor due to their involvement in a minor rear-end motor collision. If a patient with a low-risk factor is unable to actively rotate their neck by 45 degrees in either direction, they should undergo imaging. It is important to note that while the patient’s use of anticoagulation medication may affect the need for brain imaging, it typically does not impact the decision to perform a CT scan of the cervical spine.

      Further Reading:

      When assessing for cervical spine injury, it is recommended to use the Canadian C-spine rules. These rules help determine the risk level for a potential injury. High-risk factors include being over the age of 65, experiencing a dangerous mechanism of injury (such as a fall from a height or a high-speed motor vehicle collision), or having paraesthesia in the upper or lower limbs. Low-risk factors include being involved in a minor rear-end motor vehicle collision, being comfortable in a sitting position, being ambulatory since the injury, having no midline cervical spine tenderness, or experiencing a delayed onset of neck pain. If a person is unable to actively rotate their neck 45 degrees to the left and right, their risk level is considered low. If they have one of the low-risk factors and can actively rotate their neck, their risk level remains low.

      If a high-risk factor is identified or if a low-risk factor is identified and the person is unable to actively rotate their neck, full in-line spinal immobilization should be maintained and imaging should be requested. Additionally, if a patient has risk factors for thoracic or lumbar spine injury, imaging should be requested. However, if a patient has low-risk factors for cervical spine injury, is pain-free, and can actively rotate their neck, full in-line spinal immobilization and imaging are not necessary.

      NICE recommends CT as the primary imaging modality for cervical spine injury in adults aged 16 and older, while MRI is recommended as the primary imaging modality for children under 16.

      Different mechanisms of spinal trauma can cause injury to the spine in predictable ways. The majority of cervical spine injuries are caused by flexion combined with rotation. Hyperflexion can result in compression of the anterior aspects of the vertebral bodies, stretching and tearing of the posterior ligament complex, chance fractures (also known as seatbelt fractures), flexion teardrop fractures, and odontoid peg fractures. Flexion and rotation can lead to disruption of the posterior ligament complex and posterior column, fractures of facet joints, lamina, transverse processes, and vertebral bodies, and avulsion of spinous processes. Hyperextension can cause injury to the anterior column, anterior fractures of the vertebral body, and potential retropulsion of bony fragments or discs into the spinal canal. Rotation can result in injury to the posterior ligament complex and facet joint dislocation.

    • This question is part of the following fields:

      • Trauma
      34.7
      Seconds
  • Question 24 - A 15 year old female patient is brought to the emergency department after...

    Correct

    • A 15 year old female patient is brought to the emergency department after being kicked by a horse multiple times. The patient had recently started work cleaning stables and was kicked several times whilst behind one of the horses. The patients observations are shown below:

      Parameter Result
      Blood pressure 108/62 mmHg
      Pulse rate 124 bpm
      Respiration rate 30 rpm
      SpO2 95% on air

      On examination there is significant bruising to the right anterolateral aspect of the chest wall, the patient is clammy, there is reduced air entry with dull percussion to the right lung base and the trachea is central. What is the likely diagnosis?

      Your Answer: Massive haemothorax

      Explanation:

      Massive haemothorax is characterized by the presence of more than 1.5 litres of blood in the pleural space. The patient’s history and examination findings are indicative of haemothorax. When blood loss exceeds 1500ml, it is classified as grade 3 hypovolemic shock, which is considered severe. Symptoms such as a pulse rate over 120, respiration rate over 30, and low blood pressure align with grade 3 shock and are consistent with massive haemothorax. In the case of pneumothorax, percussion reveals a resonant or hyper-resonant sound. Chylothorax, on the other hand, is a rare condition that typically occurs due to injury to the thoracic duct.

      Further Reading:

      Haemothorax is the accumulation of blood in the pleural cavity of the chest, usually resulting from chest trauma. It can be difficult to differentiate from other causes of pleural effusion on a chest X-ray. Massive haemothorax refers to a large volume of blood in the pleural space, which can impair physiological function by causing blood loss, reducing lung volume for gas exchange, and compressing thoracic structures such as the heart and IVC.

      The management of haemothorax involves replacing lost blood volume and decompressing the chest. This is done through supplemental oxygen, IV access and cross-matching blood, IV fluid therapy, and the insertion of a chest tube. The chest tube is connected to an underwater seal and helps drain the fluid, pus, air, or blood from the pleural space. In cases where there is prompt drainage of a large amount of blood, ongoing significant blood loss, or the need for blood transfusion, thoracotomy and ligation of bleeding thoracic vessels may be necessary. It is important to have two IV accesses prior to inserting the chest drain to prevent a drop in blood pressure.

      In summary, haemothorax is the accumulation of blood in the pleural cavity due to chest trauma. Managing haemothorax involves replacing lost blood volume and decompressing the chest through various interventions, including the insertion of a chest tube. Prompt intervention may be required in cases of significant blood loss or ongoing need for blood transfusion.

    • This question is part of the following fields:

      • Trauma
      29.2
      Seconds
  • Question 25 - A 4-year-old girl is brought in by an emergency ambulance after being involved...

    Correct

    • A 4-year-old girl is brought in by an emergency ambulance after being involved in a car accident. A trauma alert is activated, and you are tasked with obtaining intravenous access and administering a fluid bolus. However, you are unable to successfully establish intravenous access and decide to prepare for intraosseous access instead.

      Which of the following anatomical sites would be the most appropriate for insertion?

      Your Answer: Proximal humerus

      Explanation:

      Intraosseous access is recommended in trauma, burns, or resuscitation situations when other attempts at venous access fail or would take longer than one minute. It is particularly recommended for circulatory access in pediatric cardiac arrest cases. This technique can also be used when urgent blood sampling or intravenous access is needed and traditional cannulation is difficult and time-consuming. It serves as a temporary measure to stabilize the patient and facilitate long-term intravenous access.

      Potential complications of intraosseous access include compartment syndrome, infection, and fracture. Therefore, it is contraindicated to use this method on the side of definitively fractured bones or limbs with possible proximal fractures. It should also not be used at sites of previous attempts or in patients with conditions such as osteogenesis imperfecta or osteopetrosis.

      There are several possible sites for intraosseous access insertion. These include the proximal humerus, approximately 1 cm above the surgical neck; the proximal tibia, on the anterior surface, 2-3 cm below the tibial tuberosity; the distal tibia, 3 cm proximal to the most prominent aspect of the medial malleolus; the femoral region, on the anterolateral surface, 3 cm above the lateral condyle; the iliac crest; and the sternum.

    • This question is part of the following fields:

      • Trauma
      13.7
      Seconds
  • Question 26 - A 47 year old male visits the emergency department after injuring his knee....

    Incorrect

    • A 47 year old male visits the emergency department after injuring his knee. The patient explains that he extended his leg after tripping on a flight of stairs, but experienced intense pain around the knee when he landed on his foot. Walking has become challenging for the patient. The patient experiences tenderness above the patella and upon examination, the patella appears to be positioned lower than normal. An X-ray of the knee is requested. What is used to evaluate the accurate placement (height) of the patella on the X-ray?

