-
Question 1
Incorrect
-
A 54-year-old man visits his GP for a routine check-up and physical examination. He has a medical history of hypertension and asthma but currently has no immediate concerns. He reports feeling healthy.
During the examination, the man appears to be in good health, with normal vital signs except for a high blood pressure reading of 160/90 mmHg. While listening to his heart, the GP detects an S4 heart sound and orders an ECG.
Which segment of the ECG corresponds to the S4 heart sound?Your Answer: U wave
Correct Answer: P wave
Explanation:The S4 heart sound coincides with the P wave on an ECG. This is because the S4 sound is caused by the contraction of the atria against a stiff ventricle, which occurs just before the S1 sound. It is commonly heard in conditions such as aortic stenosis, hypertrophic cardiomyopathy, or hypertension. As the P wave represents atrial depolarization, it is the ECG wave that coincides with the S4 heart sound.
It is important to note that the QRS complex, which represents ventricular depolarization, is not associated with the S4 heart sound. Similarly, the ST segment, which is the interval between ventricular depolarization and repolarization, and T waves, which indicate ventricular repolarization, are not linked to the S4 heart sound.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Correct
-
A 67-year-old man arrives at the emergency department with abrupt onset left-sided foot and leg weakness and sensory loss. According to his wife, he stumbled and fell while they were out for dinner. Imaging results indicate an infarct in the anterior cerebral artery (ACA).
Which lobes of the brain are expected to be impacted the most?Your Answer: Frontal and parietal lobes
Explanation:The anterior cerebral artery is responsible for supplying blood to a portion of the frontal and parietal lobes. While this type of stroke is uncommon and may be challenging to diagnose through clinical means, imaging techniques can reveal affected vessels or brain regions. Damage to the frontal and parietal lobes can result in significant mood, personality, and movement disorders.
It’s important to note that the occipital lobe and cerebellum receive their blood supply from the posterior cerebral artery and cerebellar arteries (which originate from the basilar and vertebral arteries), respectively. Therefore, they would not be impacted by an ACA stroke. Similarly, the middle cerebral artery is responsible for supplying blood to the temporal lobe, so damage to the ACA would not affect this area.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Correct
-
A 73-year-old male arrives at the ER with ventricular tachycardia and fainting. Despite defibrillation, the patient's condition does not improve and amiodarone is administered. Amiodarone is a class 3 antiarrhythmic that extends the plateau phase of the myocardial action potential.
What is responsible for sustaining the plateau phase of the cardiac action potential?Your Answer: Slow influx of calcium and efflux of potassium
Explanation:The plateau phase (phase 2) of the cardiac action potential is sustained by the slow influx of calcium and efflux of potassium ions. Rapid efflux of potassium and chloride occurs during phase 1, while rapid influx of sodium occurs during phase 0. Slow efflux of calcium is not a characteristic of the plateau phase.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Incorrect
-
An ECG is performed on a 60-year-old patient in the cardiology ward. On the ECG there are regular p waves present, and a QRS complex is associated with each p wave. The PR interval is 0.26 seconds. There are no missed p waves.
What is the most probable diagnosis?Your Answer: Sinus rhythm
Correct Answer: 1st degree heart block
Explanation:Understanding Heart Blocks: Types and Features
Heart blocks are a type of cardiac conduction disorder that can lead to serious complications such as syncope and heart failure. There are three types of heart blocks: first degree, second degree, and third degree (complete) heart block.
First degree heart block is characterized by a prolonged PR interval of more than 0.2 seconds. Second degree heart block can be further divided into two types: type 1 (Mobitz I, Wenckebach) and type 2 (Mobitz II). Type 1 is characterized by a progressive prolongation of the PR interval until a dropped beat occurs, while type 2 has a constant PR interval but the P wave is often not followed by a QRS complex.
Third degree (complete) heart block is the most severe type of heart block, where there is no association between the P waves and QRS complexes. This can lead to a regular bradycardia with a heart rate of 30-50 bpm, wide pulse pressure, and cannon waves in the neck JVP. Additionally, variable intensity of S1 can be observed.
It is important to recognize the features of heart blocks and differentiate between the types in order to provide appropriate management and prevent complications. Regular monitoring and follow-up with a healthcare provider is recommended for individuals with heart blocks.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Correct
-
As a certified physician, you are standing at the bus stop waiting to head to work. A 78-year-old woman is standing next to you and suddenly begins to express discomfort in her chest. She then collapses and loses consciousness. Fortunately, there is no threat to your safety. What steps do you take in this situation?
