-
Question 1
Correct
-
A 29-year-old pregnant woman is admitted to the hospital and delivers a baby girl at 32 weeks gestation. The newborn displays signs of distress including tachypnoea, tachycardia, expiratory grunting, nasal flaring, and chest wall recession.
What is the cell type responsible for producing the substance that the baby is lacking?Your Answer: Type 2 pneumocytes
Explanation:Types of Pneumocytes and Their Functions
Pneumocytes are specialized cells found in the lungs that play a crucial role in gas exchange. There are two main types of pneumocytes: type 1 and type 2. Type 1 pneumocytes are very thin squamous cells that cover around 97% of the alveolar surface. On the other hand, type 2 pneumocytes are cuboidal cells that secrete surfactant, a substance that reduces surface tension in the alveoli and prevents their collapse during expiration.
Type 2 pneumocytes start to develop around 24 weeks gestation, but adequate surfactant production does not take place until around 35 weeks. This is why premature babies are prone to respiratory distress syndrome. In addition, type 2 pneumocytes can differentiate into type 1 pneumocytes during lung damage, helping to repair and regenerate damaged lung tissue.
Apart from pneumocytes, there are also club cells (previously termed Clara cells) found in the bronchioles. These non-ciliated dome-shaped cells have a varied role, including protecting against the harmful effects of inhaled toxins and secreting glycosaminoglycans and lysozymes. Understanding the different types of pneumocytes and their functions is essential in comprehending the complex mechanisms involved in respiration.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 2
Incorrect
-
A 50-year-old female presents to her GP with complaints of shortness of breath and weakness during mild-moderate exercise. She reports that these episodes have been getting progressively worse and now often result in dizziness. The patient has no significant medical history but was a previous smoker for 15 years, smoking 15 cigarettes per day. Spirometry testing reveals a restrictive lung pattern. What is the most probable diagnosis?
Your Answer: Chronic obstructive pulmonary disease (COPD)
Correct Answer: Myasthenia gravis
Explanation:Myasthenia gravis can result in a restrictive pattern of lung disease due to weakness of the respiratory muscles, which causes difficulty in breathing air in. Asthma and COPD are incorrect as they cause an obstructive pattern on spirometry, with asthma being characterized by small bronchiole obstruction from inflammation and increased mucus production, and COPD causing small airway inflammation and emphysema that restricts outward airflow. Alpha-1 antitrypsin deficiency also leads to an obstructive pattern, as it results in pulmonary tissue degradation and panlobular emphysema.
Understanding the Differences between Obstructive and Restrictive Lung Diseases
Obstructive and restrictive lung diseases are two distinct categories of respiratory conditions that affect the lungs in different ways. Obstructive lung diseases are characterized by a reduction in the flow of air through the airways due to narrowing or blockage, while restrictive lung diseases are characterized by a decrease in lung volume or capacity, making it difficult to breathe in enough air.
Spirometry is a common diagnostic tool used to differentiate between obstructive and restrictive lung diseases. In obstructive lung diseases, the ratio of forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) is less than 80%, indicating a reduced ability to exhale air. In contrast, restrictive lung diseases are characterized by an FEV1/FVC ratio greater than 80%, indicating a reduced ability to inhale air.
Examples of obstructive lung diseases include chronic obstructive pulmonary disease (COPD), chronic bronchitis, and emphysema, while asthma and bronchiectasis are also considered obstructive. Restrictive lung diseases include intrapulmonary conditions such as idiopathic pulmonary fibrosis, extrinsic allergic alveolitis, and drug-induced fibrosis, as well as extrapulmonary conditions such as neuromuscular diseases, obesity, and scoliosis.
Understanding the differences between obstructive and restrictive lung diseases is important for accurate diagnosis and appropriate treatment. While both types of conditions can cause difficulty breathing, the underlying causes and treatment approaches can vary significantly.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 3
Incorrect
-
Which one of the following is not a cause of increased anion gap acidosis?
Your Answer: Ethylene glycol
Correct Answer: Acetazolamide
Explanation:Causes of anion gap acidosis can be remembered using the acronym MUDPILES, which stands for Methanol, Uraemia, DKA/AKA, Paraldehyde/phenformin, Iron/INH, Lactic acidosis, Ethylene glycol, and Salicylates.
Disorders of Acid-Base Balance
The acid-base nomogram is a useful tool for categorizing the various disorders of acid-base balance. Metabolic acidosis is the most common surgical acid-base disorder, characterized by a reduction in plasma bicarbonate levels. This can be caused by a gain of strong acid or loss of base, and is classified according to the anion gap. A normal anion gap indicates hyperchloraemic metabolic acidosis, which can be caused by gastrointestinal bicarbonate loss, renal tubular acidosis, drugs, or Addison’s disease. A raised anion gap indicates lactate, ketones, urate, or acid poisoning. Metabolic alkalosis, on the other hand, is usually caused by a rise in plasma bicarbonate levels due to a loss of hydrogen ions or a gain of bicarbonate. It is mainly caused by problems of the kidney or gastrointestinal tract. Respiratory acidosis is characterized by a rise in carbon dioxide levels due to alveolar hypoventilation, while respiratory alkalosis is caused by hyperventilation resulting in excess loss of carbon dioxide. These disorders have various causes, such as COPD, sedative drugs, anxiety, hypoxia, and pregnancy.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 4
Incorrect
-
A 43-year-old woman comes to the respiratory clinic for an outpatient appointment. She has been experiencing increased breathlessness, particularly at night. Her medical history includes long-standing COPD, heart failure, and previous breast cancer that was treated with a mastectomy and radiotherapy. She used to smoke 20 cigarettes a day for 22 years but has since quit.
