00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 17-year-old pupil comes in with rapid breathing, lack of fluids and high...

    Incorrect

    • A 17-year-old pupil comes in with rapid breathing, lack of fluids and high blood sugar levels. What evidence would most strongly suggest a diagnosis of type 1 diabetes?

      Your Answer: Negative islet cell antibodies

      Correct Answer: Positive anti-glutamic acid decarboxylase antibodies

      Explanation:

      Type 1 Diabetes

      Type 1 diabetes is a condition where the body’s immune system attacks the pancreas, specifically the islet cells and glutamic acid decarboxylase (GAD). This autoimmune process leads to a loss of insulin production, which is necessary for regulating blood sugar levels. However, it is important to note that the exocrine function of the pancreas, which is responsible for producing digestive enzymes, remains intact.

      Interestingly, the alpha and delta cells in the pancreas, which produce glucagon and somatostatin respectively, are initially unaffected by the autoimmune process. This means that early on in the development of type 1 diabetes, these cells continue to function normally.

      Overall, the mechanisms behind type 1 diabetes can help individuals with the condition better manage their symptoms and improve their quality of life. It is important to work closely with healthcare professionals to develop a personalized treatment plan.

    • This question is part of the following fields:

      • Clinical Sciences
      32.1
      Seconds
  • Question 2 - A 27-year-old patient with anorexia nervosa has been admitted from home for nutritional...

    Correct

    • A 27-year-old patient with anorexia nervosa has been admitted from home for nutritional support. Following her initial oral feed, her phosphate level has decreased from 0.5 mmol/L to 0.1 mmol/L (reference range 0.7-1.4). What could be the reason for her hypophosphataemia?

      Your Answer: Phosphate enters the body's cells

      Explanation:

      Refeeding Syndrome

      Refeeding syndrome is a potentially fatal condition that can occur after a prolonged period of fasting or poor nutritional intake followed by a meal high in carbohydrates. It is characterized by a rapid decrease in the serum levels of phosphate, potassium, and magnesium, all of which are already depleted in the body. This happens because glucose availability within the blood causes insulin secretion while glucagon secretion is reduced. Insulin stimulates glycogen, adipose and protein synthesis and enhances the action of the Na-K-ATPase pump in cell membranes, which draws glucose into the cells. Many minerals and cofactors are also drawn into the cells to support these metabolic processes.

      The condition is particularly dangerous for patients with starvation, anorexia nervosa, gastrointestinal conditions that impede adequate nutrition, and poor nutrition due to severe illness such as cancer cachexia. In healthy patients, phosphate ions enter the body’s cells under the influence of insulin after a meal, and the phosphate concentration in blood remains within the reference range. However, in patients with refeeding syndrome, a meal can stimulate marked phosphate entry into cells, causing profound hypophosphataemia. This can lead to cardiac arrhythmias and other life-threatening complications. Therefore, it is important to monitor patients at risk of refeeding syndrome closely and provide appropriate nutritional support to prevent this condition.

    • This question is part of the following fields:

      • Clinical Sciences
      50.2
      Seconds
  • Question 3 - A 30-year-old sailor has been diagnosed with scurvy.

    What is the underlying cause...

    Correct

    • A 30-year-old sailor has been diagnosed with scurvy.

      What is the underlying cause of scurvy?

      Your Answer: Vitamin C deficiency

      Explanation:

      The Importance of Vitamins and Their Deficiencies

      Vitamins play a crucial role in maintaining the body’s overall health and well-being. Scurvy, a condition caused by a deficiency in vitamin C, is commonly observed in sailors who lack access to fresh fruits and vegetables during long sea voyages. The symptoms of scurvy include a widespread rash, bleeding mucous membranes, impaired wound healing, rough skin, fatigue, and depression. Vitamin C has several essential functions in the body, including acting as an antioxidant, reducing iron and copper, synthesizing collagen, producing energy from fats, synthesizing neurotransmitters, enhancing immune function, and acting as an antihistamine.

      Deficiencies in other vitamins can also lead to various health problems. A lack of vitamin B3 can cause diarrhea, confusion, and skin changes known as pellagra. Vitamin B12 deficiency can lead to macrocytic anemia and paresthesia. Vitamin A toxicity can cause bone pain, dizziness, and blurred vision, while vitamin D toxicity can lead to vomiting, bone pain, and increased urinary frequency. It is essential to maintain a balanced diet and ensure adequate intake of all essential vitamins to prevent deficiencies and maintain optimal health.

    • This question is part of the following fields:

      • Clinical Sciences
      18.9
      Seconds
  • Question 4 - To which major food group does the molecule CH3CH(NH2)COOH belong? ...

    Correct

    • To which major food group does the molecule CH3CH(NH2)COOH belong?