Your Answer: Perform basic life support for the lady, ask the husband to call 999
Explanation:In accordance with the Good Medical Practice 2013, it is your responsibility to provide assistance in the event of emergencies occurring in clinical settings or within the community. However, you must consider your own safety, level of expertise, and the availability of alternative care options before offering aid. This obligation encompasses providing basic life support and administering first aid. In situations where you are the sole individual present, it is incumbent upon you to fulfill this duty.
The 2015 Resus Council guidelines for adult advanced life support outline the steps to be taken in the event of a cardiac arrest. Patients are divided into those with ‘shockable’ rhythms (ventricular fibrillation/pulseless ventricular tachycardia) and ‘non-shockable’ rhythms (asystole/pulseless-electrical activity). Key points include the ratio of chest compressions to ventilation (30:2), continuing chest compressions while a defibrillator is charged, and delivering drugs via IV access or the intraosseous route. Adrenaline and amiodarone are recommended for non-shockable rhythms and VF/pulseless VT, respectively. Thrombolytic drugs should be considered if a pulmonary embolism is suspected. Atropine is no longer recommended for routine use in asystole or PEA. Following successful resuscitation, oxygen should be titrated to achieve saturations of 94-98%. The ‘Hs’ and ‘Ts’ outline reversible causes of cardiac arrest, including hypoxia, hypovolaemia, and thrombosis.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
A 25-year-old woman is having a trendelenberg procedure to treat her varicose veins. While dissecting the saphenofemoral junction, which structure is most susceptible to injury?
Your Answer: Femoral nerve
Correct Answer: Deep external pudendal artery
Explanation:The deep external pudendal artery is situated near the origin of the long saphenous vein and can be damaged. The highest risk of injury occurs during the flush ligation of the saphenofemoral junction. However, if an injury is detected and the vessel is tied off, it is rare for any significant negative consequences to occur.
The Anatomy of Saphenous Veins
The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.
On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.
Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Incorrect
-
A 68-year-old woman arrives at the emergency department with complaints of shortness of breath and palpitations. During the examination, you observe an irregularly irregular pulse. To check for signs of atrial fibrillation, you opt to conduct an ECG. In a healthy individual, where is the SA node located in the heart?
Your Answer: Atrioventricular septum
Correct Answer: Right atrium
Explanation:The SA node is situated at the junction of the superior vena cava and the right atrium, and is responsible for initiating cardiac impulses in a healthy heart. The AV node, located in the atrioventricular septum, regulates the spread of excitation from the atria to the ventricles. The patient’s symptoms of palpitations and shortness of breath, along with an irregularly irregular pulse, strongly indicate atrial fibrillation. ECG findings consistent with atrial fibrillation include an irregularly irregular rhythm and the absence of P waves.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Incorrect
-
A 65-year-old man was brought to the emergency department due to a respiratory infection. After receiving antibiotics and showing signs of improvement, he suddenly collapsed before being released. An ECG was performed and revealed fast, irregular QRS complexes that seemed to be twisting around the baseline.
Which antibiotic is the probable culprit for the aforementioned situation?Your Answer: Benzylpenicillin
Correct Answer: Clarithromycin
Explanation:Torsades de pointes can be caused by macrolides
The probable reason for the patient’s collapse is torsades de pointes, which is identified by fast, irregular QRS complexes that seem to be ‘twisting’ around the baseline on the ECG. This condition is linked to a prolonged QT interval. In this instance, the QT interval was prolonged due to the use of clarithromycin, a macrolide antibiotic. None of the other medications have been found to prolong the QT interval.
Torsades de pointes is a type of ventricular tachycardia that is associated with a prolonged QT interval. This condition can lead to ventricular fibrillation and sudden death. There are several causes of a long QT interval, including congenital conditions such as Jervell-Lange-Nielsen syndrome and Romano-Ward syndrome, as well as certain medications like amiodarone, tricyclic antidepressants, and antipsychotics. Other factors that can contribute to a long QT interval include electrolyte imbalances, myocarditis, hypothermia, and subarachnoid hemorrhage. The management of torsades de pointes typically involves the administration of intravenous magnesium sulfate.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Correct
-
A 75-year-old man arrives at the emergency department complaining of lightheadedness and difficulty breathing. Upon examination, his ECG reveals supraventricular tachycardia, which may be caused by an irregularity in the cardiac electrical activation sequence. He is successfully cardioverted to sinus rhythm.