      Your Answer: McMurray's angles

      Correct Answer: Insall-Salvati ratio

      Explanation:

      The Insall-Salvati ratio is determined by dividing the length of the patellar tendon (TL) by the length of the patella (PL). This ratio is used to compare the relative lengths of these two structures. A normal ratio is typically 1:1.

      Further Reading:

      A quadriceps tendon tear or rupture is a traumatic lower limb and joint injury that occurs when there is heavy loading on the leg, causing forced contraction of the quadriceps while the foot is planted and the knee is partially bent. These tears most commonly happen at the osteotendinous junction between the tendon and the superior pole of the patella. Quadriceps tendon ruptures are more common than patellar tendon ruptures.

      When a quadriceps tendon tear occurs, the patient usually experiences a tearing sensation and immediate pain. They will then typically complain of pain around the knee and over the tendon. Clinically, there will often be a knee effusion and weakness or inability to actively extend the knee.

      In cases of complete quadriceps tears, the patella will be displaced distally, resulting in a low lying patella or patella infera, also known as patella baja. Radiological measurements, such as the Insall-Salvati ratio, can be used to measure patella height. The Insall-Salvati ratio is calculated by dividing the patellar tendon length by the patellar length. A normal ratio is between 0.8 to 1.2, while a low lying patella (patella baja) is less than 0.8 and a high lying patella (patella alta) is greater than 1.2.

    • This question is part of the following fields:

      • Trauma
      29.7
      Seconds
  • Question 27 - You are overseeing the care of a trauma patient in the resuscitation bay....

    Correct

    • You are overseeing the care of a trauma patient in the resuscitation bay. A chest tube has been inserted through thoracostomy to drain the hemothorax. The initial amount of blood drained is documented, and there are plans to monitor the additional blood volume drained every hour. What would be an indication for thoracotomy in this patient?

      Your Answer: 250 ml blood drained from pleural cavity (in addition to previous volumes) between hours 2 and 3 post insertion

      Explanation:

      The main indications for thoracotomy in patients with haemothorax are prompt drainage of at least 1500 ml of blood, ongoing blood loss of more than 200 ml per hour for 2-4 hours, and the need for continued blood transfusion. Option 3 in the given choices meets these criteria as the blood loss remains above 200 ml per hour for more than 2 hours after the drain is inserted. Option 1 does not meet the criteria as the blood volume is below 1500 ml. Option 2 does not meet the criteria as the blood loss has not been ongoing for at least 2 hours. Option 4 does not meet the criteria as there is no information indicating the need for ongoing blood transfusion.

      Further Reading:

      Haemothorax is the accumulation of blood in the pleural cavity of the chest, usually resulting from chest trauma. It can be difficult to differentiate from other causes of pleural effusion on a chest X-ray. Massive haemothorax refers to a large volume of blood in the pleural space, which can impair physiological function by causing blood loss, reducing lung volume for gas exchange, and compressing thoracic structures such as the heart and IVC.

      The management of haemothorax involves replacing lost blood volume and decompressing the chest. This is done through supplemental oxygen, IV access and cross-matching blood, IV fluid therapy, and the insertion of a chest tube. The chest tube is connected to an underwater seal and helps drain the fluid, pus, air, or blood from the pleural space. In cases where there is prompt drainage of a large amount of blood, ongoing significant blood loss, or the need for blood transfusion, thoracotomy and ligation of bleeding thoracic vessels may be necessary. It is important to have two IV accesses prior to inserting the chest drain to prevent a drop in blood pressure.

      In summary, haemothorax is the accumulation of blood in the pleural cavity due to chest trauma. Managing haemothorax involves replacing lost blood volume and decompressing the chest through various interventions, including the insertion of a chest tube. Prompt intervention may be required in cases of significant blood loss or ongoing need for blood transfusion.

    • This question is part of the following fields:

      • Trauma
      40.9
      Seconds
  • Question 28 - A 45-year-old woman is brought into the emergency department after a car accident....

    Correct

    • A 45-year-old woman is brought into the emergency department after a car accident. She has significant bruising on the right side of her chest. You suspect she may have a hemothorax. What clinical signs would you anticipate observing in a patient with a hemothorax?

      Your Answer: Decreased fremitus on affected side

      Explanation:

      Haemothorax often leads to reduced or absent air entry, a dull percussion sound, and decreased fremitus on the affected side. Commonly observed symptoms in patients with haemothorax include decreased or absent air entry, a dull percussion note when the affected side is tapped, reduced fremitus on the affected side, and in cases of massive haemothorax, tracheal deviation away from the affected side. Other signs that may be present include a rapid heart rate (tachycardia), rapid breathing (tachypnoea), low blood pressure (hypotension), and signs of shock.

      Further Reading:

      Haemothorax is the accumulation of blood in the pleural cavity of the chest, usually resulting from chest trauma. It can be difficult to differentiate from other causes of pleural effusion on a chest X-ray. Massive haemothorax refers to a large volume of blood in the pleural space, which can impair physiological function by causing blood loss, reducing lung volume for gas exchange, and compressing thoracic structures such as the heart and IVC.

      The management of haemothorax involves replacing lost blood volume and decompressing the chest. This is done through supplemental oxygen, IV access and cross-matching blood, IV fluid therapy, and the insertion of a chest tube. The chest tube is connected to an underwater seal and helps drain the fluid, pus, air, or blood from the pleural space. In cases where there is prompt drainage of a large amount of blood, ongoing significant blood loss, or the need for blood transfusion, thoracotomy and ligation of bleeding thoracic vessels may be necessary. It is important to have two IV accesses prior to inserting the chest drain to prevent a drop in blood pressure.

      In summary, haemothorax is the accumulation of blood in the pleural cavity due to chest trauma. Managing haemothorax involves replacing lost blood volume and decompressing the chest through various interventions, including the insertion of a chest tube. Prompt intervention may be required in cases of significant blood loss or ongoing need for blood transfusion.

    • This question is part of the following fields:

      • Trauma
      31.6
      Seconds
  • Question 29 - A 14-year-old girl was cycling down a hill when a car backed up...

    Correct

    • A 14-year-old girl was cycling down a hill when a car backed up in front of her, resulting in a collision. She visits the emergency department, reporting upper abdominal pain caused by the handlebars. You determine that a FAST scan is necessary. What is the main objective of performing a FAST scan for blunt abdominal trauma?

      Your Answer: Detect the presence of intraperitoneal fluid

      Explanation:

      The primary goal of performing a FAST scan in cases of blunt abdominal trauma is to identify the existence of intraperitoneal fluid. According to the Royal College of Emergency Medicine (RCEM), the purpose of using ultrasound in the initial evaluation of abdominal trauma is specifically to confirm the presence of fluid within the peritoneal cavity, with the assumption that it is blood. However, it is important to note that ultrasound is not reliable for diagnosing injuries to solid organs or hollow viscus.

      Further Reading:

      Abdominal trauma can be classified into two categories: blunt trauma and penetrating trauma. Blunt trauma occurs when compressive or deceleration forces are applied to the abdomen, often resulting from road traffic accidents or direct blows during sports. The spleen and liver are the organs most commonly injured in blunt abdominal trauma. On the other hand, penetrating trauma involves injuries that pierce the skin and enter the abdominal cavity, such as stabbings, gunshot wounds, or industrial accidents. The bowel and liver are the organs most commonly affected in penetrating injuries.