      Your Answer: Protein

      Explanation:

      The Basics of Amino Acids and Alanine

      Amino acids are the building blocks of proteins, which are essential for the functioning of living organisms. One such amino acid is alanine, also known as CH3CH(NH2)COOH. The basic structure of an amino acid consists of an amine group (NH2) and a carboxylic acid group (COOH), which are both acidic and basic, respectively. These groups combine to give proteins a unique set of characteristics.

      Alanine is a simple amino acid with a methyl group in its R region. The formula for proteins is R-CH-NH2COOH, where R is a variable region. Amino acids combine to form dipeptides and polypeptides, which make up proteins. the basics of amino acids and their structures is crucial in the complex nature of proteins and their functions in living organisms.

    • This question is part of the following fields:

      • Clinical Sciences
      31.5
      Seconds
  • Question 5 - What is the cofactor needed for pyruvate dehydrogenase to operate during the conversion...

    Incorrect

    • What is the cofactor needed for pyruvate dehydrogenase to operate during the conversion of pyruvate to acetyl CoA at the end of glycolysis?

      Your Answer: ATP

      Correct Answer: Thiamine

      Explanation:

      Pyruvate Dehydrogenase and its Enzyme Complex

      Pyruvate dehydrogenase is an enzyme complex that plays a crucial role in metabolism. It is composed of multiple copies of several enzymes, including E1, E2, and E3. E1, also known as pyruvate dehydrogenase, is located at the periphery of the molecule and requires thiamine pyrophosphate, a derivative of the vitamin thiamine, to function properly. E2, a transacetylase enzyme, is situated in the core of the molecule and requires lipoamide to work effectively. Lipoamide contains a thiol group that enables it to participate in redox reactions. E3, a dehydrogenase enzyme, is located at the periphery of the molecule and requires a molecule of FAD (flavin adenine dinucleotide) to function. Flavin structures are obtained from the vitamin riboflavin in the diet.

      Thiamine is essential for normal pyruvate dehydrogenase activity, and it must be obtained from the diet as the body can only store relatively small amounts. Thiamine deficiency is common and can lead to a range of potentially serious complications, including Wernicke’s encephalopathy, Korsakoff’s psychosis, and peripheral neurological symptoms. Overall, the pyruvate dehydrogenase enzyme complex is under strict metabolic control and plays a critical role in energy production and metabolism.

    • This question is part of the following fields:

      • Clinical Sciences
      23
      Seconds
  • Question 6 - Which enzyme plays a critical role in the conversion of cAMP to AMP...

    Incorrect

    • Which enzyme plays a critical role in the conversion of cAMP to AMP during cellular signaling?

      Your Answer: Protein kinase

      Correct Answer: Phosphodiesterase

      Explanation:

      Enzymes and their Functions in Cellular Processes

      Phosphodiesterases are enzymes that break down the phosphodiester bond found in the second messengers cAMP and cGMP. These messengers play a crucial role in regulating various cellular functions such as energy metabolism, ion channels, and contractile proteins in smooth muscle. In smooth muscle, relaxation is achieved when cAMP-dependent protein kinase phosphorylates myosin-light-chain kinase, causing it to be inactivated and preventing contraction.

      Acetylcholinesterase is another enzyme that plays a vital role in cellular processes. It breaks down acetylcholine, which acts as a neurotransmitter. Carbonic anhydrase, on the other hand, catalyzes the reaction between water and carbon dioxide, releasing bicarbonate and hydrogen ions.

      Guanylate cyclase is an enzyme that converts guanosine triphosphate (GTP) to cyclic guanosine monophosphate (cGMP) and pyrophosphate during G protein signaling cascade. Finally, protein kinase is a phosphorylation enzyme that acts on proteins, regulating their functions in various cellular processes.

      In summary, enzymes play a crucial role in regulating various cellular processes. From breaking down second messengers to catalyzing reactions and regulating protein functions, enzymes are essential for maintaining cellular homeostasis.

    • This question is part of the following fields:

      • Clinical Sciences
      17.1
      Seconds
  • Question 7 - What is the enzyme necessary for the production of glycogen? ...

    Correct

    • What is the enzyme necessary for the production of glycogen?

      Your Answer: Glycogen synthase

      Explanation:

      Enzymes Involved in Glycogen Formation

      Glycogen formation is a complex process that requires the involvement of several enzymes. One of the key enzymes involved in this process is glycogen synthase, which is responsible for extending the length of glucose chains within glycogen. This is achieved by creating α1-4 glycosidic linkages between glucose molecules to form a long chain.

      However, the branching on the glycogen chain is created by another enzyme known as the branching enzyme or transferase enzyme. This enzyme produces α1-6 glycosidic linkages, which create branch points on the glycogen chain.

      It is important to note that the debranching enzyme and glycogen phosphorylase are not involved in glycogen production but are instead used in the breakdown of glycogen. Similarly, phosphofructokinase is an enzyme in the glycolysis pathway, while pyruvate carboxylase is required for gluconeogenesis.

