-
Question 1
Correct
-
What stage of cellular respiration is responsible for the production of pyruvic acid?
Your Answer: Glycolysis
Explanation:The Versatility of Pyruvic Acid in Cellular Metabolism
Pyruvic acid is a simple alpha-keto acid that plays a crucial role in several metabolic pathways within the cell. It serves as a central intersection where different pathways converge and diverge. One of the primary ways pyruvic acid is produced is through glycolysis, where glucose is broken down into pyruvic acid. Depending on the cell’s needs, pyruvic acid can be converted back into glucose through gluconeogenesis or used to synthesize fatty acids through the acetyl-CoA pathway. Additionally, pyruvic acid can be used to produce the amino acid alanine.
Pyruvic acid is also involved in respiration, where it enters the Krebs cycle under aerobic conditions. This cycle produces energy in the form of ATP, which is used by the cell for various functions. Under anaerobic conditions, pyruvic acid can ferment into lactic acid, which is used by some organisms as a source of energy.
In summary, pyruvic acid is a versatile molecule that plays a critical role in cellular metabolism. Its ability to be converted into different molecules depending on the cell’s needs makes it an essential component of many metabolic pathways.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 2
Correct
-
The diabetes prevention program has been running for the last 5 years. At baseline, a well conducted study with a sample size of 500 showed that the prevalence of diabetes among adults aged 40 and above was 15%.
Five years later another survey (of 400 responders) showed that the prevalence of diabetes was 10%.
In the above example, which definition of prevalence is correct?Your Answer: Prevalence is the number of new and old smokers in a year
Explanation:Prevalence and Incidence in Smoking
Prevalence and incidence are two important concepts in the smoking habits of a population. Prevalence refers to the number of people who smoke at a particular time point, such as at the beginning or end of a study period. This is calculated by dividing the number of smokers by the total population.
On the other hand, incidence refers to the number of new cases of smoking at a particular time point. For example, this could be at the beginning of a study period for the whole year or at the 10th year. This is calculated by dividing the number of new smokers by the number of smoke-free individuals who are potentially at risk of taking up smoking.
prevalence and incidence is important in evaluating the effectiveness of smoking cessation programs and policies. By tracking changes in prevalence and incidence over time, researchers and policymakers can determine whether their efforts are making a difference in reducing smoking rates. Additionally, these concepts can help identify populations that are at higher risk of taking up smoking, allowing for targeted interventions to prevent smoking initiation.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 3
Correct
-
A premature baby is born and the anaesthetists are struggling to ventilate the lungs because of insufficient surfactant. How does Laplace's law explain the force pushing inwards on the walls of the alveolus caused by surface tension between two static fluids, such as air and water in the alveolus?
Your Answer: Inversely proportional to the radius of the alveolus
Explanation:The Relationship between Alveolar Size and Surface Tension in Respiratory Physiology
In respiratory physiology, the alveolus is often represented as a perfect sphere to apply Laplace’s law. According to this law, there is an inverse relationship between the size of the alveolus and the surface tension. This means that smaller alveoli experience greater force than larger alveoli for a given surface tension, causing them to collapse first. This phenomenon is similar to what happens when two balloons of different sizes are attached together, with the smaller balloon emptying into the larger one.
In the lungs, this collapse of smaller alveoli can lead to atelectasis and collapse if surfactant is not present. Surfactant is a substance that reduces surface tension, making it easier to expand the alveoli and preventing smaller alveoli from collapsing. this relationship between alveolar size and surface tension is crucial in respiratory physiology, as it helps explain the importance of surfactant in maintaining proper lung function.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 4
Incorrect
-
What is the composition of enzymes found in lysosomes?
Your Answer: D-amino acid oxidases
Correct Answer: Acid hydrolases
Explanation:Lysosomes: The Digestive System of the Cell
Lysosomes are organelles that come from the Golgi apparatus and are enclosed by a membrane. They are responsible for breaking down various biological macromolecules such as proteins, nucleic acids, carbohydrates, and lipids. Lysosomes contain acid hydrolases, which are enzymes that cleave chemical bonds by adding water and function at an acidic pH of around 5. They are involved in digesting foreign agents that are internalized by the cell and breaking down other cellular organelles like mitochondria, allowing for their components to be recycled.
The acidic pH within lysosomes is maintained by a proton pump in the lysosomal membrane, which imports protons from the cytosol coupled to ATP hydrolysis. This acidic environment is necessary for the activity of the acid hydrolases. D-amino acid oxidases and peroxidases are not found in lysosomes but in peroxisomes. Alcohol dehydrogenases and ATPases are not involved in digestion but in other cellular functions. Alcohol dehydrogenases catalyze the interconversion between alcohols and aldehydes or ketones with the reduction of NAD+ to NADH, while ATPases catalyze the breakdown of ATP into ADP and a phosphate ion, releasing energy for the cell’s functions.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 5
Incorrect
-
What significance do leucine, lysine, and phenylalanine hold?
Your Answer: They are essential fatty acids
Correct Answer: They are essential amino acids
Explanation:Essential Amino Acids and their Importance in the Diet
There are approximately 20 essential amino acids that are crucial for human health. These amino acids are considered essential because the body cannot produce them on its own and they must be obtained through the diet. While some of these essential amino acids can be used to create other non-essential amino acids, they are still necessary for overall health and wellbeing.