During the examination, her respiratory rate is 23/min, oxygen saturation is 93%, blood pressure is 124/98mmHg, and temperature is 37.2ºC. A gas transfer test is performed, and her transfer factor is found to be low.
What is the most likely diagnosis?Your Answer: Asthma
Correct Answer: Pulmonary oedema
Explanation:TLCO, also known as transfer factor, is a measurement of how quickly gas can move from a person’s lungs into their bloodstream. To test TLCO, a patient inhales a mixture of carbon monoxide and a tracer gas, holds their breath for 10 seconds, and then exhales forcefully. The exhaled gas is analyzed to determine how much tracer gas was absorbed during the 10-second period.
A high TLCO value is associated with conditions such as asthma, pulmonary hemorrhage, left-to-right cardiac shunts, polycythemia, hyperkinetic states, male gender, and exercise. Conversely, most other conditions result in a low TLCO value, including pulmonary fibrosis, pneumonia, pulmonary emboli, pulmonary edema, emphysema, and anemia.
Understanding Transfer Factor in Lung Function Testing
The transfer factor is a measure of how quickly a gas diffuses from the alveoli into the bloodstream. This is typically tested using carbon monoxide, and the results can be given as either the total gas transfer (TLCO) or the transfer coefficient corrected for lung volume (KCO). A raised TLCO may be caused by conditions such as asthma, pulmonary haemorrhage, left-to-right cardiac shunts, polycythaemia, hyperkinetic states, male gender, or exercise. On the other hand, a lower TLCO may be indicative of pulmonary fibrosis, pneumonia, pulmonary emboli, pulmonary oedema, emphysema, anaemia, or low cardiac output.
KCO tends to increase with age, and certain conditions may cause an increased KCO with a normal or reduced TLCO. These conditions include pneumonectomy/lobectomy, scoliosis/kyphosis, neuromuscular weakness, and ankylosis of costovertebral joints (such as in ankylosing spondylitis). Understanding transfer factor is important in lung function testing, as it can provide valuable information about a patient’s respiratory health and help guide treatment decisions.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 5
Incorrect
-
A 55-year-old Caucasian man presents to the ENT clinic with complaints of gradual hearing loss over the past year. He reports having to turn up the volume on his television to the maximum to hear it comfortably. There are no associated symptoms such as tinnitus or dizziness, and the patient has no significant medical history.
Upon examination, a Weber and Rinne test reveal conductive hearing loss in the left ear. Otoscope examination shows no signs of middle ear effusion or tympanic membrane involvement in either ear. A pure tone audiometry confirms conductive hearing loss in the left ear, with a Carhart's notch present.
The physician diagnoses the patient with otosclerosis and discusses treatment options.
What is the underlying pathology of otosclerosis?Your Answer: Accumulation of desquamated, stratified squamous epithelium within the middle ear, causing erosion of the ossicles
Correct Answer: Replacement of normal bone by vascular spongy bone
Explanation:Otosclerosis is a condition where normal bone is replaced by spongy bone with a high vascularity. This leads to progressive conductive hearing loss, without any other neurological impairments. The replacement of the normal endochondral layer of the bony labyrinth by spongy bone affects the ability of the stapes to act as a piston, resulting in the conduction of sound from the middle ear to the inner ear being affected. Caucasians are most commonly affected by this condition.
Benign paroxysmal positional vertigo (BPPV) is caused by the dislodgement of otoliths into the semicircular canals. This condition results in vertiginous dizziness upon positional changes, but does not affect auditory function.
Meniere’s disease is caused by endolymphatic hydrops, which is the accumulation of fluid in the inner ear. The pathophysiology of this condition is not well understood, but it leads to vertigo, tinnitus, hearing loss, and aural fullness.
Cholesteatoma is caused by the accumulation of desquamated, stratified squamous epithelium. This leads to the formation of a mass that can gradually enlarge and erode the ossicle chain, resulting in conductive hearing loss.
Presbycusis is a type of sensorineural hearing loss that occurs as a result of aging. The degeneration of the organ of Corti is one of the underlying pathological mechanisms that causes this condition. This leads to the destruction of outer hair cells and a decrease in hearing sensitivity.
Understanding Otosclerosis: A Progressive Conductive Deafness
Otosclerosis is a medical condition that occurs when normal bone is replaced by vascular spongy bone. This condition leads to a progressive conductive deafness due to the fixation of the stapes at the oval window. It is an autosomal dominant condition that typically affects young adults, with onset usually occurring between the ages of 20-40 years.
