-
Question 1
Correct
-
Which nerve provides the motor supply to the brachialis muscle?
Your Answer: Radial and musculocutaneous nerve
Explanation:The Brachialis Muscle: Anatomy and Innervation
The brachialis muscle is responsible for flexing the forearm and is located in the anterior half of the humerus and intermuscular septa. It attaches to the coronoid process and tuberosity of the ulna at the elbow joint. The main nerve supply for the brachialis muscle is the musculocutaneous nerve, with C6 and radial nerve also playing a role. Additionally, the lateral part of the brachialis muscle is supplied by branches from the C7 root. Overall, the brachialis muscle is an important muscle for forearm flexion and is innervated by multiple nerves.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 2
Correct
-
A study investigating the effectiveness of D-dimer testing in detecting DVT analyzed the medical records of 800 patients. To be eligible for the study, D-dimer had to be measured and DVT must have been confirmed by ultrasound.
Out of the 800 patients, 720 had positive D-dimers and 80 had negative D-dimers.
What is the sensitivity of D-dimer measurement in identifying DVT?Your Answer: 95%
Explanation:Sensitivity in Medical Testing
Medical testing involves the use of various diagnostic tools to identify the presence or absence of a disease. One important aspect of medical testing is sensitivity, which refers to the proportion of individuals with the disease who are correctly identified by the test. For instance, if 950 out of 1000 people with deep vein thrombosis (DVT) are correctly identified as having the condition, the sensitivity of the test is 95%.
Highly sensitive tests are particularly useful for ruling out diseases. This means that if the test is negative, it is unlikely that the person has the disease. To remember this, you can use the mnemonic spin and snout, which stands for specificity for ruling in (spin) and sensitivity for ruling out (snout).
In addition to sensitivity, medical testing also involves positive predictive value and negative predictive value. Positive predictive value refers to the odds of having the disease if the test is positive, while negative predictive value refers to the odds of not having the disease if the test is negative. these values can help healthcare professionals make informed decisions about patient care.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 3
Correct
-
A 45-year-old woman is currently being treated with lithium for bipolar depression. It is believed that the drug affects the phosphoinositide cycle, resulting in a decrease in both Km and Vmax. This can be observed on a Lineweaver-Burk plot, where the Y-intercept shifts upwards, the X-intercept shifts to the left, and the slope remains constant. What type of inhibition is being described in this situation?
Your Answer: Uncompetitive
Explanation:Types of Reversible Enzyme Inhibition
There are three types of reversible enzyme inhibition: competitive, non-competitive, and uncompetitive. Competitive inhibitors are similar in structure to the substrate and compete for the active site of the enzyme. This results in an increase in Km, but Vmax remains unchanged. Non-competitive inhibitors bind to a different site on the enzyme and do not resemble the substrate. This causes a decrease in Vmax, but Km remains unchanged. Uncompetitive inhibitors bind to the enzyme-substrate complex and render the enzyme inactive, leading to a decrease in both Km and Vmax. On a Lineweaver-Burk plot, the slope increases for competitive and non-competitive inhibitors, but remains the same for uncompetitive inhibitors. The Y-intercept shifts upwards for non-competitive inhibitors, but remains unchanged for competitive and uncompetitive inhibitors. The X-intercept shifts to the right for competitive inhibitors, but remains unchanged for non-competitive and uncompetitive inhibitors. It is important to note that irreversible inhibitors covalently bind to the enzyme and permanently inactivate it, causing the same kinetic effects as non-competitive inhibitors. Dilution is not a mechanism of enzyme inhibition.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 4
Incorrect
-
A 28-year-old man with Crohn's disease is prescribed azathioprine. His doctor orders a blood test to evaluate TPMT activity. What is the doctor's primary concern?
Your Answer: Low enzyme activity leading to accumulation of azathioprine
Correct Answer: Low enzyme activity leading to accumulation of 6-mercaptopurine
Explanation:Enzyme Deficiencies and Drug Toxicity
Enzyme deficiencies can lead to drug toxicity and adverse effects in patients. One example is TPMT deficiency, which can cause accumulation of 6-mercaptopurine, the active metabolite of azathioprine. This can result in bone marrow suppression and other serious complications. Approximately 10% of individuals have low TPMT activity, while 0.3% have very low activity, putting them at high risk for azathioprine-related toxicity.