Some examples of essential amino acids include histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. However, the amount of these essential amino acids can vary depending on the type of dietary protein consumed. Additionally, cooking or preserving proteins can alter the amino acid composition, making them less effective for the body.
In summary, essential amino acids play a vital role in maintaining human health and must be obtained through the diet. the importance of these amino acids and their sources can help individuals make informed decisions about their dietary choices.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 6
Correct
-
Which form of vitamin D is the most active in the human body?
Your Answer: 1, 25 (OH) 2 vitamin D
Explanation:The Process of Vitamin D Production and Activation
Vitamin D comes in two forms, D2 and D3. D3 can be produced in the skin through a reaction that requires UV light, while D2 cannot. Both forms can also be obtained through diet, with some foods now being supplemented with Vitamin D. However, the production of Vitamin D3 in the skin can be affected by various factors such as seasons, latitude, clothing, sun block, and skin tone, making it difficult for individuals to get adequate levels of Vitamin D through sunlight alone, especially in the UK during winter.
Once absorbed into the lymph, Vitamin D2 and D3 circulate in the bloodstream and reach the liver. Here, the liver enzyme 25-hydroxylase adds an OH group to the Vitamin D molecule, resulting in 25(OH) Vitamin D. The compound then travels to the kidney, where the enzyme 1-alpha hydroxylase adds another OH group, creating the active form of Vitamin D, 1,25 (OH)2Vitamin D. When there is enough of this active form, an inactive metabolite called 24,25 (OH)2Vitamin D is produced instead. this process is important in ensuring adequate Vitamin D levels for overall health and well-being.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 7
Correct
-
What is the most common method of assessing nutritional status in adults?
Your Answer: Body mass index
Explanation:The Body Mass Index as a Measure of Nutritional Status
The measurement and assessment of nutritional status can be challenging, and there is no single test that can provide a complete picture. However, the body mass index (BMI) is a commonly used measurement in clinical practice. The BMI is calculated by dividing a person’s weight in kilograms by their height in meters squared. This measure is used to assess adiposity and nutritional status, and it is simple and quick to calculate and interpret.
Although the BMI is a convenient measure, it has limitations for assessing obesity in individual patients. It is best used to track trends in an individual patient’s BMI over time. In some cases, the BMI may overestimate fat mass in patients who are very tall or have a high proportion of lean tissue due to an active lifestyle. Additionally, the BMI may not be accurate for athletes and children.
Other measurements, such as skin fold thickness and weight, can also be useful, but the BMI is generally considered the better option. The ponderal index is used specifically for children. It is important to note that albumin is not a reliable marker of nutritional status, as it can also be affected by inflammation.
Overall, the BMI is a widely used measure of nutritional status and is recommended by the World Health Organization. However, it is important to consider its limitations and use it in conjunction with other measurements to obtain a more complete picture of a patient’s nutritional status.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 8
Incorrect
-
What occurs in eukaryotic prophase?
Your Answer: The chromosomes align across a plane
Correct Answer: Chromatin condenses into chromosomes
Explanation:The Stages of Prophase in Eukaryotic Mitosis
Prophase is the first stage of eukaryotic mitosis, except for plant cells which have a preprophase stage. During prophase, the cell’s chromatin, which is made up of DNA and associated proteins, condenses into double rod-shaped structures called chromosomes. This process is facilitated by the condensin protein I and/or II complexes. As the chromosomes form, the nuclear membrane and nucleoli disintegrate and disappear, making the chromatin visible.
Before prophase, the cell’s DNA is replicated during interphase, resulting in identical pairs of chromosomes called chromatids. These chromatids attach to each other at a DNA element called the centromere. DNA and centrosome duplication occur during interphase, while chromosome alignment takes place during metaphase. The nuclear membrane and nucleoli re-form during telophase, and the sister chromatids separate during anaphase.
In summary, prophase is the initial stage of eukaryotic mitosis where chromatin condenses into chromosomes, and the nuclear membrane and nucleoli disappear. Chromosome alignment, DNA and centrosome duplication, and re-formation of the nuclear membrane and nucleoli occur in subsequent stages.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 9
Correct
-
A 32-year-old snowboarder presents to the Emergency department complaining of pain and swelling around the first metacarpophalangeal joint (MCP joint) following a fall during practice.
Upon examination, there is significant swelling and bruising on the ulnar side of the joint.
What is the most probable injury that the patient has sustained?Your Answer: Ulnar collateral ligament
Explanation:Skier’s Thumb: A Common Injury in Winter Sports
Skier’s thumb, also known as gamekeeper’s thumb, is a common injury that occurs in winter sports. It is caused by damage or rupture of the ulnar collateral ligament, which is located at the base of the thumb. This injury can result in acute swelling and gross instability of the thumb. In severe cases where a complete tear of the ligament is suspected, an MRI may be necessary to confirm the diagnosis, and surgical repair may be required.
Once the acute swelling has subsided, treatment for skier’s thumb typically involves immobilization in a thumb spica. This is the standard therapy for cases of partial rupture.
-
This question is part of the following fields:
- Basic Sciences
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)