      In summary, glycogen formation is a complex process that involves several enzymes, including glycogen synthase and the branching enzyme. These enzymes work together to create the long chains and branch points that make up glycogen.

    • This question is part of the following fields:

      • Clinical Sciences
      17.3
      Seconds
  • Question 8 - What is the location of pancreatic beta-cells? ...

    Correct

    • What is the location of pancreatic beta-cells?

      Your Answer: At the centre of islets of Langerhans

      Explanation:

      The Pancreas and its Beta-Cells

      The pancreas is a gland with both exocrine and endocrine functions. The exocrine part of the pancreas is made up of acini and ducts that secrete digestive enzymes into the small intestine. The endocrine part of the pancreas is composed of the islets of Langerhans, which are clusters of cells scattered throughout the pancreas. These islets contain alpha-cells, beta-cells, and delta-cells.

      Beta-cells are the most abundant cells in the islets of Langerhans and are located in the center of the islets. They are responsible for producing and secreting insulin, a hormone that regulates blood sugar levels. Alpha-cells, on the other hand, produce glucagon, which raises blood sugar levels. Delta-cells produce somatostatin, which inhibits the release of insulin and glucagon.

      In summary, the pancreas is a gland with both exocrine and endocrine functions. The endocrine part of the pancreas is made up of the islets of Langerhans, which contain alpha-cells, beta-cells, and delta-cells. Beta-cells are the most numerous cells in the islets and are responsible for producing and secreting insulin.

    • This question is part of the following fields:

      • Clinical Sciences
      4.8
      Seconds
  • Question 9 - A 78-year-old man presents to his GP after experiencing dizziness while gardening. During...

    Correct

    • A 78-year-old man presents to his GP after experiencing dizziness while gardening. During the examination, the GP detects an ejection systolic murmur that radiates to the carotids. What could be the possible cause of this finding?

      Your Answer: Aortic stenosis

      Explanation:

      Valvular Murmurs: Systolic and Diastolic Classification

      Valvular murmurs are a common topic in medical examinations, and it is crucial to have a good of them. The easiest way to approach valvular murmurs is to classify them into systolic and diastolic.

      If the arterial valves, such as the aortic or pulmonary valves, are narrowed, ventricular contraction will cause turbulent flow, resulting in a systolic murmur. On the other hand, if these valves are incompetent or regurgitant, blood will leak back through the valve during diastole, causing a diastolic murmur.

      Similarly, the atrioventricular valves, such as the mitral and tricuspid valves, can be thought of in the same way. If these valves are regurgitant, blood will be forced back into the atria during systole, causing a systolic murmur. If they are narrowed, blood will not flow freely from the atria to the ventricles during diastole, causing a diastolic murmur.

      Therefore, a systolic murmur can indicate aortic/pulmonary stenosis or mitral/tricuspid regurgitation. Clinical signs and symptoms, such as presyncope and radiation to the carotids, can help identify aortic stenosis.

    • This question is part of the following fields:

      • Clinical Sciences
      46.1
      Seconds
  • Question 10 - What is the function of aldosterone in the kidney? ...

    Correct

    • What is the function of aldosterone in the kidney?

      Your Answer: Retain sodium and excrete potassium

      Explanation:

      The Role of Aldosterone in Sodium and Potassium Balance

      Aldosterone is a hormone that plays a crucial role in regulating the balance of sodium and potassium in the body. It is the final stage of the renin-angiotensin-aldosterone axis, which is triggered by reduced flow to the kidneys. The main function of aldosterone is to retain sodium at the expense of potassium. This helps to increase fluid volume by retaining water, which is important for maintaining blood pressure and electrolyte balance.

      To maintain electrochemical balance, potassium has to be excreted to retain sodium. This means that when aldosterone levels are high, the body will excrete more potassium in the urine. Conversely, when aldosterone levels are low, the body will retain more potassium and excrete more sodium. This delicate balance is essential for proper functioning of the body’s cells and organs.

      In summary, aldosterone is a hormone that helps to regulate the balance of sodium and potassium in the body. It is triggered by reduced flow to the kidneys and works to retain sodium at the expense of potassium. This helps to increase fluid volume and maintain electrolyte balance.

    • This question is part of the following fields:

      • Clinical Sciences
      34.7
      Seconds
  • Question 11 - Which muscles are responsible for flexing the hip joint? ...

    Correct

    • Which muscles are responsible for flexing the hip joint?

      Your Answer: Psoas

      Explanation:

      Muscles and their Functions in Joint Movement

      The hip joint has three main flexors, namely the iliacus, psoas, and rectus femoris muscles. These muscles are responsible for flexing the hip joint, which is the movement of bringing the thigh towards the abdomen. On the other hand, the gluteus maximus and medius muscles are involved in hip extension, which is the movement of bringing the thigh backward.

