-
Question 1
Correct
-
The regional Health Authority has requested your expertise in determining whether to establish a new 12 bed pediatric ward of a six bed adolescent psychiatric unit. Your task is to conduct an economic analysis that evaluates the financial advantages and disadvantages of both proposals.
Your Answer: Cost benefit analysis
Explanation:A cost benefit analysis is a method of evaluating whether the benefits of an intervention outweigh its costs, using monetary units as the common measurement. Typically, this type of analysis is employed by funding bodies to make decisions about financing, such as whether to allocate resources for a new delivery suite of electroconvulsive therapy suite.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 2
Incorrect
-
What statement accurately describes population parameters?
Your Answer: Parameters are always whole numbers
Correct Answer: Parameters tend to have normal distributions
Explanation:Parametric vs Non-Parametric Statistics
Statistics are used to draw conclusions about a population based on a sample. A parameter is a numerical value that describes a population characteristic, but it is often impossible to know the true value of a parameter without collecting data from every individual in the population. Instead, we take a sample and use statistics to estimate the parameters.
Parametric statistical procedures assume that the population distribution is normal and that the parameters (such as means and standard deviations) are known. Examples of parametric tests include the t-test, ANOVA, and Pearson coefficient of correlation.
Non-parametric statistical procedures make few of no assumptions about the population distribution of parameters. Examples of non-parametric tests include the Mann-Whitney Test, Wilcoxon Signed-Rank Test, Kruskal-Wallis Test, and Fisher Exact Probability test.
Overall, the choice between parametric and non-parametric tests depends on the nature of the data and the research question being asked.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 3
Correct
-
What term is used to describe an association between two variables that is influenced by a confounding factor?
Your Answer: Indirect
Explanation:Stats Association and Causation
When two variables are found to be more commonly present together, they are said to be associated. However, this association can be of three types: spurious, indirect, of direct. Spurious association is one that has arisen by chance and is not real, while indirect association is due to the presence of another factor, known as a confounding variable. Direct association, on the other hand, is a true association not linked by a third variable.
Once an association has been established, the next question is whether it is causal. To determine causation, the Bradford Hill Causal Criteria are used. These criteria include strength, temporality, specificity, coherence, and consistency. The stronger the association, the more likely it is to be truly causal. Temporality refers to whether the exposure precedes the outcome. Specificity asks whether the suspected cause is associated with a specific outcome of disease. Coherence refers to whether the association fits with other biological knowledge. Finally, consistency asks whether the same association is found in many studies.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 4
Incorrect
-
One accurate statement about epidemiological measures is:
Your Answer:
Correct Answer: Cross-sectional surveys can be used to estimate the prevalence of a condition in the population
Explanation:Measures of Disease Frequency: Incidence and Prevalence
Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.
Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.
It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.
Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 5
Incorrect
-
A psychologist aims to conduct a qualitative study to explore the experiences of elderly patients referred to the outpatient clinic. To obtain a sample, the psychologist asks the receptionist to hand an invitation to participate in the study to all follow-up patients who attend for an appointment. The recruitment phase continues until a total of 30 elderly individuals agree to be in the study.
How is this sampling method best described?Your Answer:
Correct Answer: Opportunistic sampling
Explanation:Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 6
Incorrect
-
How can we describe the consistency of a test in producing similar results when measured multiple times?
Your Answer:
Correct Answer: Precision
Explanation:Accuracy and reproducibility together make up precision.
Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 7
Incorrect
-
In a randomised controlled trial investigating the initial management of sexual dysfunction with two drugs, some patients withdraw from the study due to medication-related adverse effects. What is the appropriate method for analysing the resulting data?
Your Answer:
Correct Answer: Include the patients who drop out in the final data set
Explanation:Intention to Treat Analysis in Randomized Controlled Trials
Intention to treat analysis is a statistical method used in randomized controlled trials to analyze all patients who were randomly assigned to a treatment group, regardless of whether they completed of received the treatment. This approach is used to avoid the potential biases that may arise from patients dropping out of switching between treatment groups. By analyzing all patients according to their original treatment assignment, intention to treat analysis provides a more accurate representation of the true treatment effects. This method is widely used in clinical trials to ensure that the results are reliable and unbiased.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 8
Incorrect
-
What is the average age of the 7 women who participated in the qualitative study on self-harm among females, with ages of 18, 22, 40, 17, 23, 18, and 44?