The main features of otosclerosis include conductive deafness, tinnitus, a normal tympanic membrane, and a positive family history. In some cases, patients may also experience a flamingo tinge, which is caused by hyperemia and affects around 10% of patients.
Management of otosclerosis typically involves the use of a hearing aid or stapedectomy. A hearing aid can help to improve hearing, while a stapedectomy involves the surgical removal of the stapes bone and replacement with a prosthesis.
Overall, understanding otosclerosis is important for individuals who may be at risk of developing this condition. Early diagnosis and management can help to improve hearing and prevent further complications.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 6
Correct
-
A respiratory specialist is conducting a bronchoscopy to determine a suitable biopsy for histological evaluation of suspected bronchial carcinoma in a pediatric patient.
While performing the procedure, the bronchoscope is erroneously inserted through the diaphragm at the T10 level.
Which structure is at the highest risk of being harmed as a result of this error?Your Answer: Oesophagus
Explanation:The oesophagus passes through the diaphragm at the level of T10 along with the vagal trunk, which is the most likely structure to have been damaged. The aorta, on the other hand, perforates the diaphragm at T12 and supplies oxygenated blood to the lower body, while the azygous vein also perforates the diaphragm at T12 and drains the right side of the thorax into the superior vena cava.
Structures Perforating the Diaphragm
The diaphragm is a dome-shaped muscle that separates the thoracic and abdominal cavities. It plays a crucial role in breathing by contracting and relaxing to create negative pressure in the lungs. However, there are certain structures that perforate the diaphragm, allowing them to pass through from the thoracic to the abdominal cavity. These structures include the inferior vena cava at the level of T8, the esophagus and vagal trunk at T10, and the aorta, thoracic duct, and azygous vein at T12.
To remember these structures and their corresponding levels, a helpful mnemonic is I 8(ate) 10 EGGS AT 12. This means that the inferior vena cava is at T8, the esophagus and vagal trunk are at T10, and the aorta, thoracic duct, and azygous vein are at T12. Knowing these structures and their locations is important for medical professionals, as they may need to access or treat them during surgical procedures or diagnose issues related to them.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 7
Incorrect
-
A 59-year-old woman visits the respiratory clinic for spirometry testing. As part of the testing, what is the definition of functional residual capacity?
Your Answer: Functional residual capacity = vital capacity + residual volume
Correct Answer: Functional residual capacity = expiratory reserve volume + residual volume
Explanation:To calculate the volume of air in the lungs after a normal relaxed expiration, one can use the formula for functional residual capacity (FRC), which is determined by the balance between the lungs’ tendency to recoil inwards and the chest wall’s tendency to pull outwards. FRC can be calculated by adding the expiratory reserve volume and the residual volume. In individuals with tetraplegia, decreases in FRC are primarily caused by a reduction in the outward pull of the chest wall, which occurs over time due to the inability to regularly expand the chest wall to large lung volumes. This reduction in FRC can increase the risk of atelectasis.
Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 8
Correct
-
A 67-year-old man visits the respiratory clinic for spirometry testing to investigate possible COPD. The clinician observes that his breathing appears to be shallow even at rest.
What specific lung volume would accurately describe the clinician's observation?Your Answer: Tidal volume (TV)
Explanation:Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 9
Correct
-
A patient on the medical ward was waiting for a cardiac procedure. On discussing the procedure with the consultant before the procedure, the patient started to feel anxious and had difficulty breathing. The resident obtained an arterial blood gas:
pH 7.55
pCO2 2.7kPa
pO2 11.2kPa
HCO3 24mmol/l
What is the most appropriate interpretation of these results?Your Answer: Respiratory alkalosis
Explanation:The respiratory alkalosis observed in the arterial blood gas results is most likely a result of hyperventilation, as indicated by the patient’s medical history.
Arterial Blood Gas Interpretation: A 5-Step Approach
Arterial blood gas interpretation is a crucial aspect of patient care, particularly in critical care settings. The Resuscitation Council (UK) recommends a 5-step approach to interpreting arterial blood gas results. The first step is to assess the patient’s overall condition. The second step is to determine if the patient is hypoxaemic, with a PaO2 on air of less than 10 kPa. The third step is to assess if the patient is acidaemic (pH <7.35) or alkalaemic (pH >7.45).
The fourth step is to evaluate the respiratory component of the arterial blood gas results. A PaCO2 level greater than 6.0 kPa suggests respiratory acidosis, while a PaCO2 level less than 4.7 kPa suggests respiratory alkalosis. The fifth step is to assess the metabolic component of the arterial blood gas results. A bicarbonate level less than 22 mmol/l or a base excess less than -2mmol/l suggests metabolic acidosis, while a bicarbonate level greater than 26 mmol/l or a base excess greater than +2mmol/l suggests metabolic alkalosis.
To remember the relationship between pH, PaCO2, and bicarbonate, the acronym ROME can be used. Respiratory acidosis or alkalosis is opposite to the pH level, while metabolic acidosis or alkalosis is equal to the pH level. This 5-step approach and the ROME acronym can aid healthcare professionals in interpreting arterial blood gas results accurately and efficiently.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 10
Correct
-
A 75-year-old man presents with a 2-month history of progressive shortness of breath and a recent episode of coughing up blood in the morning. He has also experienced significant weight loss of over 12 lbs and loss of appetite. Upon physical examination, conjunctival pallor is noted. The patient has a 30 pack year history of smoking. A chest x-ray reveals a mediastinal mass and ipsilateral elevation of the right diaphragm. What structure is being compressed by the mediastinal mass to explain these findings?