What is the anticipated sequence of his cardiac electrical activation following the procedure?Your Answer: SA node- atria- AV node- Bundle of His- right and left bundle branches- Purkinje fibres
Explanation:The correct order of cardiac electrical activation is as follows: SA node, atria, AV node, Bundle of His, right and left bundle branches, and Purkinje fibers. Understanding this sequence is crucial as it is directly related to interpreting ECGs.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Correct
-
A 14-year-old male immigrant from India visits his primary care physician complaining of gradually worsening shortness of breath, particularly during physical exertion, and widespread joint pain. He had a severe untreated throat infection in the past, but his vaccination record is complete. During the physical examination, a high-pitched holosystolic murmur is heard at the apex with radiation to the axilla.
Hemoglobin: 135 g/L
Platelets: 150 * 10^9/L
White blood cells: 9.5 * 10^9/L
Anti-streptolysin O titers: >200 units/mL
What is the most probable histological finding in his heart?Your Answer: Aschoff bodies
Explanation:Rheumatic heart fever is characterized by the presence of Aschoff bodies, which are granulomatous nodules. The mitral valve is commonly affected in this condition, and an elevated ASO titre indicates exposure to group A streptococcus bacteria. Rheumatic heart disease is also associated with the presence of Anitschkow cells, which are enlarged macrophages with an ovoid, wavy, rod-like nucleus. Other types of bodies seen in different conditions include Councilman bodies in hepatitis C and yellow fever, Mallory bodies in alcoholism affecting hepatocytes, and Call-Exner bodies in granulosa cell tumours.
Rheumatic fever is a condition that occurs as a result of an immune response to a recent Streptococcus pyogenes infection, typically occurring 2-4 weeks after the initial infection. The pathogenesis of rheumatic fever involves the activation of the innate immune system, leading to antigen presentation to T cells. B and T cells then produce IgG and IgM antibodies, and CD4+ T cells are activated. This immune response is thought to be cross-reactive, mediated by molecular mimicry, where antibodies against M protein cross-react with myosin and the smooth muscle of arteries. This response leads to the clinical features of rheumatic fever, including Aschoff bodies, which are granulomatous nodules found in rheumatic heart fever.
To diagnose rheumatic fever, evidence of recent streptococcal infection must be present, along with 2 major criteria or 1 major criterion and 2 minor criteria. Major criteria include erythema marginatum, Sydenham’s chorea, polyarthritis, carditis and valvulitis, and subcutaneous nodules. Minor criteria include raised ESR or CRP, pyrexia, arthralgia, and prolonged PR interval.
Management of rheumatic fever involves antibiotics, typically oral penicillin V, as well as anti-inflammatories such as NSAIDs as first-line treatment. Any complications that develop, such as heart failure, should also be treated. It is important to diagnose and treat rheumatic fever promptly to prevent long-term complications such as rheumatic heart disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
A man in his 50s arrives at the emergency department with bleeding following a car accident. Despite significant blood loss, his blood pressure has remained stable. What can be said about the receptors responsible for regulating his blood pressure?
Your Answer: Baroreceptor impulses travel via the sympathetic nervous system
Correct Answer: Baroreceptors are stimulated by arterial stretch
Explanation:Arterial stretch stimulates baroreceptors, which are located at the aortic arch and carotid sinus. The baroreceptor reflex acts on the medulla to regulate parasympathetic and sympathetic activity. When baroreceptors are more stimulated, there is an increase in parasympathetic discharge to the SA node and a decrease in sympathetic discharge. Conversely, reduced stimulation of baroreceptors leads to decreased parasympathetic discharge and increased sympathetic discharge. Baroreceptors are always active, and changes in arterial stretch can either increase or decrease their level of stimulation.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Incorrect
-
As a young medical trainee participating in the ward round for diabetic foot, your consultant requests you to evaluate the existence of the posterior tibial pulse. Can you identify its location?
Your Answer: Behind and above the medial ankle
Correct Answer: Behind and below the medial ankle
Explanation:The lower limb has 4 primary pulse points, which include the femoral pulse located 2-3 cm below the mid-inguinal point, the popliteal pulse that can be accessed by partially flexing the knee to loosen the popliteal fascia, the posterior tibial pulse located behind and below the medial ankle, and the dorsal pedis pulse found on the dorsum of the foot.