Another example of enzyme deficiency is phenylalanine hydroxylase deficiency, which leads to the accumulation of phenylalanine. This condition, known as phenylketonuria, can be detected through neonatal screening using a blood spot taken from the heel several days after birth.
In clinical practice, many gastroenterologists will start patients on azathioprine and send for TPMT enzyme activity testing. Patients are advised to stop the drug if they experience symptoms, but to continue taking it while waiting for the results if they do not. Early detection of enzyme deficiencies can help prevent drug toxicity and improve patient outcomes.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 5
Incorrect
-
Which mechanism is not involved in the development of physiological jaundice in newborns?
Your Answer: Relative lack of UDP-glucuronyltransferase
Correct Answer: Bilirubin present in breast milk
Explanation:Physiological Jaundice in Newborns
After birth, newborns experience increased erythrocyte turnover which requires faster action of enzymes involved in bilirubin metabolism and excretion. However, there can be a relative lack of UDP-glucuronyltransferase, leading to dysfunctional erythropoeisis and excess haem production that is metabolized to bilirubin. Meconium, which contains beta-glucuronidase, can further exacerbate the situation by changing conjugated bilirubin to an unconjugated form that is readily reabsorbed in the enterohepatic circulation.
Breast milk does not contain bilirubin, but it does contain substances that can inhibit the conjugation reaction, slowing the metabolism of bilirubin and allowing unconjugated bilirubin levels in the blood to rise. While physiological jaundice in newborns is usually not harmful, levels of unconjugated bilirubin above 170-200 µmol/l can lead to kernicterus, which can cause seizures, brain damage, or death. To prevent this, infants are treated with phototherapy at 450 nm, which disrupts the strong hydrogen bonds holding together molecules of unconjugated bilirubin, allowing the structure to unfold and become more soluble. This facilitates its excretion and reduces serum concentrations.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 6
Correct
-
How does the incidence of male breast cancer compared to that of female breast cancer?
Your Answer: Incidence is lower - women are more likely to get breast cancer than men
Explanation:Breast Cancer in Men
Breast cancer is not just limited to women, as men can also develop this type of cancer. Although it is much rarer in men than in women, it is still possible for them to get it. Men have breast tissue, which means that they are susceptible to breast cancer. Approximately 1 in 100 breast cancers occur in men, and about 250 male breast cancers are diagnosed each year.
Men who are at an increased risk, such as those with a strong family history of breast cancer, are more likely to develop this form of cancer. It is important for men to be aware of the signs and symptoms of breast cancer, which include a lump or swelling in the breast, nipple discharge, and changes in the skin around the breast. Early detection is key to successful treatment, so men should not hesitate to seek medical attention if they notice any of these symptoms.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 7
Correct
-
A 78-year-old woman is admitted after a fall and is diagnosed with a fractured neck of femur. What tests should be ordered to investigate the potential presence of osteoporosis in this patient?
Your Answer: DXA scan
Explanation:DXA Scanning for Osteoporosis Diagnosis
DXA scanning is a diagnostic tool commonly used in hospitals to diagnose and monitor osteoporosis. It involves directing two x-rays towards the patient from perpendicular angles to measure density within different parts of the body. This allows for the determination of body composition and bone mineral density.
The results of a DXA scan are expressed as T and Z scores. The T score represents the number of standard deviations above or below the mean in a population of healthy young adults, while the Z score represents the number of standard deviations above or below the mean in a population of adults matched by age and sex to the patient.
In younger patients, the T and Z scores are usually similar and close to the mean. However, for older age groups, where more than 50% of people may have osteoporosis, the T score is particularly important for diagnosis. This is because a score based on expected values for an age and sex matched population may under-diagnose osteoporosis in elderly women.
Overall, DXA scanning is a valuable tool in the diagnosis and monitoring of osteoporosis, especially in older age groups where the risk of osteoporosis is higher.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 8
Incorrect
-
What does the term glycaemic index mean?
Your Answer: A measurement of how rapidly the carbohydrate in the food enters the gut
Correct Answer: A measurement of how rapidly the carbohydrate in the food enters the blood
Explanation:The Glycaemic Index Method is a commonly used tool by dieticians and patients to determine the impact of different foods on blood glucose levels. This method involves calculating the area under a curve that shows the rise in blood glucose after consuming a test portion of food containing 50 grams of carbohydrate. The rationale behind using the GI index is that foods that cause a rapid and significant increase in blood glucose levels can lead to an increase in insulin production. This can put individuals at a higher risk of hyperinsulinaemia and weight gain.