Your Answer:
Correct Answer: 26
Explanation:Measures of Central Tendency
Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.
The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.
The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.
In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 9
Incorrect
-
Which of the following search methods would be best suited for a user seeking all references that discuss psychosis resulting from cannabis use and sexual abuse in adolescents?
Your Answer:
Correct Answer: Psychosis AND (cannabis of sexual abuse)
Explanation:The search ‘Psychosis AND (cannabis AND sexual abuse)’ would also return citations with all three terms, but it allows for the possibility of citations that include both cannabis and sexual abuse, but not necessarily psychosis.
Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 10
Incorrect
-
Which statement accurately describes box and whisker plots?
Your Answer:
Correct Answer: Each whisker represents approximately 25% of the data
Explanation:Box and whisker plots are a useful tool for displaying information about the range, median, and quartiles of a data set. The whiskers only contain values within 1.5 times the interquartile range (IQR), and any values outside of this range are considered outliers and displayed as dots. The IQR is the difference between the 3rd and 1st quartiles, which divide the data set into quarters. Quartiles can also be used to determine the percentage of observations that fall below a certain value. However, quartiles and ranges have limitations because they do not take into account every score in a data set. To get a more representative idea of spread, measures such as variance and standard deviation are needed. Box plots can also provide information about the shape of a data set, such as whether it is skewed or symmetric. Notched boxes on the plot represent the confidence intervals of the median values.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 11
Incorrect
-
An endocrinologist conducts a study to determine if there is a correlation between a patient's age and their blood pressure. Assuming both age and blood pressure are normally distributed, what statistical test would be most suitable to use?
Your Answer:
Correct Answer: Pearson's product-moment coefficient
Explanation:Since the data is normally distributed and the study aims to evaluate the correlation between two variables, the most suitable test to use is Pearson’s product-moment coefficient. On the other hand, if the data is non-parametric, Spearman’s coefficient would be more appropriate.
Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 12
Incorrect
-
What condition would make it inappropriate to use the Student's t-test for conducting a significance test?
Your Answer:
Correct Answer: Using it with data that is not normally distributed
Explanation:T-tests are appropriate for parametric data, which means that the data should conform to a normal distribution.
Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 13
Incorrect
-
The researcher conducted a study to test his hypothesis that a new drug would effectively treat depression. The results of the study indicated that his hypothesis was true, but in reality, it was not. What happened?
Your Answer:
Correct Answer: Type I error
Explanation:Type I errors occur when we reject a null hypothesis that is actually true, leading us to believe that there is a significant difference of effect when there is not.
Understanding Hypothesis Testing in Statistics
In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.
The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.
Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 14
Incorrect
-
What is the best way to describe the sampling strategy used in the medical student's study to estimate the average height of patients with schizophrenia in a psychiatric hospital?
Your Answer:
Correct Answer: Simple random sampling
Explanation:Sampling Methods in Statistics
When collecting data from a population, it is often impractical and unnecessary to gather information from every single member. Instead, taking a sample is preferred. However, it is crucial that the sample accurately represents the population from which it is drawn. There are two main types of sampling methods: probability (random) sampling and non-probability (non-random) sampling.
Non-probability sampling methods, also known as judgement samples, are based on human choice rather than random selection. These samples are convenient and cheaper than probability sampling methods. Examples of non-probability sampling methods include voluntary sampling, convenience sampling, snowball sampling, and quota sampling.
Probability sampling methods give a more representative sample of the population than non-probability sampling. In each probability sampling technique, each population element has a known (non-zero) chance of being selected for the sample. Examples of probability sampling methods include simple random sampling, systematic sampling, cluster sampling, stratified sampling, and multistage sampling.
Simple random sampling is a sample in which every member of the population has an equal chance of being chosen. Systematic sampling involves selecting every kth member of the population. Cluster sampling involves dividing a population into separate groups (called clusters) and selecting a random sample of clusters. Stratified sampling involves dividing a population into groups (strata) and taking a random sample from each strata. Multistage sampling is a more complex method that involves several stages and combines two of more sampling methods.
Overall, probability sampling methods give a more representative sample of the population, but non-probability sampling methods are often more convenient and cheaper. It is important to choose the appropriate sampling method based on the research question and available resources.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 15
Incorrect
-
Which of the following statements accurately describes relative risk?