Lower Limb Pulse Points
The lower limb has four main pulse points that are important to check for proper circulation. These pulse points include the femoral pulse, which can be found 2-3 cm below the mid-inguinal point. The popliteal pulse can be found with a partially flexed knee to lose the popliteal fascia. The posterior tibial pulse can be found behind and below the medial ankle, while the dorsal pedis pulse can be found on the dorsum of the foot. It is important to check these pulse points regularly to ensure proper blood flow to the lower limb. By doing so, any potential circulation issues can be detected early on and treated accordingly. Proper circulation is essential for maintaining healthy lower limbs and overall physical well-being.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
A 67-year-old man with a history of atrial fibrillation presents with an embolus in his lower leg. The medical team decides to perform an embolectomy using a trans popliteal approach. Upon incising the deep fascia, what will be the first structure encountered by the surgeons as they explore the central region of the popliteal fossa?
Your Answer: Popliteal artery
Correct Answer: Tibial nerve
Explanation:The inferior aspect of the popliteal fossa houses the tibial nerve, which is positioned above the vessels. Initially, the nerve is located laterally to the vessels in the upper part of the fossa, but it eventually moves to a medial position by passing over them. The popliteal artery is the most deeply situated structure in the popliteal fossa.
Anatomy of the Popliteal Fossa
The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.
The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.
Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Incorrect
-
Ella, a 69-year-old female, arrives at the emergency department with abrupt tearing abdominal pain that radiates to her back.
Ella has a medical history of hypertension, hypercholesterolemia, and diabetes. Her body mass index is 31 kg/m². She smokes 10 cigarettes a day.
The emergency physician orders an ECG and MRI, which confirm the diagnosis of an aortic dissection.
Which layer or layers of the aorta are impacted?Your Answer: Tear in tunica externa
Correct Answer: Tear in tunica intima
Explanation:An aortic dissection occurs when there is a tear in the innermost layer (tunica intima) of the aorta’s wall. This tear allows blood to flow into the space between the tunica intima and the middle layer (tunica media), causing pooling. The tear only affects the tunica intima layer and does not involve the outermost layer (tunica externa) or all three layers of the aortic wall.
Aortic dissection is a serious condition that can cause chest pain. It occurs when there is a tear in the inner layer of the aorta’s wall. Hypertension is the most significant risk factor, but it can also be associated with trauma, bicuspid aortic valve, and certain genetic disorders. Symptoms of aortic dissection include severe and sharp chest or back pain, weak or absent pulses, hypertension, and aortic regurgitation. Specific arteries’ involvement can cause other symptoms such as angina, paraplegia, or limb ischemia. The Stanford classification divides aortic dissection into type A, which affects the ascending aorta, and type B, which affects the descending aorta. The DeBakey classification further divides type A into type I, which extends to the aortic arch and beyond, and type II, which is confined to the ascending aorta. Type III originates in the descending aorta and rarely extends proximally.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
Which one of the following statements relating to the pharmacology of warfarin is false?
Your Answer: The half life of warfarin is 40 hours
Correct Answer: Warfarin has a large volume of distribution
Explanation:To impair fibrin formation, warfarin impacts the carboxylation of glutamic acid residues in clotting factors 2, 7, 9, and 10. Factor 2 has the lengthiest half-life of around 60 hours, so it may take up to three days for warfarin to take full effect. Warfarin is protein-bound, resulting in a small distribution volume.
Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Correct
-
During the repair of an atrial septal defect, the surgeons notice blood leakage from the coronary sinus. What is the largest tributary of the coronary sinus?
Your Answer: Great cardiac vein
Explanation:The largest tributary of the coronary sinus is the great cardiac vein, which runs in the anterior interventricular groove. The heart is drained directly by the Thebesian veins.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
A 28-year-old male with ankylosing spondylitis presents to his GP for examination. During palpation of the carotid pulse, the GP observes a pulse that quickly rises and falls. Upon auscultation of the heart, the GP detects a high-pitched early diastolic murmur that is decrescendo in nature. What cardiac abnormality is indicated by these examination findings?
Your Answer: Mitral regurgitation
Correct Answer: Aortic regurgitation
Explanation:Aortic regurgitation results in an early diastolic murmur, which is caused by the backflow of blood from the aorta into the left ventricle through an incompetent aortic valve. This condition also leads to a rapid rise in the carotid pulse due to the forceful ejection of blood from an overloaded left ventricle, followed by a rapid fall due to the backflow of blood into the left ventricle. Patients with aortic regurgitation may also experience an ejection murmur, which is caused by the turbulent ejection of blood from the overloaded left ventricle. Aortic regurgitation can be caused by various factors, including aortic root dilation associated with ankylosing spondylitis, Marfan syndrome, or aortic dissection, as well as aortic valve leaflet disease resulting from calcific degeneration, congenital bicuspid aortic valve, rheumatic heart disease, or infective endocarditis.