High GI foods are typically those that contain refined sugars and processed cereals, such as white bread and white rice. These foods can cause a rapid increase in blood glucose levels, leading to a surge in insulin production. On the other hand, low GI foods, such as vegetables, legumes, and beans, are less likely to cause a significant increase in blood glucose levels.
Overall, the Glycaemic Index Method can be helpful in making informed food choices and managing blood glucose levels. By choosing low GI foods, individuals can reduce their risk of hyperinsulinaemia and weight gain, while still enjoying a healthy and balanced diet.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 9
Incorrect
-
What is the more commonly recognized name for the compound referred to as vitamin E?
Your Answer: Beta carotene
Correct Answer: Alpha tocopherol
Explanation:Vitamin E and Other Essential Nutrients
Vitamin E is a group of compounds that includes alpha tocopherol, beta tocopherol, gamma tocopherol, and delta tocopherol. While each of these compounds contains vitamin E activity, alpha tocopherol is the most biologically active and abundant form of vitamin E in the diet. Vitamin E plays a crucial role in protecting cells and proteins from oxidative damage by removing free radicals. It also has antithrombotic effects, which means it impairs the action of thromboxane and thrombin, reducing blood clotting and platelet aggregation.
Adults are recommended to consume at least 15 mg of vitamin E daily, but larger quantities may also be beneficial. Good sources of vitamin E in the diet include sunflower oil, wheatgerm, and unprocessed cereals. In addition to vitamin E, other essential nutrients include alpha 1 antitrypsin, which prevents alveolar damage and lung dysfunction, beta carotene, which is responsible for vision development, boron, which is important for bone health, and thiamine, which can lead to polyneuropathy and heart failure if deficient. these essential nutrients and their roles in the body can help individuals make informed decisions about their diet and overall health.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 10
Incorrect
-
What antenatal biomarker is linked to the inability to form vertebral arches?
Your Answer: Raised maternal serum unconjugated oestriol (uE3)
Correct Answer: Raised maternal serum alpha-feto protein (AFP)
Explanation:Vertebral Arch Development and Neural Tube Defects
The vertebral arches are formed from the paravertebral somites and grow posteriorly to encase the dorsal aspect of the spinal cord. Failure of development or fusion of the vertebral arches can lead to neural tube defects, which range from anencephaly to meningomyelocele and myelocele. These defects are associated with a significantly raised maternal serum alpha-feto protein and can be detected on antenatal ultrasound scans.
Biomarkers for Down Syndrome Risk Stratification
Several biomarkers are used in the risk-stratification screening for Down syndrome. These tests, performed on maternal serum, include PAPP-A, beta-HCG, AFP, uE3, and inhibin-A. Increased risk for Down syndrome occurs when PAPP-A and AFP are reduced, beta-HCG and inhibin-A are raised, and uE3 is reduced. These tests are used in combination with nuchal fold thickness to provide risk stratification for trisomy 21. Mothers of high-risk fetuses are offered diagnostic testing, such as amniocentesis or chorionic villus sampling.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 11
Correct
-
What is the final product of glucose breakdown in the absence of oxygen?
Your Answer: Lactate
Explanation:Anaerobic Metabolism and Lactic Acidosis
During anaerobic metabolism, glucose can be broken down through the glycolysis pathway without the need for oxygen. This process generates pyruvate, but without oxygen, it cannot be further metabolized through the Kreb cycle or electron transfer chain to produce energy. Instead, pyruvate is converted into lactate, which yields two molecules of ATP. While small periods of anaerobic respiration are tolerable, excessive accumulation of lactate can lead to lactic acidosis, which reduces cellular pH. This reduction in pH can cause enzyme dysfunction, compromising cell function and ultimately leading to cell death.
During intense exercise, muscle tissue relies on lactate as a quick source of ATP. The lactate produced can diffuse out of the cells and into the bloodstream, where it is taken up by other cells that can regenerate pyruvate from it. This pyruvate can then enter the Kreb cycle to produce more energy.