      When it comes to imaging in blunt abdominal trauma, there are three main modalities that are commonly used: focused assessment with sonography in trauma (FAST), diagnostic peritoneal lavage (DPL), and computed tomography (CT). FAST is a non-invasive and quick method used to detect free intraperitoneal fluid, aiding in the decision on whether a laparotomy is needed. DPL is also used to detect intraperitoneal blood and can be used in both unstable blunt abdominal trauma and penetrating abdominal trauma. However, it is more invasive and time-consuming compared to FAST and has largely been replaced by it. CT, on the other hand, is the gold standard for diagnosing intra-abdominal pathology and is used in stable abdominal trauma patients. It offers high sensitivity and specificity but requires a stable and cooperative patient. It also involves radiation and may have delays in availability.

      In the case of penetrating trauma, it is important to assess these injuries with the help of a surgical team. Penetrating objects should not be removed in the emergency department as they may be tamponading underlying vessels. Ideally, these injuries should be explored in the operating theater.

      In summary, abdominal trauma can be classified into blunt trauma and penetrating trauma. Blunt trauma is caused by compressive or deceleration forces and commonly affects the spleen and liver. Penetrating trauma involves injuries that pierce the skin and commonly affect the bowel and liver. Imaging modalities such as FAST, DPL, and CT are used to assess and diagnose abdominal trauma, with CT being the gold standard. Penetrating injuries should be assessed by a surgical team and should ideally be explored in the operating theater.

    • This question is part of the following fields:

      • Trauma
      43.1
      Seconds
  • Question 30 - A 35-year-old man is brought into resus by blue light ambulance. He has...

    Incorrect

    • A 35-year-old man is brought into resus by blue light ambulance. He has been involved in a car accident and has suffered severe injuries. You assess his airway and are concerned about the potential for airway obstruction.
      What is the primary risk factor for airway obstruction in a patient with severe injuries?

      Your Answer: Adherent burned clothes on the chest wall

      Correct Answer: A carboxyhaemoglobin level of 15%

      Explanation:

      Early assessment of the airway is a critical aspect of managing a patient who has suffered burns. Airway blockage can occur rapidly due to direct injury, such as inhalation injury, or as a result of swelling caused by the burn. If there is a history of trauma, the airway should be evaluated and treated while maintaining control of the cervical spine.

      Signs of airway obstruction may not be immediately apparent, as swelling typically does not occur right away. Children with thermal burns are at a higher risk of airway obstruction compared to adults due to their smaller airway size, so they require careful observation.

      There are several risk factors for airway obstruction in burned patients, including inhalation injury, the presence of soot in the mouth or nostrils, singed nasal hairs, burns to the head, face, or neck, burns inside the mouth, a large burn area with increasing depth, and associated trauma. A carboxyhemoglobin level above 10% is also suggestive of an inhalation injury.

    • This question is part of the following fields:

      • Trauma
      39.8
      Seconds
  • Question 31 - A man in his early forties who works at a steel mill is...

    Incorrect

    • A man in his early forties who works at a steel mill is hit in the front of his abdomen by a steel girder. A FAST scan is conducted, revealing the existence of free fluid within the abdominal cavity.

      Which organ is most likely to have sustained an injury in this scenario?

      Your Answer: Aorta

      Correct Answer: Spleen

      Explanation:

      Blunt abdominal trauma often leads to injuries in certain organs. According to the latest edition of the ATLS manual, the spleen is the most frequently injured organ, with a prevalence of 40-55%. Following closely behind is the liver, which sustains injuries in about 35-45% of cases. The small bowel, although less commonly affected, still experiences injuries in approximately 5-10% of patients. It is worth noting that patients who undergo laparotomy for blunt trauma have a 15% incidence of retroperitoneal hematoma. These statistics highlight the significant impact of blunt abdominal trauma on organ health.

    • This question is part of the following fields:

      • Trauma
      22.8
      Seconds
  • Question 32 - A 45-year-old woman is brought into resus by blue light ambulance following a...

    Incorrect

    • A 45-year-old woman is brought into resus by blue light ambulance following a car crash. She was hit by a truck while driving a car and has a suspected pelvic injury. She is currently on a backboard with cervical spine protection and a pelvic binder in place. The massive transfusion protocol is activated.
      Which of the following is the definition of a massive transfusion?

      Your Answer:

      Correct Answer: The transfusion of more than 4 units of blood in 1 hour

      Explanation:

      ATLS guidelines now suggest administering only 1 liter of crystalloid fluid during the initial assessment. If patients do not respond to the crystalloid, it is recommended to quickly transition to blood products. Studies have shown that infusing more than 1.5 liters of crystalloid fluid is associated with higher mortality rates in trauma cases. Therefore, it is advised to prioritize the early use of blood products and avoid large volumes of crystalloid fluid in trauma patients. In cases where it is necessary, massive transfusion should be considered, defined as the transfusion of more than 10 units of blood in 24 hours or more than 4 units of blood in one hour. For patients with evidence of Class III and IV hemorrhage, early resuscitation with blood and blood products in low ratios is recommended.

      Based on the findings of significant trials, such as the CRASH-2 study, the use of tranexamic acid is now recommended within 3 hours. This involves administering a loading dose of 1 gram intravenously over 10 minutes, followed by an infusion of 1 gram over eight hours. In some regions, tranexamic acid is also being utilized in the prehospital setting.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 33 - A 52-year-old individual is brought to the emergency room after a car accident....

    Incorrect

    • A 52-year-old individual is brought to the emergency room after a car accident. They present with a fracture in the middle of their left femur and complain of abdominal pain. The patient appears restless. The following are their vital signs:

      Blood pressure: 112/94 mmHg
      Pulse rate: 102 bpm
      Respiration rate: 21 rpm
      SpO2: 97% on room air
      Temperature: 36 ºC

      Considering the possibility of significant blood loss, what grade of hypovolemic shock would you assign to this patient?

      Your Answer:

      Correct Answer: Grade 2

      Explanation:

      Grade 2 shock is characterized by a pulse rate of 100 to 120 beats per minute and a respiratory rate of 20 to 30 breaths per minute. These clinical features align with the symptoms of grade 2 hypovolemic shock, as indicated in the below notes.

      Further Reading:

      Shock is a condition characterized by inadequate tissue perfusion due to circulatory insufficiency. It can be caused by fluid loss or redistribution, as well as impaired cardiac output. The main causes of shock include haemorrhage, diarrhoea and vomiting, burns, diuresis, sepsis, neurogenic shock, anaphylaxis, massive pulmonary embolism, tension pneumothorax, cardiac tamponade, myocardial infarction, and myocarditis.

      One common cause of shock is haemorrhage, which is frequently encountered in the emergency department. Haemorrhagic shock can be classified into different types based on the amount of blood loss. Type 1 haemorrhagic shock involves a blood loss of 15% or less, with less than 750 ml of blood loss. Patients with type 1 shock may have normal blood pressure and heart rate, with a respiratory rate of 12 to 20 breaths per minute.