Your Answer: Phrenic nerve
Explanation:Lung cancer can cause the hemidiaphragm on the same side to rise due to pressure on the phrenic nerve. Haemoptysis is a common symptom of lung cancer, along with significant weight loss and a history of smoking. A chest x-ray can confirm the presence of a mediastinal mass, which is likely to be lung cancer.
A rapidly expanding lung mass can cause compression of surrounding structures, leading to complications. For example, an apical tumor can compress the brachial plexus, causing sensory symptoms in the arms or Erb’s or Klumpke’s palsies. Compression of the cervical sympathetic chain can cause Horner’s syndrome, which includes meiosis, anhidrosis, ptosis, and enophthalmos.
A mediastinal mass can also compress the recurrent laryngeal nerve as it winds around the aortic arch, resulting in hoarseness of voice or aphonia. Superior vena caval syndrome is a medical emergency that can cause swelling of the face, neck, upper chest, and arms, as well as the development of collaterals on the chest wall. Malignancy is the most common cause, but non-malignant causes can include an aortic aneurysm, fibrosing mediastinitis, or iatrogenic factors.
The Phrenic Nerve: Origin, Path, and Supplies
The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.
The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.
Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 11
Incorrect
-
John, a 55-year-old man, arrives at the emergency department complaining of chest pain that is relieved by leaning forward. He also mentions that the pain spreads to his left shoulder. The diagnosis is pericarditis.
Which nerve is accountable for the referred pain in this case?Your Answer: Vagus nerve
Correct Answer: Phrenic nerve
Explanation:The phrenic nerve provides motor innervation to the diaphragm and sensory innervation to the pleura and pericardium. Pericarditis can cause referred pain to the shoulder due to the supraclavicular nerves originating at C3-4. It is important to note that there are no pericardial nerves. The spinal accessory nerve innervates the trapezius and sternocleidomastoid muscles, while the trochlear nerve supplies the superior oblique muscle. Although the vagus nerve has various functions, it does not supply the pericardium.
The Phrenic Nerve: Origin, Path, and Supplies
The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.
The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.
Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 12
Incorrect
-
A 7-year-old boy is brought to the clinic by his father, who is worried about his son's hearing. The father has noticed that his son frequently asks him to repeat himself and tends to turn up the volume on the TV. During Weber's test, the patient indicates that the sound is louder on the right side. What conclusion can be drawn from this finding?
Your Answer: Conductive hearing loss of left ear.
Correct Answer: Can not tell which side is affected.
Explanation:The Weber test alone cannot determine which side of the patient’s hearing is affected. The test involves placing a tuning fork on the forehead and asking the patient to report if the sound is symmetrical or louder on one side. If the sound is louder on the left side, it could indicate a conductive hearing loss on the left or a sensorineural hearing loss on the right. To obtain more information, the Weber test should be performed in conjunction with the Rinne test, which involves comparing air conduction and bone conduction.
Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness
Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.
Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.
The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.
Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 13
Incorrect
-
A 49-year-old man experiences blunt force trauma to the head and subsequently experiences respiratory distress, leading to hypercapnia. What is the most probable consequence of this condition?
Your Answer: None of the above
Correct Answer: Cerebral vasodilation
Explanation:Cerebral vasodilation is a common result of hypercapnia, which can be problematic for patients with cranial trauma due to the potential increase in intracranial pressure.
Understanding the Monro-Kelly Doctrine and Autoregulation in the CNS
The Monro-Kelly doctrine governs the pressure within the cranium by considering the skull as a closed box. The loss of cerebrospinal fluid (CSF) can accommodate increases in mass until a critical point is reached, usually at 100-120ml of CSF lost. Beyond this point, intracranial pressure (ICP) rises sharply, and pressure will eventually equate with mean arterial pressure (MAP), leading to neuronal death and herniation.
The central nervous system (CNS) has the ability to autoregulate its own blood supply through vasoconstriction and dilation of cerebral blood vessels. However, extreme blood pressure levels can exceed this capacity, increasing the risk of stroke. Additionally, metabolic factors such as hypercapnia can cause vasodilation, which is crucial in ventilating head-injured patients.
It is important to note that the brain can only metabolize glucose, and a decrease in glucose levels can lead to impaired consciousness. Understanding the Monro-Kelly doctrine and autoregulation in the CNS is crucial in managing intracranial pressure and preventing neurological damage.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 14
Incorrect
-
A 35-year-old woman presents to the medical assessment unit with sudden onset shortness of breath. She reports no cough or fever and has no other associated symptoms. She recently returned from a hiking trip in France and takes the oral contraceptive pill but no other regular medications. She smokes 10 cigarettes a day but drinks no alcohol. On examination, she is tachypnoeic and tachycardic with an elevated JVP. Her calves are soft and non-tender with no pitting oedema. Initial blood tests show a positive D-dimer and elevated CRP. What is the appropriate treatment for this patient?