Your Answer:
Correct Answer: It is the usual outcome measure of cohort studies
Explanation:The relative risk is the typical measure of outcome in cohort studies. It is important to distinguish between risk and odds. For example, if 20 individuals out of 100 who take an overdose die, the risk of dying is 0.2, while the odds are 0.25 (20/80).
Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 16
Incorrect
-
The national Health Department is concerned about reducing mortality rates among elderly patients with heart disease. They have tasked a team of researchers with comparing the effectiveness and economic costs of treatment options A and B in terms of life years gained. The researchers have collected data on the number of life years gained by each treatment option and are seeking advice on the next steps for analysis. What type of analysis would you recommend they undertake?
Your Answer:
Correct Answer: Cost effectiveness analysis
Explanation:Cost effectiveness analysis (CEA) is an economic evaluation method that compares the costs and outcomes of different courses of action. The outcomes of the interventions must be measurable using a single variable, such as life years gained, making it useful for comparing preventative treatments for fatal conditions.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 17
Incorrect
-
Which variable has a zero value that is not arbitrary?
Your Answer:
Correct Answer: Ratio
Explanation:The key characteristic that sets ratio variables apart from interval variables is the presence of a meaningful zero point. On a ratio scale, this zero point signifies the absence of the measured attribute, while on an interval scale, the zero point is simply a point on the scale with no inherent significance.
Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 18
Incorrect
-
If a study has a Type I error rate of <0.05 and a Type II error rate of 0.2, what is the power of the study?
Your Answer:
Correct Answer: 0.8
Explanation:A study’s ability to correctly detect a true effect of difference may be calculated as Power = 1 – Type II error rate. In the given scenario, the power can be calculated as Power = 1 – 0.2 = 0.8. Type I error refers to a false positive, while Type II error refers to a false negative.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 19
Incorrect
-
Which data type does age in years belong to?
Your Answer:
Correct Answer: Ratio
Explanation:Age is a type of measurement that follows a ratio scale, which means that the values can be compared as multiples of each other. For instance, if someone is 20 years old, they are twice as old as someone who is 10 years old.
Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 20
Incorrect
-
A study of 30 patients with hypertension compares the effectiveness of a new blood pressure medication with standard treatment. 80% of the new treatment group achieved target blood pressure levels at 6 weeks, compared with only 40% of the standard treatment group. What is the number needed to treat for the new treatment?
Your Answer:
Correct Answer: 3
Explanation:To calculate the Number Needed to Treat (NNT), we first need to find the Absolute Risk Reduction (ARR), which is calculated by subtracting the Control Event Rate (CER) from the Experimental Event Rate (EER).
Given that CER is 0.4 and EER is 0.8, we can calculate ARR as follows:
ARR = CER – EER
= 0.4 – 0.8
= -0.4Since the ARR is negative, this means that the treatment actually increases the risk of the event occurring. Therefore, we cannot calculate the NNT in this case.
Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 21
Incorrect
-
What is a true statement about correlation?
Your Answer:
Correct Answer: Complete absence of correlation is expressed by a value of 0
Explanation:Stats: Correlation and Regression
Correlation and regression are related but not interchangeable terms. Correlation is used to test for association between variables, while regression is used to predict values of dependent variables from independent variables. Correlation can be linear, non-linear, of non-existent, and can be strong, moderate, of weak. The strength of a linear relationship is measured by the correlation coefficient, which can be positive of negative and ranges from very weak to very strong. However, the interpretation of a correlation coefficient depends on the context and purposes. Correlation can suggest association but cannot prove of disprove causation. Linear regression, on the other hand, can be used to predict how much one variable changes when a second variable is changed. Scatter graphs are used in correlation and regression analyses to visually determine if variables are associated and to detect outliers. When constructing a scatter graph, the dependent variable is typically placed on the vertical axis and the independent variable on the horizontal axis.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 22
Incorrect
-
Which studies are most susceptible to the Hawthorne effect?
Your Answer:
Correct Answer: Compliance with antipsychotic medication
Explanation:The Hawthorne effect is a phenomenon where individuals may alter their actions of responses when they are aware that they are being monitored of studied. Out of the given choices, the only one that pertains to a change in behavior is the adherence to medication. The remaining options related to outcomes that are not under conscious control.
Types of Bias in Statistics
Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.
There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 23
Incorrect
-
Which of the options below does not demonstrate selection bias?