Aortic regurgitation is a condition where the aortic valve of the heart leaks, causing blood to flow in the opposite direction during ventricular diastole. This can be caused by disease of the aortic valve or by distortion or dilation of the aortic root and ascending aorta. The most common causes of AR due to valve disease include rheumatic fever, calcific valve disease, and infective endocarditis. On the other hand, AR due to aortic root disease can be caused by conditions such as aortic dissection, hypertension, and connective tissue diseases like Marfan and Ehler-Danlos syndrome.
The features of AR include an early diastolic murmur, a collapsing pulse, wide pulse pressure, Quincke’s sign, and De Musset’s sign. In severe cases, a mid-diastolic Austin-Flint murmur may also be present. Suspected AR should be investigated with echocardiography.
Management of AR involves medical management of any associated heart failure and surgery in symptomatic patients with severe AR or asymptomatic patients with severe AR who have LV systolic dysfunction.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Incorrect
-
A 40-year-old male patient complains of shortness of breath, weight loss, and night sweats for the past six weeks. Despite being generally healthy, he is experiencing these symptoms. During the examination, the patient's fingers show clubbing, and his temperature is 37.8°C. His pulse is 88 beats per minute, and his blood pressure is 128/80 mmHg. Upon listening to his heart, a pansystolic murmur is audible. What signs are likely to be found in this patient?
Your Answer: Pulsus paradoxus
Correct Answer: Splinter haemorrhages
Explanation:Symptoms and Diagnosis of Infective Endocarditis
This individual has a lengthy medical history of experiencing night sweats and has developed clubbing of the fingers, along with a murmur. These symptoms are indicative of infective endocarditis. In addition to splinter hemorrhages in the nails, other symptoms that may be present include Roth spots in the eyes, Osler’s nodes and Janeway lesions in the palms and fingers of the hands, and splenomegaly instead of cervical lymphadenopathy. Cyanosis is not typically associated with clubbing and may suggest idiopathic pulmonary fibrosis or cystic fibrosis in younger individuals. However, this individual has no prior history of cystic fibrosis and has only been experiencing symptoms for six weeks.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
A toddler is brought to the hospital at 18 months of age with symptoms of increased work of breathing and difficulty while feeding. On examination, a continuous 'machinery' murmur is heard and is loudest at the left sternal edge. The cardiologist prescribes a dose of indomethacin. What is the mechanism of action of indomethacin?
The baby was born prematurely at 36 weeks via an emergency cesarean section. Despite the early delivery, the baby appeared healthy and was given a dose of Vitamin K soon after birth. The mother lived in a cottage up in the mountains and was discharged the next day with her happy, healthy baby. However, six weeks later, the baby was brought back to the hospital with concerning symptoms.Your Answer: Endothelin receptor antagonist
Correct Answer: Prostaglandin synthase inhibitor
Explanation:Indomethacin is a medication that hinders the production of prostaglandins in infants with patent ductus arteriosus by inhibiting the activity of COX enzymes. On the other hand, bosentan, an endothelin receptor antagonist, is utilized to treat pulmonary hypertension by blocking the vasoconstricting effect of endothelin, leading to vasodilation. Although endothelin causes vasoconstriction by acting on endothelin receptors, it is not employed in managing PDA. Adenosine receptor antagonists like theophylline and caffeine are also not utilized in PDA management.
Understanding Patent Ductus Arteriosus
Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.
This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.
The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Correct
-
A 55-year-old man with several cardiac risk factors arrives at the hospital with sudden onset chest pain in the center. The pain extends to his left arm and is accompanied by sweating and nausea.
The patient's ECG reveals widespread T-wave inversion, which is a new finding compared to his previous ECGs. The level of troponin I in his serum is measured and confirmed to be elevated. The patient is initiated on treatment for acute coronary syndrome and transferred to a cardiac center.
What is the target of this measured cardiac biomarker?Your Answer: Actin
Explanation:Troponin I is a cardiac biomarker that binds to actin, which holds the troponin-tropomyosin complex in place and regulates muscle contraction. It is the standard biomarker used in conjunction with ECGs and clinical findings to diagnose non-ST elevation myocardial infarction (NSTEMI). Troponin I is highly sensitive and specific for myocardial damage compared to other cardiac biomarkers. Troponin C, another subunit of troponin, plays a role in Ca2+-dependent regulation of muscle contraction and can also be used in the diagnosis of myocardial infarction, but it is less specific as it is found in both cardiac and skeletal muscle. Copeptin, an amino acid peptide, is released earlier than troponin during acute myocardial infarction but is not widely used in clinical practice and has no interaction with troponin. Myoglobin, an iron- and oxygen-binding protein found in both cardiac and skeletal muscle, has poor specificity for cardiac injury and is not involved in the troponin-tropomyosin complex.