However, in patients with serious illnesses where oxygen delivery to the body’s tissues is compromised, lactic acidosis can occur. This includes conditions such as pneumonia, heart failure, and chronic obstructive pulmonary disease. In these cases, the body may rely more heavily on anaerobic metabolism, leading to an accumulation of lactate and a decrease in cellular pH, which can have serious consequences for cell function and survival.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 12
Correct
-
A 43-year-old male patient, who is a heavy drinker, has been admitted to the hospital due to a variceal bleed. The patient requires a blood transfusion as his blood is clotting very slowly. It is suspected that his excessive alcohol consumption is hindering the liver's ability to recycle vitamin K, which is essential for coagulation. Can you identify the clotting factors that are dependent on vitamin K?
Your Answer: Factors II, VII, IX and X
Explanation:Vitamin K and its Role in Clotting Factor Production
The production of clotting factors II, VII, IX, and X is dependent on vitamin K. This vitamin acts as a cofactor during the production of these factors. Vitamin K is stored in the liver in small amounts and requires recycling via an enzyme to maintain adequate production levels of the clotting factors. However, liver disease or excessive alcohol consumption can disrupt the recycling process, leading to a relative deficiency of vitamin K. This deficiency can interrupt the production of vitamin K-dependent clotting factors, which can result in bleeding disorders. Therefore, it is essential to maintain adequate levels of vitamin K to ensure proper clotting factor production.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 13
Correct
-
A 10-year-old boy has been diagnosed with Duchenne muscular dystrophy due to a significantly elevated level of creatine kinase in his blood. What is the role of creatine kinase in the body?
Your Answer: To regenerate ATP for muscle contraction
Explanation:Creatine Kinase: An Enzyme for Muscle Contraction
Creatine kinase (CK), also known as creatine phosphokinase (CPK), is an enzyme that plays a crucial role in muscle tissue. Its main function is to catalyze the regeneration of adenosine triphosphate (ATP) from adenosine diphosphate (ADP) and creatine phosphate after muscle contraction. This process allows for further muscle contraction and supports sustained exertion. CK is present in many tissues, but it is most active in striated and cardiac muscle. Other tissues with CK activity include the brain, gastrointestinal tract, and bladder.
The body’s tissues contain a dimeric form of CK, which is made up of two subunits. Each subunit of CK can be made from a genetic area on chromosome 14 (CK-B) or chromosome 19 (CK-M). There are three dimeric forms (isoforms) of CK: CK-MM, CK-MB, and CK-BB. CK-MM is abundant in striated muscle tissue, while CK-MB is abundant in cardiac muscle tissue. CK-BB is abundant in the brain, gastrointestinal tract, and bladder.
In patients with muscle diseases such as Duchenne muscular dystrophy, CK-MM is released and will be the main form of CK measured. CK-MB has been widely used in the past as an aid in the diagnosis of myocardial infarction and other diseases affecting the heart muscle.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 14
Correct
-
What is the safest method to prevent needlestick injury when obtaining an arterial blood gas sample?
Your Answer: Removing the needle, disposing of it, and putting a cap on the sample
Explanation:Safe Disposal of Blood Gas Sample Needles
When obtaining a blood gas sample, it is important for health professionals to dispose of the needle safely before transporting it to the laboratory. This can be done by placing the needle in a sharps bin. It is crucial to handle the needle with care to prevent any accidental injuries or infections. Once the sample has been obtained, the needle should be immediately disposed of in the sharps bin to avoid any potential hazards. By following proper disposal procedures, health professionals can ensure the safety of themselves and others while handling blood gas samples. Remember to always prioritize safety when handling medical equipment.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 15
Incorrect
-
You are in a nutrition clinic reviewing a 16-year-old boy with anorexia nervosa. He has a BMI of 15.5 kg/m2 and his weight is 70% the expected weight for height.
How would you classify his level of malnutrition?Your Answer: Moderate undernutrition
Correct Answer: Severe undernutrition
Explanation:Malnutrition
Malnutrition is a clinical condition that occurs when there is an imbalance in the energy, protein, or other components of the diet, leading to adverse effects on the body’s health. This condition encompasses undernutrition, overnutrition, and vitamin and mineral deficiencies. Undernutrition is the most common form of malnutrition and is classified based on different grading systems used worldwide. Severe undernutrition is characterized by a weight of less than 70-75% of the expected weight for age and a BMI of less than 16 kg/m2.