Your Answer: Await further imaging before deciding on treatment
Correct Answer: Low molecular weight heparin
Explanation:Treatment for Suspected Pulmonary Embolism
When a patient presents with risk factors for pulmonary embolism (PE) such as recent travel and oral contraceptive pill use, along with symptoms like tachypnea, tachycardia, and hypoxia, it is important to consider the possibility of a significant PE. In such cases, treatment with low molecular weight heparin should be given promptly to prevent further complications. A low-grade fever is also common in venothromboembolic disease. Elevated JVP signifies significant right heart strain due to a significant PE, but maintained blood pressure is a positive sign.
The most common ECG finding in PE is an isolated sinus tachycardia, while the CXR may be clear, but prominent pulmonary arteries reflect pulmonary hypertension due to clot load in the pulmonary tree. A D-dimer test is recommended if the Wells score for PE is less than 4.
According to NICE guidelines on venous thromboembolic diseases, low molecular weight heparin is the appropriate initial treatment for suspected PE. It is important not to delay treatment to await CTPA unless it can be performed immediately. There is no evidence of pneumonia to warrant IV antibiotics. Unfractionated heparin may be considered for patients with an eGFR of less than 30, high risk of bleeding, or those undergoing thrombolysis, but this is not the case with this patient. Thrombolysis is not indicated unless there is haemodynamic instability, even in suspected large PEs.
In summary, prompt treatment with low molecular weight heparin is crucial in suspected cases of PE, and other treatment options should be considered based on individual patient factors.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 15
Incorrect
-
Control of ventilation. Which statement is false?
Your Answer: Peripheral chemoreceptors are located in the bifurcation of the carotid arteries and arch of the aorta
Correct Answer: Central chemoreceptors respond to changes in O2
Explanation:The central chemoreceptors increase ventilation in response to an increase in H+ in the brain interstitial fluid.
The Control of Ventilation in the Human Body
The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.
The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.
Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.
Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 16
Correct
-
A 65-year-old woman comes to the clinic complaining of fever and productive cough for the past two days. She spends most of her time at home watching TV and rarely goes outside. She has no recent travel history. The patient has a history of gastroesophageal reflux disease but has not been compliant with medication and follow-up appointments. Upon physical examination, crackles are heard on the left lower lobe, and her sputum is described as 'red-currant jelly.'
What is the probable causative organism in this case?Your Answer: Klebsiella pneumoniae
Explanation:The patient’s history of severe gastro-oesophageal reflux disease (GORD) suggests that she may have aspiration pneumonia, particularly as she had not received appropriate treatment for it. Aspiration of gastric contents is likely to occur in the right lung due to the steep angle of the right bronchus. Klebsiella pneumoniae is a common cause of aspiration pneumonia and is known to produce ‘red-currant jelly’ sputum.
Mycoplasma pneumoniae is a cause of atypical pneumonia, which typically presents with a non-productive cough and clear lung sounds on auscultation. It is more common in younger individuals.
Burkholderia pseudomallei is the causative organism for melioidosis, a condition that is transmitted through exposure to contaminated water or soil, and is more commonly found in Southeast Asia. However, given the patient’s sedentary lifestyle and lack of travel history, it is unlikely to be the cause of her symptoms.
Streptococcus pneumoniae is the most common cause of pneumonia, but it typically produces yellowish-green sputum rather than the red-currant jelly sputum seen in Klebsiella pneumoniae infections. It also presents with fever, productive cough, and crackles on auscultation.
Understanding Klebsiella Pneumoniae
Klebsiella pneumoniae is a type of bacteria that is commonly found in the gut flora of humans. However, it can also cause various infections such as pneumonia and urinary tract infections. It is more prevalent in individuals who have alcoholism or diabetes. Aspiration is a common cause of pneumonia caused by Klebsiella pneumoniae. One of the distinct features of this type of pneumonia is the production of red-currant jelly sputum. It usually affects the upper lobes of the lungs.
The prognosis for Klebsiella pneumoniae infections is not good. It often leads to the formation of lung abscesses and empyema, which can be fatal. The mortality rate for this type of infection is between 30-50%.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 17
Incorrect
-
A 16-year-old girl presents to the Emergency department with her mother. The mother reports that her daughter has been experiencing worsening breathlessness and facial puffiness for the past 30 minutes. Apart from eczema, the girl has been healthy and is currently taking oral contraceptives. On examination, the girl appears to be in distress, with laboured breathing and stridor but no wheezing. What is the probable cause of her breathlessness?
Your Answer: Pulmonary embolism
Correct Answer: Angio-oedema
Explanation:Noisy Breathing and Atopy in Adolescents
The presence of noisy breathing in an adolescent may indicate the possibility of stridor, which can be caused by an allergic reaction even in an otherwise healthy individual. The history of atopy, or a tendency to develop allergic reactions, further supports the diagnosis of angio-oedema. The sudden onset of symptoms also adds to the likelihood of this diagnosis.