Understanding Troponin: The Proteins Involved in Muscle Contraction
Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.
Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.
Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 21
Incorrect
-
A 22-year-old male student is brought to the Emergency Department via ambulance. He is unconscious, hypotensive, and tachycardic. According to his friend, he started feeling unwell after being stung by a bee in the park. The medical team suspects anaphylactic shock and begins resuscitation. While anaphylactic shock causes widespread vasodilation, which mediator is responsible for arteriole constriction?
Your Answer: Parasympathetic nervous input
Correct Answer: Endothelin
Explanation:Arteriolar constriction is facilitated by various mediators such as noradrenaline from the sympathetic nervous system, circulating catecholamines, angiotensin-2, and locally released endothelin peptide by endothelial cells. Endothelin primarily acts on ET(A) receptors to cause constriction, but it can also cause dilation by acting on ET(B) receptors.
On the other hand, the parasympathetic nervous system, nitric oxide, and prostacyclin are all responsible for facilitating arteriolar dilation, rather than constriction.
Understanding Endothelin and Its Role in Various Diseases
Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.
Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.
In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Correct
-
A 50-year-old man with a history of rate-controlled atrial fibrillation (AF) presents with chest pain, palpitations, and dizziness. The patient has a past medical history of a transient ischemic episode and is taking warfarin to prevent further ischemic episodes. He also has a history of gout, low back pain, depression, and polymyalgia rheumatica.
Upon immediate ECG, the patient is found to have an irregularly irregular rhythm consistent with fast AF. You decide to perform electrical cardioversion and prescribe a course of amiodarone to prevent recurrence.
What drug interaction should you be cautious of in this patient?Your Answer: Warfarin and amiodarone
Explanation:The metabolism of warfarin is reduced by amiodarone, which can increase the risk of bleeding. However, there are no known interactions between amiodarone and naproxen, paracetamol, codeine, or allopurinol. It should be noted that the patient in question is not diabetic and therefore should not be taking metformin.
Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 23
Correct
-
An 80-year-old woman came in with an acute myocardial infarction. The ECG revealed ST segment elevation in leads II, III, and aVF. Which coronary artery is the most probable to be blocked?
Your Answer: Right coronary artery
Explanation:Localisation of Myocardial Infarction
Myocardial infarction (MI) is a medical emergency that occurs when there is a blockage in the blood flow to the heart muscle. The location of the blockage determines the type of MI and the treatment required. An inferior MI is caused by the occlusion of the right coronary artery, which supplies blood to the bottom of the heart. This type of MI can cause symptoms such as chest pain, shortness of breath, and nausea. It is important to identify the location of the MI quickly to provide appropriate treatment and prevent further damage to the heart muscle. Proper diagnosis and management can improve the patient’s chances of survival and reduce the risk of complications.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
An 80-year-old man visits his GP complaining of progressive breathlessness that has been worsening over the past 6 months. During the examination, the GP observes pitting oedema in the mid-shins. The patient has a medical history of type 2 diabetes mellitus and a myocardial infarction that occurred 5 years ago. The GP orders a blood test to investigate the cause of the patient's symptoms.
The blood test reveals a B-type natriuretic peptide (BNP) level of 907 pg/mL, which is significantly higher than the normal range (< 100). Can you identify the source of BNP secretion?Your Answer: Atrial endocardium
Correct Answer: Ventricular myocardium
Explanation:BNP is primarily secreted by the ventricular myocardium in response to stretching, making it a valuable indicator of heart failure. While it can be used for screening and prognostic scoring, it is not secreted by the atrial endocardium, distal convoluted tubule, pulmonary artery endothelium, or renal mesangial cells.
B-type natriuretic peptide (BNP) is a hormone that is primarily produced by the left ventricular myocardium in response to strain. Although heart failure is the most common cause of elevated BNP levels, any condition that causes left ventricular dysfunction, such as myocardial ischemia or valvular disease, may also raise levels. In patients with chronic kidney disease, reduced excretion may also lead to elevated BNP levels. Conversely, treatment with ACE inhibitors, angiotensin-2 receptor blockers, and diuretics can lower BNP levels.