      Moving on to the elbow joint, the bicep femoris muscle is one of the primary flexors. This muscle is responsible for bending the elbow, which is the movement of bringing the forearm towards the upper arm. Lastly, the adductor brevis muscle is responsible for adducting the leg at the hip joint, which is the movement of bringing the leg towards the midline of the body.

      In summary, muscles play a crucial role in joint movement. the functions of these muscles can help in identifying and addressing issues related to joint movement and mobility.

    • This question is part of the following fields:

      • Clinical Sciences
      13.9
      Seconds
  • Question 12 - What is the structure that extends downwards in the sagittal plane between the...

    Correct

    • What is the structure that extends downwards in the sagittal plane between the two cerebral hemispheres?

      Your Answer: The falx cerebri

      Explanation:

      Dura Mater Structures in the Brain

      The brain is a complex organ that is protected by several layers of tissue. One of these layers is the dura mater, which is a thick, fibrous membrane that covers the brain and spinal cord. Within the dura mater, there are several structures that play important roles in the functioning of the brain.

      The falx cerebri is one such structure. It is a large sheet of dura mater that partially separates the two cerebral hemispheres. This separation helps to prevent damage to one hemisphere from affecting the other, and also provides support for the brain.

      Another important dura mater structure is the cavernous sinus. This structure is located within the middle cranial fossa and contains several important blood vessels and nerves. Damage to the cavernous sinus can lead to serious health problems, including vision loss and paralysis.

      The diaphragma sellae is a flat piece of dura mater that allows for the passage of the pituitary stalk. This structure is important for the regulation of hormones in the body, and damage to it can lead to hormonal imbalances and other health problems.

      Finally, the tentorium cerebelli is a structure that separates the cerebellum from the inferior areas of the occipital lobes. This separation helps to protect the cerebellum from damage and also provides support for the brain.

      Overall, the dura mater structures in the brain play important roles in protecting and supporting the brain, as well as regulating important bodily functions.

    • This question is part of the following fields:

      • Clinical Sciences
      18.8
      Seconds
  • Question 13 - What is the endocrine condition that is linked to low blood sugar levels?...

    Incorrect

    • What is the endocrine condition that is linked to low blood sugar levels?

      Your Answer: Hyperthyroidism

      Correct Answer: Hypoadrenalism

      Explanation:

      Hypoglycaemia in Adults

      Hypoglycaemia is a condition where the blood glucose level falls below the typical fasting level, which is around <4 mmol/L for adults. This condition can be caused by various endocrine factors such as hypoadrenalism, growth hormone deficiency, glucagon deficiency, and hypothyroidism. However, the most common cause of hypoglycaemia in adults is medication for diabetes, particularly insulin or sulphonylureas. Symptoms of hypoglycaemia are caused by sympathetic activity and disrupted central nervous system function due to inadequate glucose. These symptoms include tremors, sweating, nausea, lightheadedness, hunger, and disorientation. Severe hypoglycaemia can cause confusion, aggressive behaviour, and reduced consciousness. Mild hypoglycaemia is common during fasting, pregnancy, and minor illness. Apart from medication and endocrine factors, other causes of hypoglycaemia in adults include non-diabetic drugs, alcohol, hepatic failure, critical illness, hormone deficiency, malignancy, insulinoma, non-insulinoma pancreatogenous hypoglycaemia syndrome (NIPHS), and bariatric surgery. It is important to identify the underlying cause of hypoglycaemia to provide appropriate treatment. In summary, hypoglycaemia is a condition where the blood glucose level falls below the typical fasting level. It can be caused by various factors, including medication, endocrine factors, and other medical conditions. Recognizing the symptoms and identifying the underlying cause is crucial in managing hypoglycaemia.

    • This question is part of the following fields:

      • Clinical Sciences
      26.3
      Seconds
  • Question 14 - What is the lipoprotein with the least density? ...

    Correct

    • What is the lipoprotein with the least density?

      Your Answer: Chylomicron

      Explanation:

      Lipoproteins and Cholesterol

      Lipoproteins are particles that transport lipids (fats) in the bloodstream. They are classified based on their density and size. Chylomicrons are the largest and least dense lipoproteins, while HDL is the smallest and most dense. LDL and Lp(a) are in between in terms of size and density.

      LDL and Lp(a) are often referred to as bad cholesterol because they are associated with atherosclerosis, a condition that can lead to heart disease. On the other hand, HDL is known as good cholesterol because it helps remove excess cholesterol from the bloodstream.

      While it is not necessary to memorize the specific density and size of each lipoprotein, it is useful to know which ones are the largest/smallest and which have the highest/lowest density. lipoproteins and cholesterol can help individuals make informed decisions about their diet and lifestyle to maintain heart health.

    • This question is part of the following fields:

      • Clinical Sciences
      6.5
      Seconds
  • Question 15 - What is the primary function of riboflavin (vitamin B2) in the human body?...