While asthma is a possible differential diagnosis, it typically presents with expiratory wheezing. However, if the chest is silent, it may indicate a severe and life-threatening form of asthma. Therefore, it is important to consider all possible causes of noisy breathing and atopy in adolescents to ensure prompt and appropriate treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 18
Incorrect
-
Which one of the following statements relating to the root of the spine is false?
Your Answer: The lung projects into the neck beyond the first rib and is constrained by Sibson's fascia
Correct Answer: The subclavian artery arches over the first rib anterior to scalenus anterior
Explanation:The suprapleural membrane, also known as Sibson’s fascia, is located above the pleural cavity. The scalenus anterior muscle is positioned in front of the subclavian vein, while the subclavian artery is situated behind it.
Thoracic Outlet: Where the Subclavian Artery and Vein and Brachial Plexus Exit the Thorax
The thoracic outlet is the area where the subclavian artery and vein and the brachial plexus exit the thorax and enter the arm. This passage occurs over the first rib and under the clavicle. The subclavian vein is the most anterior structure and is located immediately in front of scalenus anterior and its attachment to the first rib. Scalenus anterior has two parts, and the subclavian artery leaves the thorax by passing over the first rib and between these two portions of the muscle. At the level of the first rib, the lower cervical nerve roots combine to form the three trunks of the brachial plexus. The lowest trunk is formed by the union of C8 and T1, and this trunk lies directly posterior to the artery and is in contact with the superior surface of the first rib.
Thoracic outlet obstruction can cause neurovascular compromise.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 19
Correct
-
A 36-year-old male patient complains of fever, malaise, weight loss, dyspnoea, and shoulder & hip joint pain. He has raised erythematous lesions on both legs. His blood tests reveal elevated calcium levels and serum ACE levels. A chest x-ray shows bilateral hilar lymphadenopathy.
What is the probable diagnosis?Your Answer: Sarcoidosis
Explanation:If a patient presents with raised serum ACE levels, sarcoidosis should be considered as a possible diagnosis. The combination of erythema nodosum and bilateral hilar lymphadenopathy on a chest x-ray is pathognomonic of sarcoidosis. Lung cancer is unlikely in a young patient without a significant smoking history, and tuberculosis would require recent foreign travel to a TB endemic country. Multiple myeloma would not cause the same symptoms as sarcoidosis. Exposure to organic material would not be a likely cause of raised serum ACE levels.
Understanding Sarcoidosis: A Multisystem Disorder
Sarcoidosis is a condition that affects multiple systems in the body and is characterized by the presence of non-caseating granulomas. The exact cause of this disorder is unknown, but it is more commonly seen in young adults and individuals of African descent.
The symptoms of sarcoidosis can vary depending on the severity of the condition. Acute symptoms may include erythema nodosum, bilateral hilar lymphadenopathy, swinging fever, and polyarthralgia. On the other hand, insidious symptoms may include dyspnea, non-productive cough, malaise, and weight loss. Additionally, some individuals may develop skin symptoms such as lupus pernio, while others may experience hypercalcemia due to increased conversion of vitamin D to its active form.
Sarcoidosis is also associated with several syndromes, including Lofgren’s syndrome, Mikulicz syndrome, and Heerfordt’s syndrome. Lofgren’s syndrome is an acute form of the disease that typically presents with bilateral hilar lymphadenopathy, erythema nodosum, fever, and polyarthralgia. Mikulicz syndrome is characterized by enlargement of the parotid and lacrimal glands due to sarcoidosis, tuberculosis, or lymphoma. Finally, Heerfordt’s syndrome, also known as uveoparotid fever, presents with parotid enlargement, fever, and uveitis secondary to sarcoidosis.
In conclusion, sarcoidosis is a complex disorder that can affect multiple systems in the body. While the exact cause is unknown, early diagnosis and treatment can help manage symptoms and improve outcomes.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 20
Incorrect
-
A 44-year-old male singer visits his GP complaining of a hoarse voice that has persisted for a few weeks. He first noticed it after his thyroidectomy. Upon reviewing his post-thyroidectomy report, it was noted that he experienced a complication related to external laryngeal nerve injury. Which muscle's loss of innervation could be responsible for this patient's symptoms?
Your Answer: Vocalis
Correct Answer: Cricothyroid
Explanation:The external laryngeal nerve is responsible for innervating the cricothyroid muscle. If this nerve is injured, it can result in paralysis of the cricothyroid muscle, which is often referred to as the tuning fork of the larynx. This can cause hoarseness in the patient. However, over time, the other muscles will compensate for the paralysis, and the hoarseness will improve. It is important to note that the recurrent laryngeal nerve is responsible for innervating the rest of the muscles.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 21
Correct
-
Which one of the following nerves conveys sensory information from the nasal mucosa?
Your Answer: Laryngeal branches of the vagus
Explanation:The larynx receives sensory information from the laryngeal branches of the vagus.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 22
Incorrect
-
A 25-year-old man is shot in the chest during a robbery. The right lung is lacerated and is bleeding. An emergency thoracotomy is performed. The surgeons place a clamp over the hilum of the right lung. Which one of the following structures lies most anteriorly at this level?