BNP has several effects, including vasodilation, diuresis, natriuresis, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. Clinically, BNP is useful in diagnosing patients with acute dyspnea. A low concentration of BNP (<100 pg/mL) makes a diagnosis of heart failure unlikely, but elevated levels should prompt further investigation to confirm the diagnosis. Currently, NICE recommends BNP as a helpful test to rule out a diagnosis of heart failure. In patients with chronic heart failure, initial evidence suggests that BNP is an extremely useful marker of prognosis and can guide treatment. However, BNP is not currently recommended for population screening for cardiac dysfunction.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 25
Correct
-
A 36-year-old woman presents to her GP with a history of long-standing fatigue, dyspnea, and chest discomfort that has recently worsened. Despite being physically active, she has been experiencing these symptoms. She is a social drinker and does not smoke. Her family history is unremarkable except for her mother who died of 'chest disease' at the age of 50. During examination, her observations are as follows:
Blood pressure: 135/85mmHg
Pulse: 95 beats/min
Respiration: 25 breaths/min
An ECG shows no abnormalities, and cardiac enzymes are within normal ranges. She is referred for echocardiography, which reveals a right pulmonary artery pressure of 35 mmhg.
What substance is elevated in this patient, underlying the disease process?Your Answer: Endothelin
Explanation:Understanding Endothelin and Its Role in Various Diseases
Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.
Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.
In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 26
Incorrect
-
A 61-year-old man recovering from severe community-acquired pneumonia is being assessed by a consultant and a medical student. He has a medical history of hypertension, heart failure, depression, and gout, and is currently taking ramipril, atenolol, furosemide, sertraline, allopurinol, and ibuprofen. The consultant suspects that his slightly low blood pressure may be due to his medications. The patient's urea and electrolyte levels are provided below. Can you identify the role of atenolol in reducing blood pressure?
Na+ 142 mmol/l
K+ 4.2 mmol/l
Urea 6 mmol/l
Creatinine 68 µmol/lYour Answer: Competes with aldosterone and antagonises its effects
Correct Answer: Inhibits the release of renin from the kidneys
Explanation:Beta-blockers have an added advantage in treating hypertension as they can suppress the release of renin from the kidneys. This is because the release of renin is partly regulated by β1-adrenoceptors in the kidney, which are inhibited by beta-blockers. By reducing the amount of circulating plasma renin, the levels of angiotensin II and aldosterone decrease, leading to increased renal loss of sodium and water, ultimately lowering arterial pressure.
It is important to note that atenolol does not compete with aldosterone, unlike spironolactone, a potassium-sparing diuretic that does compete with aldosterone for its receptor. Additionally, atenolol does not inhibit the conversion of ATI to ATII, which is achieved by ACE-inhibitors like ramipril.
While both beta-1 and beta-2 receptors are present in the heart, atenolol primarily acts on beta-1 receptors, resulting in negative inotropic, negative chronotropic, and positive lusitropic effects. Lusitropy refers to the relaxation of the heart.
Therefore, the statement that atenolol inhibits the release of renin is correct, and the fifth option is incorrect.
Beta-blockers are a class of drugs that are primarily used to manage cardiovascular disorders. They have a wide range of indications, including angina, post-myocardial infarction, heart failure, arrhythmias, hypertension, thyrotoxicosis, migraine prophylaxis, and anxiety. Beta-blockers were previously avoided in heart failure, but recent evidence suggests that certain beta-blockers can improve both symptoms and mortality. They have also replaced digoxin as the rate-control drug of choice in atrial fibrillation. However, their role in reducing stroke and myocardial infarction has diminished in recent years due to a lack of evidence.
Examples of beta-blockers include atenolol and propranolol, which was one of the first beta-blockers to be developed. Propranolol is lipid-soluble, which means it can cross the blood-brain barrier.
Like all drugs, beta-blockers have side-effects. These can include bronchospasm, cold peripheries, fatigue, sleep disturbances (including nightmares), and erectile dysfunction. There are also some contraindications to using beta-blockers, such as uncontrolled heart failure, asthma, sick sinus syndrome, and concurrent use with verapamil, which can precipitate severe bradycardia.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 27
Correct
-
A young man in his early twenties collapses during a game of basketball and is declared dead upon arrival at the hospital. The autopsy shows irregularities in his heart. What is the probable cause of the irregularities?
Your Answer: Hypertrophic cardiomyopathy
Explanation:The condition that is most commonly associated with sudden death is hypertrophic cardiomyopathy, making the other options less likely.
Symptoms of acute myocarditis may include chest pain, fever, palpitations, tachycardia, and difficulty breathing.