      Type 2 haemorrhagic shock involves a blood loss of 15 to 30%, with 750 to 1500 ml of blood loss. Patients with type 2 shock may have a pulse rate of 100 to 120 beats per minute and a respiratory rate of 20 to 30 breaths per minute. Blood pressure is typically normal in type 2 shock.

      Type 3 haemorrhagic shock involves a blood loss of 30 to 40%, with 1.5 to 2 litres of blood loss. Patients with type 3 shock may have a pulse rate of 120 to 140 beats per minute and a respiratory rate of more than 30 breaths per minute. Urine output is decreased to 5-15 mls per hour.

      Type 4 haemorrhagic shock involves a blood loss of more than 40%, with more than 2 litres of blood loss. Patients with type 4 shock may have a pulse rate of more than 140 beats per minute and a respiratory rate of more than 35 breaths per minute. They may also be drowsy, confused, and possibly experience loss of consciousness. Urine output may be minimal or absent.

      In summary, shock is a condition characterized by inadequate tissue perfusion. Haemorrhage is a common cause of shock, and it can be classified into different types based on the amount of blood loss. Prompt recognition and management of shock are crucial in order to prevent further complications and improve patient outcomes

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 34 - A 45-year-old individual is brought into the emergency department following a head injury...

    Incorrect

    • A 45-year-old individual is brought into the emergency department following a head injury from a ladder fall. The patient's condition worsens. You proceed to re-evaluate the patient's GCS. At what GCS range is intubation recommended?

      Your Answer:

      Correct Answer: 8 or less

      Explanation:

      Intubation is necessary for patients with a compromised airway. In comatose patients, a Glasgow Coma Scale (GCS) score of 8 or less indicates the need for intubation. According to NICE guidelines, immediate intubation and ventilation are advised in cases of coma where the patient is not responsive to commands, not speaking, and not opening their eyes. Other indications for intubation include the loss of protective laryngeal reflexes, ventilatory insufficiency as indicated by abnormal blood gases, spontaneous hyperventilation, irregular respirations, significantly deteriorating conscious level, unstable fractures of the facial skeleton, copious bleeding into the mouth, and seizures. In certain cases, intubation and ventilation should be performed before the patient begins their journey.

      Further Reading:

      Indications for CT Scanning in Head Injuries (Adults):
      – CT head scan should be performed within 1 hour if any of the following features are present:
      – GCS < 13 on initial assessment in the ED
      – GCS < 15 at 2 hours after the injury on assessment in the ED
      – Suspected open or depressed skull fracture
      – Any sign of basal skull fracture (haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, Battle’s sign)
      – Post-traumatic seizure
      – New focal neurological deficit
      – > 1 episode of vomiting

      Indications for CT Scanning in Head Injuries (Children):
      – CT head scan should be performed within 1 hour if any of the features in List 1 are present:
      – Suspicion of non-accidental injury
      – Post-traumatic seizure but no history of epilepsy
      – GCS < 14 on initial assessment in the ED for children more than 1 year of age
      – Paediatric GCS < 15 on initial assessment in the ED for children under 1 year of age
      – At 2 hours after the injury, GCS < 15
      – Suspected open or depressed skull fracture or tense fontanelle
      – Any sign of basal skull fracture (haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, Battle’s sign)
      – New focal neurological deficit
      – For children under 1 year, presence of bruise, swelling or laceration of more than 5 cm on the head

      – CT head scan should be performed within 1 hour if none of the above features are present but two or more of the features in List 2 are present:
      – Loss of consciousness lasting more than 5 minutes (witnessed)
      – Abnormal drowsiness
      – Three or more discrete episodes of vomiting
      – Dangerous mechanism of injury (high-speed road traffic accident, fall from a height)

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 35 - You are summoned to a cardiac arrest in the resuscitation area of your...

    Incorrect

    • You are summoned to a cardiac arrest in the resuscitation area of your Emergency Department. As part of your treatment, a dose of adrenaline is given.
      Which of the following is NOT a beta-adrenergic effect of adrenaline?

      Your Answer:

      Correct Answer: Systemic vasoconstriction

      Explanation:

      The effects of adrenaline on alpha-adrenergic receptors result in the narrowing of blood vessels throughout the body, leading to increased pressure in the coronary and cerebral arteries. On the other hand, the effects of adrenaline on beta-adrenergic receptors enhance the strength of the heart’s contractions and increase the heart rate, which can potentially improve blood flow to the coronary and cerebral arteries. However, it is important to note that these positive effects may be counteracted by the simultaneous increase in oxygen consumption by the heart, the occurrence of abnormal heart rhythms, reduced oxygen levels due to abnormal blood flow patterns, impaired small blood vessel function, and worsened heart function following a cardiac arrest.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 36 - A 42-year-old man was involved in a car accident where his vehicle collided...

    Incorrect

    • A 42-year-old man was involved in a car accident where his vehicle collided with a wall. He was rescued at the scene and has been brought to the hospital by ambulance. He is currently wearing a cervical immobilization device. He is experiencing chest pain on the left side and is having difficulty breathing. As the leader of the trauma response team, his vital signs are as follows: heart rate of 110, blood pressure of 102/63, oxygen saturation of 90% on room air. His Glasgow Coma Scale score is 15 out of 15. Upon examination, he has extensive bruising on the left side of his chest and shows reduced chest expansion, dullness to percussion, and decreased breath sounds throughout the entire left hemithorax.

      What is the most likely diagnosis for this patient?

      Your Answer:

      Correct Answer: Massive haemothorax

      Explanation:

      A massive haemothorax occurs when more than 1500 mL of blood, which is about 1/3 of the patient’s blood volume, rapidly accumulates in the chest cavity. The classic signs of a massive haemothorax include decreased chest expansion, decreased breath sounds, and dullness to percussion. Both tension pneumothorax and massive haemothorax can cause decreased breath sounds, but they can be differentiated through percussion. Hyperresonance indicates tension pneumothorax, while dullness suggests a massive haemothorax.

      The first step in managing a massive haemothorax is to simultaneously restore blood volume and decompress the chest cavity by inserting a chest drain. In most cases, the bleeding in a haemothorax has already stopped by the time management begins, and simple drainage is sufficient. It is important to use a chest drain of adequate size (preferably 36F) to ensure effective drainage of the haemothorax without clotting.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 37 - A 45-year-old woman was involved in a car accident where her car collided...

    Incorrect

    • A 45-year-old woman was involved in a car accident where her car collided with a tree at high speed. She was not wearing a seatbelt and was thrown forward onto the steering wheel of her car. She has bruising over her anterior chest wall and is experiencing chest pain. Her chest X-ray in the emergency room reveals evidence of a traumatic aortic injury.
      Which of the following fractures are most indicative of this injury?

      Your Answer:

      Correct Answer: 1st and 2nd ribs

      Explanation:

      Traumatic aortic rupture, also known as traumatic aortic disruption or transection, occurs when the aorta is torn or ruptured due to physical trauma. This condition often leads to sudden death because of severe bleeding. Motor vehicle accidents and falls from great heights are the most common causes of this injury.