Your Answer: Vagus nerve
Correct Answer: Phrenic nerve
Explanation:At this location, the phrenic nerve is situated in front. The vagus nerve runs in front and then curves backwards just above the base of the left bronchus, releasing the recurrent laryngeal nerve as it curves.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 23
Incorrect
-
A 38-year-old woman visits her GP with a solitary, painless tumour in her left cheek. Upon further examination, she is diagnosed with pleomorphic adenoma. What is the recommended management for this condition?
Your Answer: Chemotherapy
Correct Answer: Surgical resection
Explanation:Surgical resection is the preferred treatment for pleomorphic adenoma, a benign tumor of the parotid gland that may undergo malignant transformation. Chemotherapy and radiotherapy are not effective in managing this condition. Additionally, salivary stone removal is not relevant to the treatment of pleomorphic adenoma.
Understanding Pleomorphic Adenoma
Pleomorphic adenoma, also known as a benign mixed tumour, is a non-cancerous growth that commonly affects the parotid gland. This type of tumour usually develops in individuals aged 40 to 60 years old. The condition is characterized by the proliferation of epithelial and myoepithelial cells of the ducts, as well as an increase in stromal components. The tumour is slow-growing, lobular, and not well encapsulated.
The clinical features of pleomorphic adenoma include a gradual onset of painless unilateral swelling of the parotid gland. The swelling is typically movable on examination rather than fixed. The management of pleomorphic adenoma involves surgical excision. The prognosis is generally good, with a recurrence rate of 1-5% with appropriate excision (parotidectomy). However, recurrence may occur due to capsular disruption during surgery. If left untreated, pleomorphic adenoma may undergo malignant transformation, occurring in 2-10% of adenomas observed for long periods. Carcinoma ex-pleomorphic adenoma is the most common type of malignant transformation, occurring most frequently as adenocarcinoma.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 24
Incorrect
-
A woman in her 30s is stabbed in the chest to the right of the manubriosternal angle. Which structure is least likely to be injured in this scenario?
Your Answer: Right phrenic nerve
Correct Answer: Right recurrent laryngeal nerve
Explanation:The right vagus nerve gives rise to the right recurrent laryngeal nerve at a more proximal location, which then curves around the subclavian artery in a posterior direction. Therefore, out of the given structures, it is the least susceptible to injury.
The mediastinum is the area located between the two pulmonary cavities and is covered by the mediastinal pleura. It extends from the thoracic inlet at the top to the diaphragm at the bottom. The mediastinum is divided into four regions: the superior mediastinum, middle mediastinum, posterior mediastinum, and anterior mediastinum.
The superior mediastinum is the area between the manubriosternal angle and T4/5. It contains important structures such as the superior vena cava, brachiocephalic veins, arch of aorta, thoracic duct, trachea, oesophagus, thymus, vagus nerve, left recurrent laryngeal nerve, and phrenic nerve. The anterior mediastinum contains thymic remnants, lymph nodes, and fat. The middle mediastinum contains the pericardium, heart, aortic root, arch of azygos vein, and main bronchi. The posterior mediastinum contains the oesophagus, thoracic aorta, azygos vein, thoracic duct, vagus nerve, sympathetic nerve trunks, and splanchnic nerves.
In summary, the mediastinum is a crucial area in the thorax that contains many important structures and is divided into four regions. Each region contains different structures that are essential for the proper functioning of the body.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 25
Correct
-
A 10-year-old boy comes to your clinic with a complaint of ear pain that started last night and kept him awake. He missed school today because of the pain and reports muffled sounds on the affected side. During otoscopy, you observe a bulging tympanic membrane with visible fluid behind it, indicating a middle ear infection. Can you identify which nerves pass through the middle ear?
Your Answer: Chorda tympani
Explanation:The chorda tympani is the correct answer. It is a branch of the seventh cranial nerve, the facial nerve, and carries parasympathetic and taste fibers. It passes through the middle ear before exiting and joining with the lingual nerve to reach the tongue and salivary glands.
The vestibulocochlear nerve is the eighth cranial nerve and carries balance and hearing information.
The maxillary nerve is the second division of the fifth cranial nerve and carries sensation from the upper teeth, nasal cavity, and skin.
The mandibular nerve is the third division of the fifth cranial nerve and carries sensation from the lower teeth, tongue, mandible, and skin. It also carries motor fibers to certain muscles.
The glossopharyngeal nerve is the ninth cranial nerve and carries taste and sensation from the posterior one-third of the tongue, as well as sensation from various areas. It also carries motor and parasympathetic fibers.
The patient in the question has ear pain, likely due to otitis media, as evidenced by a bulging tympanic membrane and fluid level on otoscopy.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 26
Correct
-
What is the anatomical level of the transpyloric plane?
Your Answer: L1
Explanation:The Transpyloric Plane and its Anatomical Landmarks
The transpyloric plane is an imaginary horizontal line that passes through the body of the first lumbar vertebrae (L1) and the pylorus of the stomach. It is an important anatomical landmark used in clinical practice to locate various organs and structures in the abdomen.