Dilated cardiomyopathy may cause right ventricular failure, leading to symptoms such as difficulty breathing, pulmonary edema, and atrial fibrillation.
Restrictive cardiomyopathy and constrictive pericarditis have similar presentations, with right heart failure symptoms such as elevated JVP, hepatomegaly, edema, and ascites being predominant.
Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 28
Correct
-
You are caring for a woman who has heart failure with reduced ejection fraction due to a previous myocardial infarction.
Starling's Law of the Heart states that:Your Answer: As preload progressively increases, stroke volume increases gradually then decreases suddenly
Explanation:Starling’s Law of the Heart states that as preload increases, stroke volume also increases gradually, up to a certain point. However, beyond this point, stroke volume decreases due to overloading of the cardiac muscle fibers. Therefore, the higher the cardiac preload, the greater the stroke volume, but only up to a certain limit.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 29
Incorrect
-
A 35-year-old man comes to the clinic complaining of occasional palpitations and feeling lightheaded. He reports no chest pain, shortness of breath, or swelling in his legs. Upon examination, no abnormalities are found. An ECG reveals a shortened PR interval and the presence of delta waves. What is the underlying pathophysiology of the most likely diagnosis?
Your Answer: Left bundle branch block
Correct Answer: Accessory pathway
Explanation:The presence of intermittent palpitations and lightheadedness can be indicative of various conditions, but the detection of a shortened PR interval and delta wave on an ECG suggests the possibility of Wolff-Parkinson-White syndrome. This syndrome arises from an additional pathway connecting the atrium and ventricle.
Understanding Wolff-Parkinson White Syndrome
Wolff-Parkinson White (WPW) syndrome is a condition that occurs due to a congenital accessory conducting pathway between the atria and ventricles, leading to atrioventricular re-entry tachycardia (AVRT). This condition can cause AF to degenerate rapidly into VF as the accessory pathway does not slow conduction. The ECG features of WPW include a short PR interval, wide QRS complexes with a slurred upstroke known as a delta wave, and left or right axis deviation depending on the location of the accessory pathway. WPW is associated with various conditions such as HOCM, mitral valve prolapse, Ebstein’s anomaly, thyrotoxicosis, and secundum ASD.
The definitive treatment for WPW is radiofrequency ablation of the accessory pathway. Medical therapy options include sotalol, amiodarone, and flecainide. However, sotalol should be avoided if there is coexistent atrial fibrillation as it may increase the ventricular rate and potentially deteriorate into ventricular fibrillation. WPW can be differentiated into type A and type B based on the presence or absence of a dominant R wave in V1. It is important to understand WPW and its associations to provide appropriate management and prevent potential complications.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 30
Correct
-
A 76-year-old male comes for his yearly checkup with the heart failure nurses. What is the leading cause of heart failure?
Your Answer: Ischaemic heart disease
Explanation:The leading cause of heart failure in the western world is ischaemic heart disease, followed by high blood pressure, cardiomyopathies, arrhythmias, and heart valve issues. While COPD can be linked to cor pulmonale, which is a type of right heart failure, it is still not as prevalent as ischaemic heart disease as a cause. This information is based on a population-based study titled Incidence and Aetiology of Heart Failure published in the European Heart Journal in 1999.
Diagnosis of Chronic Heart Failure
Chronic heart failure is a serious condition that requires prompt diagnosis and management. In 2018, the National Institute for Health and Care Excellence (NICE) updated its guidelines on the diagnosis and management of chronic heart failure. According to the new guidelines, all patients should undergo an N-terminal pro-B-type natriuretic peptide (NT‑proBNP) blood test as the first-line investigation, regardless of whether they have previously had a myocardial infarction or not.
Interpreting the NT-proBNP test is crucial in determining the severity of the condition. If the levels are high, specialist assessment, including transthoracic echocardiography, should be arranged within two weeks. If the levels are raised, specialist assessment, including echocardiogram, should be arranged within six weeks.
BNP is a hormone produced mainly by the left ventricular myocardium in response to strain. Very high levels of BNP are associated with a poor prognosis. The table above shows the different levels of BNP and NTproBNP and their corresponding interpretations.
It is important to note that certain factors can alter the BNP level. For instance, left ventricular hypertrophy, ischaemia, tachycardia, and right ventricular overload can increase BNP levels, while diuretics, ACE inhibitors, beta-blockers, angiotensin 2 receptor blockers, and aldosterone antagonists can decrease BNP levels. Therefore, it is crucial to consider these factors when interpreting the NT-proBNP test.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)