      The patients with the highest chances of survival are those who have an incomplete tear near the ligamentum arteriosum of the proximal descending aorta, close to where the left subclavian artery branches off. The presence of an intact adventitial layer or contained mediastinal hematoma helps maintain continuity and prevents immediate bleeding and death. If promptly identified and treated, survivors of these injuries can recover. In cases where traumatic aortic rupture leads to sudden death, approximately 50% of patients have damage at the aortic isthmus, while around 15% have damage in either the ascending aorta or the aortic arch.

      Initial chest X-rays may show signs consistent with a traumatic aortic injury. However, false-positive and false-negative results can occur, and sometimes there may be no abnormalities visible on the X-ray. Some of the possible X-ray findings include a widened mediastinum, hazy left lung field, obliteration of the aortic knob, fractures of the 1st and 2nd ribs, deviation of the trachea to the right, presence of a pleural cap, elevation and rightward shift of the right mainstem bronchus, depression of the left mainstem bronchus, obliteration of the space between the pulmonary artery and aorta, and deviation of the esophagus or NG tube to the right.

      A helical contrast-enhanced CT scan of the chest is the preferred initial investigation for suspected blunt aortic injury. It has proven to be highly accurate, with close to 100% sensitivity and specificity. CT scanning should be performed liberally, as chest X-ray findings can be unreliable. However, hemodynamically unstable patients should not be placed in a CT scanner. If the CT results are inconclusive, aortography or trans-oesophageal echo can be performed for further evaluation.

      Immediate surgical intervention is necessary for these injuries. Endovascular repair is the most common method used and has excellent short-term outcomes. Open repair may also be performed depending on the circumstances. It is important to control heart rate and blood pressure during stabilization to reduce the risk of rupture. Pain should be managed with appropriate analgesic

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 38 - A 35-year-old woman who has been involved in a car accident is estimated...

    Incorrect

    • A 35-year-old woman who has been involved in a car accident is estimated to have suffered a class I haemorrhage according to the Advanced Trauma Life Support (ATLS) haemorrhagic shock classification. The patient weighs approximately 60 kg.
      Which of the following physiological parameters is consistent with a diagnosis of class I haemorrhage?

      Your Answer:

      Correct Answer: Increased pulse pressure

      Explanation:

      Recognizing the extent of blood loss based on vital sign and mental status abnormalities is a crucial skill. The Advanced Trauma Life Support (ATLS) classification for hemorrhagic shock correlates the amount of blood loss with expected physiological responses in a healthy individual weighing 70 kg. In terms of body weight, the total circulating blood volume accounts for approximately 7%, which is roughly equivalent to five liters in an average 70 kg male patient.

      The ATLS classification for hemorrhagic shock is as follows:

      CLASS I:
      – Blood loss: Up to 750 mL
      – Blood loss (% blood volume): Up to 15%
      – Pulse rate: Less than 100 beats per minute (bpm)
      – Systolic blood pressure: Normal
      – Pulse pressure: Normal (or increased)
      – Respiratory rate: 14-20 breaths per minute
      – Urine output: Greater than 30 mL/hr
      – CNS/mental status: Slightly anxious

      CLASS II:
      – Blood loss: 750-1500 mL
      – Blood loss (% blood volume): 15-30%
      – Pulse rate: 100-120 bpm
      – Systolic blood pressure: Normal
      – Pulse pressure: Decreased
      – Respiratory rate: 20-30 breaths per minute
      – Urine output: 20-30 mL/hr
      – CNS/mental status: Mildly anxious

      CLASS III:
      – Blood loss: 1500-2000 mL
      – Blood loss (% blood volume): 30-40%
      – Pulse rate: 120-140 bpm
      – Systolic blood pressure: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: 30-40 breaths per minute
      – Urine output: 5-15 mL/hr
      – CNS/mental status: Anxious, confused

      CLASS IV:
      – Blood loss: More than 2000 mL
      – Blood loss (% blood volume): More than 40%
      – Pulse rate: More than 140 bpm
      – Systolic blood pressure: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: More than 40 breaths per minute
      – Urine output: Negligible
      – CNS/mental status: Confused, lethargic

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 39 - The FY1 doctor seeks your guidance concerning an elderly patient they are managing...

    Incorrect

    • The FY1 doctor seeks your guidance concerning an elderly patient they are managing who has experienced a head injury. They are uncertain whether to request a CT head scan for their patient. What clinical criteria would necessitate an immediate CT head scan in an elderly individual?

      Your Answer:

      Correct Answer: Haemotympanum

      Explanation:

      Patients with head injuries who show any signs of basal skull fracture, such as haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, or Battle’s sign, should undergo urgent CT imaging. Additionally, the following indications also warrant a CT scan: a Glasgow Coma Scale (GCS) score of less than 13 on initial assessment in the emergency department (ED), a GCS score of less than 15 at 2 hours after the injury on assessment in the ED, suspected open or depressed skull fracture, post-traumatic seizure, new focal neurological deficit, greater than 1 episode of vomiting, or the patient being on anticoagulation. If any of these signs are present, a CT scan should be performed within 1 hour, except for patients on anticoagulation who should have a CT scan within 8 hours if they do not have any other signs. However, if patients on anticoagulation do have any of the other signs, the CT scan should be performed within 1 hour.

      Further Reading:

      Indications for CT Scanning in Head Injuries (Adults):
      – CT head scan should be performed within 1 hour if any of the following features are present:
      – GCS < 13 on initial assessment in the ED
      – GCS < 15 at 2 hours after the injury on assessment in the ED
      – Suspected open or depressed skull fracture
      – Any sign of basal skull fracture (haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, Battle’s sign)
      – Post-traumatic seizure
      – New focal neurological deficit
      – > 1 episode of vomiting

      Indications for CT Scanning in Head Injuries (Children):
      – CT head scan should be performed within 1 hour if any of the features in List 1 are present:
      – Suspicion of non-accidental injury
      – Post-traumatic seizure but no history of epilepsy
      – GCS < 14 on initial assessment in the ED for children more than 1 year of age
      – Paediatric GCS < 15 on initial assessment in the ED for children under 1 year of age
      – At 2 hours after the injury, GCS < 15
      – Suspected open or depressed skull fracture or tense fontanelle
      – Any sign of basal skull fracture (haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, Battle’s sign)
      – New focal neurological deficit
      – For children under 1 year, presence of bruise, swelling or laceration of more than 5 cm on the head

      – CT head scan should be performed within 1 hour if none of the above features are present but two or more of the features in List 2 are present:
      – Loss of consciousness lasting more than 5 minutes (witnessed)
      – Abnormal drowsiness
      – Three or more discrete episodes of vomiting
      – Dangerous mechanism of injury (high-speed road traffic accident, fall from a height.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 40 - You are overseeing the care of a 70-year-old male who suffered extensive burns...

    Incorrect

    • You are overseeing the care of a 70-year-old male who suffered extensive burns in a residential fire. After careful calculation, you have determined that the patient will require 6 liters of fluid over the course of the next 24 hours. Which intravenous fluid would be the most suitable to prescribe?

      Your Answer:

      Correct Answer: Hartmann's solution

      Explanation:

      When it comes to managing acute burns, Hartmann’s or lactated Ringers are the preferred intravenous fluids. There is no scientific evidence to support the use of colloids in burn management. In the United Kingdom, Hartmann’s solution is the most commonly used fluid for this purpose.