    Incorrect

    • What is the primary function of riboflavin (vitamin B2) in the human body?

      Your Answer: Regulation of calcium homeostasis

      Correct Answer: Energy production

      Explanation:

      The Importance of Riboflavin in the Body

      Riboflavin, also known as vitamin B2, is a vital nutrient in the body. Its structure consists of a sugar molecule attached to a flavin ring structure, which gives it a yellow color. One of the main roles of riboflavin is to aid in energy production and cellular metabolism of fuels. This is achieved by the creation of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are essential for generating ATP from carbohydrates and other fuel sources. Additionally, riboflavin has antioxidant properties that help protect cells from damage caused by free radicals.

      Riboflavin can be found in a variety of foods, including yeast and yeast extract, liver and kidney, wheat germ, milk and cheese, eggs, and some breakfast cereals and drinks that are fortified with riboflavin. It is important to ensure that you are getting enough riboflavin in your diet to support your body’s energy production and antioxidant functions.

    • This question is part of the following fields:

      • Clinical Sciences
      27.4
      Seconds
  • Question 16 - A 37-year-old pregnant woman has experienced premature rupture of membranes (PROM) four hours...

    Incorrect

    • A 37-year-old pregnant woman has experienced premature rupture of membranes (PROM) four hours prior to the onset of labour. What is the most significant predictor of PROM?

      Your Answer: Smoking

      Correct Answer: Second trimester haemorrhage

      Explanation:

      Premature Rupture of Membranes: Causes and Complications

      Premature rupture of membranes (PROM) is a condition where the amniotic sac ruptures more than an hour before the onset of labor. This sudden loss of amniotic fluid vaginally is a common symptom experienced by the mother. PROM is often associated with first and second trimester hemorrhage, although smoking is also a predisposing factor. Infection is a rare cause of PROM, but Chlamydia trachomatis and B haemolytic Streptococci are among the implicated organisms.

      Complications of PROM include infection, which can affect both the mother and infant. Additionally, fetal pulmonary dysplasia may occur if there is insufficient remaining amniotic fluid. It is important to monitor and manage PROM to prevent these complications.

    • This question is part of the following fields:

      • Clinical Sciences
      11.7
      Seconds
  • Question 17 - What is the primary process of growth that causes benign enlargement of the...

    Incorrect

    • What is the primary process of growth that causes benign enlargement of the prostate?

      Your Answer: Hypertrophy

      Correct Answer: Hyperplasia

      Explanation:

      Benign Prostatic Hyperplasia

      Benign prostatic hyperplasia (BPH) is a common condition that affects men as they age. It is characterized by an increase in the number of cells in the prostate gland, which leads to its enlargement. This process is known as hyperplasia and is the main method for age-related prostate enlargement. BPH is caused by an increase in the number of exocrine glands and ducts, which are structurally normal.

      Hypertrophy, which is an increase in the size of cells, also plays a role in BPH, but to a lesser extent. It mainly affects the central (periurethral) zone of the prostate, causing urethral compression and the symptoms of bladder outlet obstruction. On the other hand, dysplasia, which is the abnormal growth of cells, is more likely to occur in the peripheral zone of the prostate. This area has the potential to develop into malignancy, making it important to monitor any changes in the prostate gland. the mechanisms behind BPH can help in the diagnosis and management of this condition.

    • This question is part of the following fields:

      • Clinical Sciences
      11.6
      Seconds
  • Question 18 - A 20-year-old rugby player presents with a sore throat, followed by severe malaise,...

    Incorrect

    • A 20-year-old rugby player presents with a sore throat, followed by severe malaise, high fever, and confusion two days later. He had a splenectomy three years ago after rupturing his spleen during a rugby match. The consultant suspects that he may have septicaemia.

      Which organism poses the highest risk to patients who have had their spleen removed?

      Your Answer: Staphylococcus aureus

      Correct Answer: Streptococcus pneumoniae

      Explanation:

      Increased Infection Risk for Patients without a Spleen

      Patients who have had their spleen removed have a weakened immune system, making them less capable of fighting off encapsulated bacteria. This puts them at a higher risk of infection from Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, and Escherichia coli. While it is recommended for these patients to receive vaccinations and sometimes antibiotics, there is still a significant risk of overwhelming post-splenectomy infection (OPSI), with a lifetime risk as high as 4%. Therefore, it is important for patients without a spleen to take extra precautions to prevent infections and seek medical attention promptly if they experience any symptoms.

    • This question is part of the following fields:

      • Clinical Sciences
      34.2
      Seconds
  • Question 19 - Which artery are you feeling when you detect an arterial pulsation on the...

    Correct

    • Which artery are you feeling when you detect an arterial pulsation on the mandible at the anterior border of the masseter muscle during a routine head and neck examination?