To grade the severity of protein-energy malnutrition (PEM), a scale is commonly used. This scale considers the expected weight for age and BMI. A normal weight is between 90-110% of the expected weight for age and a BMI of 19-24 kg/m2. Mild undernutrition is between 85-90% of the expected weight for age and a BMI of 18-18.9 kg/m2. Moderate undernutrition is between 75-85% of the expected weight for age and a BMI of 16-17.9 kg/m2. Severe undernutrition is less than 75% of the expected weight for age and a BMI of less than 16 kg/m2.
In summary, malnutrition is a serious condition that affects many people worldwide. the different types of malnutrition and their severity can help healthcare professionals provide appropriate treatment and interventions to improve the health outcomes of those affected.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 16
Incorrect
-
A 12-year-old girl complains of fainting on exertion and her teacher noticed a bluish tinge to her skin before one episode. She says she can prevent fainting by squatting down. During examination, a mid-systolic murmur is heard and her fingernails are clubbed. What is a possible cardiac reason for her clubbing?
Your Answer: Mitral regurgitation
Correct Answer: Tetralogy of Fallot
Explanation:The causes of clubbing are varied and complex. Clubbing is a medical condition that affects the fingers and toes, causing them to become enlarged and rounded. Although the exact cause of clubbing is not fully understood, it is commonly associated with respiratory, gastrointestinal, and cardiovascular disorders.
Among the cardiovascular causes of clubbing, two main conditions stand out: infective endocarditis and tetralogy of Fallot. Tetralogy of Fallot is a congenital heart disorder that is characterized by four malformations in the heart. These include ventricular septal defect, pulmonary stenosis, over-riding aorta, and right ventricular hypertrophy.
As a result of these malformations, oxygenated and deoxygenated blood mix in the patient’s body, leading to low blood oxygen saturation. This can cause a range of symptoms, including sudden cyanosis followed by syncope, which is commonly referred to as tet spells in children. In older children, squatting can help relieve these symptoms by reducing circulation to the legs and relieving syncope.
Understanding the causes of clubbing is important, particularly for medical examinations, as it can help identify underlying conditions that may require further investigation and treatment. By recognizing the signs and symptoms of clubbing, healthcare professionals can provide appropriate care and support to patients with this condition.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 17
Correct
-
What is the main role of cholecystokinin?
Your Answer: Triggers gallbladder contraction
Explanation:Hormones and their Functions in Digestion
Cholecystokinin is a hormone that helps in digestion by neutralizing the partially digested food. It does this by stimulating the gallbladder to contract and the pancreas to release alkaline pancreatic fluid. This fluid helps to neutralize the acidic food and aids in the digestion process.
Gastrin is another hormone that plays a crucial role in digestion. It increases the production of stomach acid and also increases the rate of gastric emptying. This helps to break down the food more efficiently and move it through the digestive system.
Secretin is a hormone that reduces the production of stomach acid. It is released by the small intestine in response to the acidic food passing through it. This helps to prevent the stomach from becoming too acidic and causing discomfort.
Leptin is a hormone that helps to regulate appetite. It is produced by fat cells and acts on the brain to suppress appetite. This helps to maintain a healthy weight and prevent overeating.
In summary, hormones play a vital role in digestion by regulating the production of stomach acid, neutralizing acidic food, and suppressing appetite.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 18
Incorrect
-
A 27-year-old patient with anorexia nervosa has been admitted from home for nutritional support. Following her initial oral feed, her phosphate level has decreased from 0.5 mmol/L to 0.1 mmol/L (reference range 0.7-1.4). What could be the reason for her hypophosphataemia?
Your Answer: Phosphate excretion in the urine
Correct Answer: Phosphate enters the body's cells
Explanation:Refeeding Syndrome
Refeeding syndrome is a potentially fatal condition that can occur after a prolonged period of fasting or poor nutritional intake followed by a meal high in carbohydrates. It is characterized by a rapid decrease in the serum levels of phosphate, potassium, and magnesium, all of which are already depleted in the body. This happens because glucose availability within the blood causes insulin secretion while glucagon secretion is reduced. Insulin stimulates glycogen, adipose and protein synthesis and enhances the action of the Na-K-ATPase pump in cell membranes, which draws glucose into the cells. Many minerals and cofactors are also drawn into the cells to support these metabolic processes.