Your Answer:
Correct Answer: Recall bias
Explanation:Types of Bias in Statistics
Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.
There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 24
Incorrect
-
Which category does social class fall under in terms of variable types?
Your Answer:
Correct Answer: Ordinal
Explanation:Ordinal variables are a form of qualitative variable that follows a specific sequence in its values. Additional instances may include exam scores and tax brackets based on income.
Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 25
Incorrect
-
What is the appropriate denominator to use when computing the sample variance?
Your Answer:
Correct Answer: n-1
Explanation:Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 26
Incorrect
-
What is necessary for a study to confidently assert causation?
Your Answer:
Correct Answer: Good internal validity
Explanation:In order to make assertions about causation, strong internal validity is necessary.
Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 27
Incorrect
-
Which category does convenience sampling fall under?
Your Answer:
Correct Answer: Non-probabilistic sampling
Explanation:Sampling Methods in Statistics
When collecting data from a population, it is often impractical and unnecessary to gather information from every single member. Instead, taking a sample is preferred. However, it is crucial that the sample accurately represents the population from which it is drawn. There are two main types of sampling methods: probability (random) sampling and non-probability (non-random) sampling.
Non-probability sampling methods, also known as judgement samples, are based on human choice rather than random selection. These samples are convenient and cheaper than probability sampling methods. Examples of non-probability sampling methods include voluntary sampling, convenience sampling, snowball sampling, and quota sampling.
Probability sampling methods give a more representative sample of the population than non-probability sampling. In each probability sampling technique, each population element has a known (non-zero) chance of being selected for the sample. Examples of probability sampling methods include simple random sampling, systematic sampling, cluster sampling, stratified sampling, and multistage sampling.
Simple random sampling is a sample in which every member of the population has an equal chance of being chosen. Systematic sampling involves selecting every kth member of the population. Cluster sampling involves dividing a population into separate groups (called clusters) and selecting a random sample of clusters. Stratified sampling involves dividing a population into groups (strata) and taking a random sample from each strata. Multistage sampling is a more complex method that involves several stages and combines two of more sampling methods.
Overall, probability sampling methods give a more representative sample of the population, but non-probability sampling methods are often more convenient and cheaper. It is important to choose the appropriate sampling method based on the research question and available resources.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 28
Incorrect
-
Which option is not a type of descriptive statistic?
Your Answer:
Correct Answer: Student's t-test
Explanation:A t-test is a statistical method used to determine if there is a significant difference between the means of two groups. It is a type of statistical inference.
Types of Statistics: Descriptive and Inferential
Statistics can be divided into two categories: descriptive and inferential. Descriptive statistics are used to describe and summarize data without making any generalizations beyond the data at hand. On the other hand, inferential statistics are used to make inferences about a population based on sample data.
Descriptive statistics are useful for identifying patterns and trends in data. Common measures used to describe a data set include measures of central tendency (such as the mean, median, and mode) and measures of variability of dispersion (such as the standard deviation of variance).
Inferential statistics, on the other hand, are used to make predictions of draw conclusions about a population based on sample data. These statistics are also used to determine the probability that observed differences between groups are reliable and not due to chance.
Overall, both descriptive and inferential statistics play important roles in analyzing and interpreting data. Descriptive statistics help us understand the characteristics of a data set, while inferential statistics allow us to make predictions and draw conclusions about larger populations.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 29
Incorrect
-
A new treatment for elderly patients with hypertension is investigated. The study looks at the incidence of stroke after 1 year. The following data is obtained:
Number who had a stroke vs Number without a stroke
New drug: 40 vs 160
Placebo: 100 vs 300
What is the relative risk reduction?Your Answer:
Correct Answer: 20%
Explanation:Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 30
Incorrect
-
A study is conducted to investigate whether a new exercise program has any impact on weight loss. A total of 300 participants are enrolled from various locations and are randomly assigned to either the exercise group of the control group. Weight measurements are taken at the beginning of the study and at the end of a six-month period.
What is the most effective method of visually presenting the data?Your Answer:
Correct Answer: Kaplan-Meier plot
Explanation:The Kaplan-Meier plot is the most effective graphical representation of survival probability. It presents the overall likelihood of an individual’s survival over time from a baseline, and the comparison of two lines on the plot can indicate whether there is a survival advantage. To determine if the distinction between the two groups is significant, a log rank test can be employed.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)