      Further Reading:

      Burn injuries can be classified based on their type (degree, partial thickness or full thickness), extent as a percentage of total body surface area (TBSA), and severity (minor, moderate, major/severe). Severe burns are defined as a >10% TBSA in a child and >15% TBSA in an adult.

      When assessing a burn, it is important to consider airway injury, carbon monoxide poisoning, type of burn, extent of burn, special considerations, and fluid status. Special considerations may include head and neck burns, circumferential burns, thorax burns, electrical burns, hand burns, and burns to the genitalia.

      Airway management is a priority in burn injuries. Inhalation of hot particles can cause damage to the respiratory epithelium and lead to airway compromise. Signs of inhalation injury include visible burns or erythema to the face, soot around the nostrils and mouth, burnt/singed nasal hairs, hoarse voice, wheeze or stridor, swollen tissues in the mouth or nostrils, and tachypnea and tachycardia. Supplemental oxygen should be provided, and endotracheal intubation may be necessary if there is airway obstruction or impending obstruction.

      The initial management of a patient with burn injuries involves conserving body heat, covering burns with clean or sterile coverings, establishing IV access, providing pain relief, initiating fluid resuscitation, measuring urinary output with a catheter, maintaining nil by mouth status, closely monitoring vital signs and urine output, monitoring the airway, preparing for surgery if necessary, and administering medications.

      Burns can be classified based on the depth of injury, ranging from simple erythema to full thickness burns that penetrate into subcutaneous tissue. The extent of a burn can be estimated using methods such as the rule of nines or the Lund and Browder chart, which takes into account age-specific body proportions.

      Fluid management is crucial in burn injuries due to significant fluid losses. Evaporative fluid loss from burnt skin and increased permeability of blood vessels can lead to reduced intravascular volume and tissue perfusion. Fluid resuscitation should be aggressive in severe burns, while burns <15% in adults and <10% in children may not require immediate fluid resuscitation. The Parkland formula can be used to calculate the intravenous fluid requirements for someone with a significant burn injury.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 41 - A young patient who has been in a car accident experiences a traumatic...

    Incorrect

    • A young patient who has been in a car accident experiences a traumatic cardiac arrest. You decide to perform an anterolateral thoracotomy.
      During this procedure, which structures will need to be divided?

      Your Answer:

      Correct Answer: Latissimus dorsi

      Explanation:

      An anterolateral thoracotomy is a surgical procedure performed on the front part of the chest wall. It is commonly used in Emergency Department thoracotomy, with a preference for a left-sided approach in patients experiencing traumatic arrest or left-sided chest injuries. However, in cases where patients have not arrested but present with severe low blood pressure and right-sided chest injuries, a right-sided approach is recommended.

      The procedure is conducted as follows: an incision is made along the 4th or 5th intercostal space, starting from the sternum at the front and extending to the posterior axillary line. The incision should be deep enough to partially cut through the latissimus dorsi muscle. Subsequently, the skin, subcutaneous fat, and superficial portions of the pectoralis and serratus muscles are divided. The parietal pleura is then divided, allowing access to the pleural cavity. The intercostal muscles are completely cut, and a rib spreader is inserted and opened to provide visualization of the thoracic cavity.

      The anterolateral approach enables access to crucial anatomical structures during resuscitation, including the pulmonary hilum, heart, and aorta. In cases where a right-sided heart injury is suspected, an additional incision can be made on the right side, extending across the entire chest. This procedure is known as a bilateral anterolateral thoracotomy or a clamshell thoracotomy.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 42 - A 35 year old is brought to the emergency room after a car...

    Incorrect

    • A 35 year old is brought to the emergency room after a car accident. He has a left sided mid-shaft femoral fracture and is experiencing abdominal pain. He appears restless. The patient's vital signs are as follows:

      Blood pressure: 112/94 mmHg
      Pulse rate: 102 bpm
      Respiration rate: 21 rpm
      SpO2: 97% on room air
      Temperature: 36 ºC

      Which of the following additional parameters would be most helpful in monitoring this patient?

      Your Answer:

      Correct Answer: Urine output

      Explanation:

      Shock is a condition characterized by inadequate tissue perfusion due to circulatory insufficiency. It can be caused by fluid loss or redistribution, as well as impaired cardiac output. The main causes of shock include haemorrhage, diarrhoea and vomiting, burns, diuresis, sepsis, neurogenic shock, anaphylaxis, massive pulmonary embolism, tension pneumothorax, cardiac tamponade, myocardial infarction, and myocarditis.

      One common cause of shock is haemorrhage, which is frequently encountered in the emergency department. Haemorrhagic shock can be classified into different types based on the amount of blood loss. Type 1 haemorrhagic shock involves a blood loss of 15% or less, with less than 750 ml of blood loss. Patients with type 1 shock may have normal blood pressure and heart rate, with a respiratory rate of 12 to 20 breaths per minute.

      Type 2 haemorrhagic shock involves a blood loss of 15 to 30%, with 750 to 1500 ml of blood loss. Patients with type 2 shock may have a pulse rate of 100 to 120 beats per minute and a respiratory rate of 20 to 30 breaths per minute. Blood pressure is typically normal in type 2 shock.

      Type 3 haemorrhagic shock involves a blood loss of 30 to 40%, with 1.5 to 2 litres of blood loss. Patients with type 3 shock may have a pulse rate of 120 to 140 beats per minute and a respiratory rate of more than 30 breaths per minute. Urine output is decreased to 5-15 mls per hour.

      Type 4 haemorrhagic shock involves a blood loss of more than 40%, with more than 2 litres of blood loss. Patients with type 4 shock may have a pulse rate of more than 140 beats per minute and a respiratory rate of more than 35 breaths per minute. They may also be drowsy, confused, and possibly experience loss of consciousness. Urine output may be minimal or absent.

      In summary, shock is a condition characterized by inadequate tissue perfusion. Haemorrhage is a common cause of shock, and it can be classified into different types based on the amount of blood loss. Prompt recognition and management of shock are crucial in order to prevent further complications and improve patient outcomes

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 43 - You are caring for a polytrauma patient with a penetrating chest injury. The...

    Incorrect

    • You are caring for a polytrauma patient with a penetrating chest injury. The FAST scan shows cardiac tamponade. If left untreated, expanding cardiac tamponade can lead to which of the following arrhythmias?

      Your Answer:

      Correct Answer: Pulseless electrical activity

      Explanation:

      If a polytrauma patient with a penetrating chest injury has an expanding cardiac tamponade that is left untreated, it can potentially lead to pulseless electrical activity.

      Further Reading:

      Cardiac tamponade, also known as pericardial tamponade, occurs when fluid accumulates in the pericardial sac and compresses the heart, leading to compromised blood flow. Classic clinical signs of cardiac tamponade include distended neck veins, hypotension, muffled heart sounds, and pulseless electrical activity (PEA). Diagnosis is typically done through a FAST scan or an echocardiogram.