      Your Answer: The facial artery

      Explanation:

      Arteries of the Face

      The face is supplied with blood by several arteries, each with its own unique path and function. The facial artery, for instance, curves around the mandible before continuing on a winding journey to reach the medial canthus of the eye. Meanwhile, the lingual artery is responsible for supplying blood to the tongue and floor of the mouth. The marginal mandibular artery, on the other hand, provides blood to the depressor labii inferioris and depressor anguli oris. The maxillary artery, which supplies the deep structures of the face including the mandible and pterygoid, is also an important contributor to facial blood flow. Finally, the superficial temporal artery is responsible for supplying the temporalis muscle and the scalp. the unique roles of each of these arteries is crucial for proper diagnosis and treatment of facial injuries and conditions.

    • This question is part of the following fields:

      • Clinical Sciences
      22.1
      Seconds
  • Question 20 - A 42-year-old patient is exhibiting symptoms of pellagra. What is the underlying cause...

    Incorrect

    • A 42-year-old patient is exhibiting symptoms of pellagra. What is the underlying cause of this condition?

      Your Answer: Vitamin B6 deficiency

      Correct Answer: Vitamin B3 deficiency

      Explanation:

      Pellagra: A Vitamin B3 Deficiency

      Pellagra is a condition caused by a lack of vitamin B3 (niacin) in the body. It is characterized by various symptoms, including skin changes on sun-exposed areas, an inflamed and swollen tongue, reduced appetite, gastrointestinal upset, anxiety, insomnia, confusion, and in severe cases, hallucinations, paranoia, and severe depression. Niacin can be obtained from the diet through nicotinamide or nicotinic acid, and the body can also produce it from tryptophan found in dietary protein. Good dietary sources of niacin include liver, chicken, nuts, tuna, and white fish. However, the body has limited capacity to store niacin, and symptoms of deficiency can appear within a few weeks.

      Niacin deficiency is rare and is associated with low protein diets, malabsorption disorders such as coeliac disease and Crohn’s disease, and heavy alcohol consumption. Additionally, a deficiency of riboflavin and pyridoxine can reduce the body’s ability to produce niacin from tryptophan. It is important to maintain a balanced diet to prevent the development of pellagra and other vitamin deficiencies.

    • This question is part of the following fields:

      • Clinical Sciences
      12.6
      Seconds
  • Question 21 - What does the term glycaemic index mean? ...

    Incorrect

    • What does the term glycaemic index mean?

      Your Answer: A measurement of how much glucose a food contains

      Correct Answer: A measurement of how rapidly the carbohydrate in the food enters the blood

      Explanation:

      The Glycaemic Index Method is a commonly used tool by dieticians and patients to determine the impact of different foods on blood glucose levels. This method involves calculating the area under a curve that shows the rise in blood glucose after consuming a test portion of food containing 50 grams of carbohydrate. The rationale behind using the GI index is that foods that cause a rapid and significant increase in blood glucose levels can lead to an increase in insulin production. This can put individuals at a higher risk of hyperinsulinaemia and weight gain.

      High GI foods are typically those that contain refined sugars and processed cereals, such as white bread and white rice. These foods can cause a rapid increase in blood glucose levels, leading to a surge in insulin production. On the other hand, low GI foods, such as vegetables, legumes, and beans, are less likely to cause a significant increase in blood glucose levels.

      Overall, the Glycaemic Index Method can be helpful in making informed food choices and managing blood glucose levels. By choosing low GI foods, individuals can reduce their risk of hyperinsulinaemia and weight gain, while still enjoying a healthy and balanced diet.

    • This question is part of the following fields:

      • Clinical Sciences
      15.9
      Seconds
  • Question 22 - Which hormone triggers the breakdown of glycogen in the liver during fasting? ...

    Correct

    • Which hormone triggers the breakdown of glycogen in the liver during fasting?

      Your Answer: Glucagon

      Explanation:

      Glycogen Formation and Degradation

      In normal circumstances, glucose in the blood is converted into glycogen by the liver with the help of insulin and rising glucose levels. This process requires several enzymes such as phosphoglucomutase, glucose-1-phosphate uridyltransferase, glycogen synthase, and branching enzyme. However, when glucose is scarce, glycogen must be broken down to release glucose into the blood. This process is mainly stimulated by the hormone glucagon and requires the enzymes glycogen phosphorylase and debranching enzyme. Defects in either glycogen formation or degradation can lead to fasting hypoglycemia, which is a common feature of many glycogen storage disorders (GSDs).

      One such disorder is glycogen synthase deficiency (GSD type 0), which typically presents in childhood with symptoms of hypoglycemia after an overnight fast. However, symptoms can be improved by administering glucose, and patients can be given corn starch to prevent symptoms in the morning. A liver biopsy will show very little glycogen, and the disease is inherited as an autosomal recessive trait. Overall, the balance between glycogen formation and degradation is crucial in maintaining normal blood sugar levels.