Some of the structures that lie on the transpyloric plane include the left and right kidney hilum (with the left one being at the same level as L1), the fundus of the gallbladder, the neck of the pancreas, the duodenojejunal flexure, the superior mesenteric artery, and the portal vein. The left and right colic flexure, the root of the transverse mesocolon, and the second part of the duodenum also lie on this plane.
In addition, the upper part of the conus medullaris (the tapered end of the spinal cord) and the spleen are also located on the transpyloric plane. Knowing the location of these structures is important for various medical procedures, such as abdominal surgeries and diagnostic imaging.
Overall, the transpyloric plane serves as a useful reference point for clinicians to locate important anatomical structures in the abdomen.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 27
Incorrect
-
A 45-year-old woman is undergoing consent for a thyroidectomy due to failed medical treatment for Grave's disease. Radioiodine was not an option as she is the sole caregiver for her three young children. During the consent process, she is informed of the potential complications of thyroidectomy, including the risk of injury to the sensory branch of the superior laryngeal nerve. Can you identify which nerve branches off from the superior laryngeal nerve and is responsible for sensory function?
Your Answer: External laryngeal nerve
Correct Answer: Internal laryngeal nerve
Explanation:The superior laryngeal nerve, a branch of the vagus nerve, has two branches: the external laryngeal nerve, which is a motor nerve, and the internal laryngeal nerve, which is a sensory nerve. The recurrent laryngeal nerve, also a branch of the vagus nerve, supplies all intrinsic muscles of the larynx except for the cricothyroid muscles.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 28
Incorrect
-
A 10-year-old boy is recuperating the day after a tonsillectomy. His parents report that he hasn't had anything to eat for 6 hours prior to the surgery and he is feeling famished. However, he is declining any attempts to consume food or water. There are no prescribed medications or known drug allergies listed on his medical records.
What would be the most appropriate first step to take?Your Answer: Start maintenance fluids
Correct Answer: Prescribe analgesia and encourage oral intake
Explanation:Effective pain management is crucial after a tonsillectomy to promote the consumption of food and fluids.
Prescribing analgesics and encouraging oral intake is the best course of action. This will alleviate pain and enable the patient to eat and drink, which is essential for a speedy recovery.
Starting maintenance fluids or partial nutritional feeds, obtaining IV access, or waiting for two hours before reviewing the patient are not the most appropriate options. Analgesia should be the primary consideration to facilitate oral fluid therapy and promote healing.
Tonsillitis and Tonsillectomy: Complications and Indications
Tonsillitis is a condition that can lead to various complications, including otitis media, peritonsillar abscess, and, in rare cases, rheumatic fever and glomerulonephritis. Tonsillectomy, the surgical removal of the tonsils, is a controversial procedure that should only be considered if the person meets specific criteria. According to NICE, surgery should only be considered if the person experiences sore throats due to tonsillitis, has five or more episodes of sore throat per year, has been experiencing symptoms for at least a year, and the episodes of sore throat are disabling and prevent normal functioning. Other established indications for a tonsillectomy include recurrent febrile convulsions, obstructive sleep apnoea, stridor, dysphagia, and peritonsillar abscess if unresponsive to standard treatment.
Despite the benefits of tonsillectomy, the procedure also carries some risks. Primary complications, which occur within 24 hours of the surgery, include haemorrhage and pain. Secondary complications, which occur between 24 hours to 10 days after the surgery, include haemorrhage (most commonly due to infection) and pain. Therefore, it is essential to weigh the benefits and risks of tonsillectomy before deciding to undergo the procedure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 29
Incorrect
-
A 55-year-old man comes to the hospital complaining of lethargy, headache, and shortness of breath. Upon examination, he is found to be cyanotic and hypoxic, and is admitted to the respiratory ward for oxygen therapy.
Following some initial tests, the consultant informs the patient that his hemoglobin has a high affinity for oxygen, resulting in reduced oxygen delivery to the tissues.
What is the probable reason for this alteration in the oxygen dissociation curve?Your Answer: Hypercapnoea
Correct Answer: Low 2,3-DPG
Explanation:The correct answer is low 2,3-DPG. The professor’s description refers to a left shift in the oxygen dissociation curve, which indicates that haemoglobin has a high affinity for oxygen and is less likely to release it to the tissues. Factors that cause a left shift include low temperature, high pH, low PCO2, and low 2,3-DPG. 2,3-DPG is a substance that helps release oxygen from haemoglobin, so low levels of it result in less oxygen being released, causing a left shift in the oxygen dissociation curve.
The answer high temperature is incorrect because it causes a right shift in the oxygen dissociation curve, promoting oxygen delivery to the tissues. Hypercapnoea also causes a right shift in the curve, promoting oxygen delivery. Hyperglycaemia has no effect on haemoglobin’s ability to release oxygen, so it is also incorrect.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 30
Incorrect
-
A 35-year-old man is stabbed in the right chest and requires a thoracotomy. During the procedure, the right lung is mobilized and the pleural reflection at the lung hilum is opened. Which of the following structures is not located in this area?
Your Answer:
Correct Answer: Azygos vein
Explanation:The pulmonary ligament extends from the pleural reflections surrounding the hilum of the lung and covers the pulmonary vessels and bronchus. However, it does not contain the azygos vein.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)