      Management of cardiac tamponade involves assessing for other injuries, administering IV fluids to reduce preload, performing pericardiocentesis (inserting a needle into the pericardial cavity to drain fluid), and potentially performing a thoracotomy. It is important to note that untreated expanding cardiac tamponade can progress to PEA cardiac arrest.

      Pericardiocentesis can be done using the subxiphoid approach or by inserting a needle between the 5th and 6th intercostal spaces at the left sternal border. Echo guidance is the gold standard for pericardiocentesis, but it may not be available in a resuscitation situation. Complications of pericardiocentesis include ST elevation or ventricular ectopics, myocardial perforation, bleeding, pneumothorax, arrhythmia, acute pulmonary edema, and acute ventricular dilatation.

      It is important to note that pericardiocentesis is typically used as a temporary measure until a thoracotomy can be performed. Recent articles published on the RCEM learning platform suggest that pericardiocentesis has a low success rate and may delay thoracotomy, so it is advised against unless there are no other options available.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 44 - A 35 year old male presents to the emergency department after twisting his...

    Incorrect

    • A 35 year old male presents to the emergency department after twisting his right ankle while playing basketball. He reports pain on the outer side of his ankle and foot, and experiences discomfort when putting weight on it.

      After conducting a physical examination, the healthcare provider decides to order ankle and foot X-rays based on the Ottawa foot & ankle rules. According to these guidelines, which of the following scenarios would warrant a foot X-ray?

      Your Answer:

      Correct Answer: Tenderness over navicular

      Explanation:

      An X-ray of the foot is recommended when there is pain in the base of the fifth metatarsal or the navicular bone, as well as an inability to bear weight immediately after an injury or in the emergency department. The Ottawa ankle rules can also be used to determine if an X-ray is necessary for ankle injuries. These rules focus on two specific areas (the malleolar and midfoot zones) to determine if an X-ray of the ankle or foot is needed. More information on these rules can be found in the notes below.

      Further Reading:

      Ankle fractures are traumatic lower limb and joint injuries that involve the articulation between the tibia, fibula, and talus bones. The ankle joint allows for plantar and dorsiflexion of the foot. The key bony prominences of the ankle are called malleoli, with the medial and posterior malleolus being prominences of the distal tibia and the lateral malleolus being a prominence of the distal fibula. The distal fibula and tibia are joined together by the distal tibiofibular joint or syndesmosis, which is comprised of three key ligaments. An ankle X-ray series is often used to guide clinical decision making in patients with ankle injuries, using the Ottawa ankle rules to determine if an X-ray is necessary. Ankle fractures are commonly described by the anatomical fracture pattern seen on X-ray relative to the malleoli involved, such as isolated malleolus fractures, bimalleolar fractures, and trimalleolar fractures. The Weber classification is a commonly used system for distal fibula fractures, categorizing them as Weber A, B, or C based on the level and extent of the fracture.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 45 - You are present at a trauma call and have been asked to examine...

    Incorrect

    • You are present at a trauma call and have been asked to examine the chest of a child who has been hit by a car. According to the ATLS guidelines, what are the life-threatening chest injuries that should be identified and treated in the PRIMARY survey?

      Your Answer:

      Correct Answer: Open pneumothorax

      Explanation:

      The ATLS guidelines categorize chest injuries in trauma into two groups: life-threatening injuries that require immediate identification and treatment in the primary survey, and potentially life-threatening injuries that should be identified and treated in the secondary survey.

      During the primary survey, the focus is on identifying and treating life-threatening thoracic injuries. These include airway obstruction, tracheobronchial tree injury, tension pneumothorax, open pneumothorax, massive haemothorax, and cardiac tamponade. Prompt recognition and intervention are crucial in order to prevent further deterioration and potential fatality.

      In the secondary survey, attention is given to potentially life-threatening injuries that may not be immediately apparent. These include simple pneumothorax, haemothorax, flail chest, pulmonary contusion, blunt cardiac injury, traumatic aortic disruption, traumatic diaphragmatic injury, and blunt oesophageal rupture. These injuries may not pose an immediate threat to life, but they still require identification and appropriate management to prevent complications and ensure optimal patient outcomes.

      By dividing chest injuries into these two categories and addressing them in a systematic manner, healthcare providers can effectively prioritize and manage trauma patients, ultimately improving their chances of survival and recovery.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 46 - A 48-year-old male presents to the emergency department following a workplace injury. He...

    Incorrect

    • A 48-year-old male presents to the emergency department following a workplace injury. He sustained a large contusion to the anterior abdominal wall after a pneumatic tool discharged into his abdomen. The patient's vital signs are as follows:

      - Blood pressure: 92/60 mmHg
      - Pulse rate: 104 bpm
      - Temperature: 37.1ºC
      - SpO2: 97% on air

      Which imaging modality would be most appropriate for evaluating this patient with blunt abdominal trauma?

      Your Answer:

      Correct Answer: FAST scan

      Explanation:

      The preferred imaging method for unstable patients with blunt abdominal trauma is FAST scanning (Focused Assessment with Sonography in Trauma). It has replaced DPL as the imaging modality of choice. It is important to note that the primary purpose of a FAST scan is to detect intraperitoneal fluid, assumed to be blood, and guide the decision on whether a laparotomy is necessary. In this case, a CT scan is not recommended as the patient is unstable with tachycardia and hypotension. While CT is the most diagnostically accurate imaging technique, it requires a stable and cooperative patient.

      Further Reading:

      Abdominal trauma can be classified into two categories: blunt trauma and penetrating trauma. Blunt trauma occurs when compressive or deceleration forces are applied to the abdomen, often resulting from road traffic accidents or direct blows during sports. The spleen and liver are the organs most commonly injured in blunt abdominal trauma. On the other hand, penetrating trauma involves injuries that pierce the skin and enter the abdominal cavity, such as stabbings, gunshot wounds, or industrial accidents. The bowel and liver are the organs most commonly affected in penetrating injuries.

      When it comes to imaging in blunt abdominal trauma, there are three main modalities that are commonly used: focused assessment with sonography in trauma (FAST), diagnostic peritoneal lavage (DPL), and computed tomography (CT). FAST is a non-invasive and quick method used to detect free intraperitoneal fluid, aiding in the decision on whether a laparotomy is needed. DPL is also used to detect intraperitoneal blood and can be used in both unstable blunt abdominal trauma and penetrating abdominal trauma. However, it is more invasive and time-consuming compared to FAST and has largely been replaced by it. CT, on the other hand, is the gold standard for diagnosing intra-abdominal pathology and is used in stable abdominal trauma patients. It offers high sensitivity and specificity but requires a stable and cooperative patient. It also involves radiation and may have delays in availability.

      In the case of penetrating trauma, it is important to assess these injuries with the help of a surgical team. Penetrating objects should not be removed in the emergency department as they may be tamponading underlying vessels. Ideally, these injuries should be explored in the operating theater.

      In summary, abdominal trauma can be classified into blunt trauma and penetrating trauma. Blunt trauma is caused by compressive or deceleration forces and commonly affects the spleen and liver. Penetrating trauma involves injuries that pierce the skin and commonly affect the bowel and liver. Imaging modalities such as FAST, DPL, and CT are used to assess and diagnose abdominal trauma, with CT being the gold standard. Penetrating injuries should be assessed by a surgical team and should ideally be explored in the operating theater.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 47 - A 42 year old man is brought into the emergency department after a...