    • This question is part of the following fields:

      • Clinical Sciences
      7.4
      Seconds
  • Question 23 - Which type of lipoprotein is involved in the development of atherosclerosis observed in...

    Correct

    • Which type of lipoprotein is involved in the development of atherosclerosis observed in coronary artery disease?

      Your Answer: Low density lipoprotein (LDL)

      Explanation:

      Atherosclerosis: The Gradual Narrowing of Arteries

      Atherosclerosis is a gradual process that involves the narrowing of arteries due to the accumulation of lipid-rich deposits within artery walls. This condition can take many years to develop and is the primary cause of coronary heart disease, peripheral vascular disease, and ischemic stroke. When a clot forms over an atherosclerotic plaque, it can lead to a heart attack by blocking blood flow to the cardiac muscle.

      Monocytes from the blood absorb oxidized LDL particles to form lipid-laden foam cells, which accumulate in the vessel walls and eventually form fatty streaks and atherosclerotic plaques. These foam cells secrete cytokines and chemokines that promote smooth muscle cell proliferation, contributing to the development of the atherosclerotic plaque. Any damage to the plaque can result in the release of tissue factor, which promotes clot formation.

      LDL can easily form oxidized LDL, especially in the presence of haem, which is released from damaged red blood cells in areas of turbulent blood flow. Inflammation, obesity, diabetes, and impaired glucose tolerance can also contribute to the formation of oxidized LDL. the causes and mechanisms of atherosclerosis is crucial in preventing and treating this condition.

    • This question is part of the following fields:

      • Clinical Sciences
      4.6
      Seconds
  • Question 24 - What is the underlying pathological process that leads to the development of Non-alcoholic...

    Incorrect

    • What is the underlying pathological process that leads to the development of Non-alcoholic fatty liver disease?

      Your Answer: E Swelling (ballooning) of hepatocytes

      Correct Answer: B Insulin sensitisation

      Explanation:

      Non-Alcoholic Fatty Liver Disease (NAFLD)

      Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent, affecting around 30% of patients in the Western world. A small percentage of these patients (2-4%) will develop non-alcoholic steatohepatitis (NASH) with cirrhosis. The exact cause of NAFLD is not fully understood, but it is linked to the metabolic syndrome and associated with central obesity, insulin resistance, diabetes mellitus, hypertension, and hyperlipidemia.

      NAFLD is characterized by abnormal lipid handling, which leads to fat accumulation in the liver. Inflammatory cytokines, particularly TNF-alpha, produced in adipocytes, contribute to liver inflammation and lobular hepatitis. Additionally, hepatocytes may become swollen and filled with fluid, leading to an increased cytoplasm:nuclei ratio and vacuolated nuclei. As the disease progresses, pericellular fibrosis may develop, increasing the likelihood of NASH and cirrhosis.

      Currently, the primary treatment for NAFLD is risk factor reduction, addressing associated hypertension, diabetes, and hyperlipidemia.

    • This question is part of the following fields:

      • Clinical Sciences
      38.4
      Seconds
  • Question 25 - Which foods are rich in vitamin D? ...

    Incorrect

    • Which foods are rich in vitamin D?

      Your Answer:

      Correct Answer: Salmon

      Explanation:

      Sources of Vitamin D

      Vitamin D is a crucial nutrient that is primarily produced by the body when exposed to sunlight. However, in the absence of sunlight, it is important to obtain vitamin D from dietary sources. These sources include oily fish such as salmon, mackerel, and catfish, as well as meat, eggs, and some mushrooms. It is important to note that vitamin D-containing foods are mostly animal or fish-based, which may put strict vegetarians at a greater risk of deficiency.

      Vitamin D exists in two forms, D2 and D3, with dietary sources containing vitamin D3 in greater abundance than D2. It is essential to ensure that the body receives an adequate amount of vitamin D, as it plays a crucial role in maintaining bone health, regulating the immune system, and reducing the risk of certain diseases. By incorporating vitamin D-rich foods into the diet, individuals can ensure that they are meeting their daily requirements for this important nutrient.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 26 - Which muscles are responsible for flexing the hip joint? ...

    Incorrect

    • Which muscles are responsible for flexing the hip joint?

      Your Answer:

      Correct Answer: Psoas

      Explanation:

      Muscles and their Functions in Joint Movement

      The hip joint has three main flexors, namely the iliacus, psoas, and rectus femoris muscles. These muscles are responsible for flexing the hip joint, which is the movement of bringing the thigh towards the abdomen. On the other hand, the gluteus maximus and medius muscles are involved in hip extension, which is the movement of bringing the thigh backward.

      Moving on to the elbow joint, the bicep femoris muscle is one of the primary flexors. This muscle is responsible for bending the elbow, which is the movement of bringing the forearm towards the upper arm. Lastly, the adductor brevis muscle is responsible for adducting the leg at the hip joint, which is the movement of bringing the leg towards the midline of the body.

      In summary, muscles play a crucial role in joint movement. the functions of these muscles can help in identifying and addressing issues related to joint movement and mobility.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 27 - A 45-year-old man presents with erectile dysfunction and a history of poorly controlled...

    Incorrect

    • A 45-year-old man presents with erectile dysfunction and a history of poorly controlled type 2 diabetes mellitus. What is the percentage of men over the age of 45 with erectile dysfunction who have an underlying organic cause?

      Your Answer:

      Correct Answer: 50%

      Explanation:

      Erectile Dysfunction

      Erectile dysfunction, also known as impotence, is a condition where a man is unable to maintain an erection long enough for satisfactory sexual intercourse. This condition is more common in older men, but it can also affect younger men due to psychological factors such as depression, stress, and performance anxiety.

      However, around 50% of men over the age of 40 who suffer from erectile dysfunction have an underlying organic cause. This is often due to vascular and neuropathic consequences of diabetes, but it can also be caused by neurological pathology such as spinal cord trauma and multiple sclerosis, as well as hyperprolactinaemia.

      It’s important to note that certain prescription drugs can also cause erectile dysfunction, particularly anti-hypertensives and diuretics.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 28 - What is the main role of cholecystokinin? ...

    Incorrect

    • What is the main role of cholecystokinin?

      Your Answer:

      Correct Answer: Triggers gallbladder contraction

      Explanation:

      Hormones and their Functions in Digestion

      Cholecystokinin is a hormone that helps in digestion by neutralizing the partially digested food. It does this by stimulating the gallbladder to contract and the pancreas to release alkaline pancreatic fluid. This fluid helps to neutralize the acidic food and aids in the digestion process.

      Gastrin is another hormone that plays a crucial role in digestion. It increases the production of stomach acid and also increases the rate of gastric emptying. This helps to break down the food more efficiently and move it through the digestive system.

      Secretin is a hormone that reduces the production of stomach acid. It is released by the small intestine in response to the acidic food passing through it. This helps to prevent the stomach from becoming too acidic and causing discomfort.

      Leptin is a hormone that helps to regulate appetite. It is produced by fat cells and acts on the brain to suppress appetite. This helps to maintain a healthy weight and prevent overeating.

      In summary, hormones play a vital role in digestion by regulating the production of stomach acid, neutralizing acidic food, and suppressing appetite.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 29 - What is the more commonly recognized name for the compound referred to as...

    Incorrect

    • What is the more commonly recognized name for the compound referred to as vitamin E?

      Your Answer:

      Correct Answer: Alpha tocopherol

      Explanation:

      Vitamin E and Other Essential Nutrients

      Vitamin E is a group of compounds that includes alpha tocopherol, beta tocopherol, gamma tocopherol, and delta tocopherol. While each of these compounds contains vitamin E activity, alpha tocopherol is the most biologically active and abundant form of vitamin E in the diet. Vitamin E plays a crucial role in protecting cells and proteins from oxidative damage by removing free radicals. It also has antithrombotic effects, which means it impairs the action of thromboxane and thrombin, reducing blood clotting and platelet aggregation.

      Adults are recommended to consume at least 15 mg of vitamin E daily, but larger quantities may also be beneficial. Good sources of vitamin E in the diet include sunflower oil, wheatgerm, and unprocessed cereals. In addition to vitamin E, other essential nutrients include alpha 1 antitrypsin, which prevents alveolar damage and lung dysfunction, beta carotene, which is responsible for vision development, boron, which is important for bone health, and thiamine, which can lead to polyneuropathy and heart failure if deficient. these essential nutrients and their roles in the body can help individuals make informed decisions about their diet and overall health.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 30 - What structure is located posterior to the femoral artery that you use to...

    Incorrect

    • What structure is located posterior to the femoral artery that you use to compress the artery during examination of the leg?

      Your Answer:

      Correct Answer: Psoas tendon

      Explanation:

      The Femoral Artery and its Relations

      The femoral artery is a major blood vessel that can be felt at the mid inguinal point, which is located halfway between the anterior superior iliac spine and the pubic symphysis. It is the continuation of the external iliac artery and passes through the femoral triangle, where it gives off the deep femoral artery before entering the adductor canal. The femoral artery is located laterally to the femoral nerve and medially to the femoral vein, with the psoas tendon being its posterior relation.

      As the femoral artery continues down the leg, it enters the popliteal fossa and becomes the popliteal artery. This artery is responsible for supplying blood to the lower leg and foot. the location and relations of the femoral artery is important for medical professionals, as it is a common site for arterial catheterization and other procedures. By knowing the anatomy of this artery, healthcare providers can ensure safe and effective treatment for their patients.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Clinical Sciences (13/24) 54%
Passmed