    Incorrect

    • A 42 year old man is brought into the emergency department after a car accident. He has significant bruising on the right side of his chest. You suspect he may have a hemothorax. When would thoracotomy be considered as a treatment option?

      Your Answer:

      Correct Answer: Prompt drainage of ≥1500 ml of blood following chest drain insertion

      Explanation:

      Thoracotomy is recommended when there is a need for prompt drainage of at least 1500 ml of blood following the insertion of a chest drain. Additionally, it is indicated when there is a continuous blood loss of more than 200 ml per hour for a period of 2-4 hours or when there is a persistent requirement for blood transfusion.

      Further Reading:

      Haemothorax is the accumulation of blood in the pleural cavity of the chest, usually resulting from chest trauma. It can be difficult to differentiate from other causes of pleural effusion on a chest X-ray. Massive haemothorax refers to a large volume of blood in the pleural space, which can impair physiological function by causing blood loss, reducing lung volume for gas exchange, and compressing thoracic structures such as the heart and IVC.

      The management of haemothorax involves replacing lost blood volume and decompressing the chest. This is done through supplemental oxygen, IV access and cross-matching blood, IV fluid therapy, and the insertion of a chest tube. The chest tube is connected to an underwater seal and helps drain the fluid, pus, air, or blood from the pleural space. In cases where there is prompt drainage of a large amount of blood, ongoing significant blood loss, or the need for blood transfusion, thoracotomy and ligation of bleeding thoracic vessels may be necessary. It is important to have two IV accesses prior to inserting the chest drain to prevent a drop in blood pressure.

      In summary, haemothorax is the accumulation of blood in the pleural cavity due to chest trauma. Managing haemothorax involves replacing lost blood volume and decompressing the chest through various interventions, including the insertion of a chest tube. Prompt intervention may be required in cases of significant blood loss or ongoing need for blood transfusion.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 48 - A 35 year old female is brought into the emergency department with chest...

    Incorrect

    • A 35 year old female is brought into the emergency department with chest injuries after a canister was thrown into a fire and the explosive projectile struck the patient's chest wall. On examination, there is asymmetry of the chest. You observe that the chest wall moves inward during inhalation and outward during expiration.

      What is the term for this clinical sign?

      Your Answer:

      Correct Answer: Paradoxical breathing

      Explanation:

      The patient in this scenario is exhibiting a clinical sign known as paradoxical breathing. This is characterized by an abnormal movement of the chest wall during respiration. Normally, the chest expands during inhalation and contracts during exhalation. However, in paradoxical breathing, the opposite occurs. The chest wall moves inward during inhalation and outward during exhalation. This can be seen in cases of chest trauma or injury, where there is a disruption in the normal mechanics of breathing.

      Further Reading:

      Flail chest is a serious condition that occurs when multiple ribs are fractured in two or more places, causing a segment of the ribcage to no longer expand properly. This condition is typically caused by high-impact thoracic blunt trauma and is often accompanied by other significant injuries to the chest.

      The main symptom of flail chest is a chest deformity, where the affected area moves in a paradoxical manner compared to the rest of the ribcage. This can cause chest pain and difficulty breathing, known as dyspnea. X-rays may also show evidence of lung contusion, indicating further damage to the chest.

      In terms of management, conservative treatment is usually the first approach. This involves providing adequate pain relief and respiratory support to the patient. However, if there are associated injuries such as a pneumothorax or hemothorax, specific interventions like thoracostomy or surgery may be necessary.

      Positive pressure ventilation can be used to provide internal splinting of the airways, helping to prevent atelectasis, a condition where the lungs collapse. Overall, prompt and appropriate management is crucial in order to prevent further complications and improve the patient’s outcome.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 49 - You evaluate a 38-year-old woman who was hit on the side of her...

    Incorrect

    • You evaluate a 38-year-old woman who was hit on the side of her leg by a soccer player while spectating the match from the sidelines. You suspect a tibial plateau fracture and order an X-ray of the affected knee. Besides the fracture line, what other radiographic indication is frequently observed in individuals with acute tibial plateau fractures?

      Your Answer:

      Correct Answer: Lipohaemathrosis evident in suprapatellar pouch

      Explanation:

      Lipohaemathrosis is commonly seen in the suprapatellar pouch in individuals who have tibial plateau fractures. Notable X-ray characteristics of tibial plateau fractures include a visible fracture of the tibial plateau and the presence of lipohaemathrosis in the suprapatellar pouch.

      Further Reading:

      Tibial plateau fractures are a type of traumatic lower limb and joint injury that can involve the medial or lateral tibial plateau, or both. These fractures are classified using the Schatzker classification, with higher grades indicating a worse prognosis. X-ray imaging can show visible fractures of the tibial plateau and the presence of lipohaemathrosis in the suprapatellar pouch. However, X-rays often underestimate the severity of these fractures, so CT scans are typically used for a more accurate assessment.

      Tibial spine fractures, on the other hand, are separate from tibial plateau fractures. They occur when the tibial spine is avulsed by the anterior cruciate ligament (ACL). This can happen due to forced knee hyperextension or a direct blow to the femur when the knee is flexed. These fractures are most common in children aged 8-14.

      Tibial tuberosity avulsion fractures primarily affect adolescent boys and are often caused by jumping or landing from a jump. These fractures can be associated with Osgood-Schlatter disease. The treatment for these fractures depends on their grading. Low-grade fractures may be managed with immobilization for 4-6 weeks, while more significant avulsions are best treated with surgical fixation.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 50 - A 28-year-old woman is brought into the emergency room by an ambulance with...

    Incorrect

    • A 28-year-old woman is brought into the emergency room by an ambulance with sirens blaring after being involved in a car accident. She was hit by a truck while riding a bicycle and is suspected to have a pelvic injury. Her blood pressure is unstable, and the hospital has activated the massive transfusion protocol. You decide to also give her tranexamic acid.
      What is the appropriate initial dose of tranexamic acid to administer and over what duration of time?

      Your Answer:

      Correct Answer: 1 g IV over 10 minutes

      Explanation:

      ATLS guidelines now suggest administering only 1 liter of crystalloid fluid during the initial assessment. If patients do not respond to the crystalloid, it is recommended to quickly transition to blood products. Studies have shown that infusing more than 1.5 liters of crystalloid fluid is associated with higher mortality rates in trauma cases. Therefore, it is advised to prioritize the early use of blood products and avoid large volumes of crystalloid fluid in trauma patients. In cases where it is necessary, massive transfusion should be considered, defined as the transfusion of more than 10 units of blood in 24 hours or more than 4 units of blood in one hour. For patients with evidence of Class III and IV hemorrhage, early resuscitation with blood and blood products in low ratios is recommended.

      Based on the findings of significant trials, such as the CRASH-2 study, the use of tranexamic acid is now recommended within 3 hours. This involves administering a loading dose of 1 gram intravenously over 10 minutes, followed by an infusion of 1 gram over eight hours. In some regions, tranexamic acid is also being utilized in the prehospital setting.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Trauma (16/31) 52%
Passmed