The condition is particularly dangerous for patients with starvation, anorexia nervosa, gastrointestinal conditions that impede adequate nutrition, and poor nutrition due to severe illness such as cancer cachexia. In healthy patients, phosphate ions enter the body’s cells under the influence of insulin after a meal, and the phosphate concentration in blood remains within the reference range. However, in patients with refeeding syndrome, a meal can stimulate marked phosphate entry into cells, causing profound hypophosphataemia. This can lead to cardiac arrhythmias and other life-threatening complications. Therefore, it is important to monitor patients at risk of refeeding syndrome closely and provide appropriate nutritional support to prevent this condition.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 19
Incorrect
-
A 50-year-old male patient presents at the clinic with a confirmed diagnosis of type 2 diabetes. He has also been diagnosed with liver cirrhosis and has a history of pseudogout. Based on his medical history, you suspect that he may be suffering from haemochromatosis. Can you identify the most frequently occurring genetic abnormality associated with this condition?
Your Answer: Delta-F508 mutation
Correct Answer: C282Y mutation
Explanation:Genetic Mutations and Their Effects
HFE is a gene responsible for binding to transferrin, and when a mutation occurs in this gene, it can lead to haemochromatosis. The most common mutation in this gene is the C282Y allele, which is a point mutation resulting in the replacement of a cysteine residue with a tyrosine amino acid. On the other hand, the delta-F508 mutation is a deletion mutation that causes the loss of phenylalanine at position 508 in the CFTR protein, leading to the development of cystic fibrosis. Trinucleotide repeats are another type of mutation that can cause inherited neurological disorders, such as Huntington’s disease and spinocerebellar ataxia. Duchenne’s muscular dystrophy is caused by a mutation in the XP-21 gene, while phenylketonuria is caused by a mutation in phenylalanine hydroxylase (PAH).
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 20
Incorrect
-
After TLR activation on macrophages, which cytokine is secreted that enhances leukocyte adhesion and increases endothelial permeability?
Your Answer: IL-6
Correct Answer: TNF-alpha
Explanation:Toll-like Receptors and Cytokine Secretion by Macrophages
Toll-like receptors are a type of pattern-recognition receptor that enables granulocytes to detect general pathogenic molecules. When activated on macrophages, Toll-like receptors trigger the secretion of various cytokines. These cytokines include IL-1, which causes fever by acting on the hypothalamus, IL-6, which stimulates the liver to release acute phase proteins, IL-8, which attracts neutrophils, and TNF-alpha, which promotes Th1-type responses from CD4+ T cells, attracts macrophages, and increases endothelial permeability.
TGF-beta is another cytokine that is slightly different from the others. It is released by T regulatory cells and has the ability to reduce lymphocyte activity while promoting fibrosis. Overall, the activation of Toll-like receptors and subsequent cytokine secretion by macrophages play a crucial role in the immune response against pathogens.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 21
Correct
-
What is the full form of ATP and how is it used during exercise?
Your Answer: Adenosine triphosphate
Explanation:ATP Generation During Exercise
During exercise, the process of muscle contraction requires the generation of ATP, which stands for adenosine triphosphate. ATP is a small molecule composed of adenine and a sugar group attached to three phosphate groups. When ATP loses a phosphate group, it becomes ADP and releases energy.
To sustain prolonged exercise, ATP must be regenerated quickly. This is achieved through the creatine phosphate – ATP system. Creatine phosphate releases a phosphate group, which allows for the rapid regeneration of ATP from ADP. This system ensures that the muscles have a constant supply of ATP to support muscle contraction during exercise. Proper ATP generation is crucial for athletes and individuals engaging in physical activity to perform at their best.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 22
Incorrect
-
In which location do most intracerebral hemorrhages take place?
Your Answer: Cerebellum
Correct Answer: Basal ganglia
Explanation:Types and Locations of Intracranial Bleeds
Intracranial bleeds refer to any type of bleeding that occurs within the cranium. There are four main types of intracranial bleeds: extradural, subdural, subarachnoid, and intracerebral. Extradural bleeds occur outside the periosteal dura mater, while subdural bleeds occur between the meningeal dura mater and arachnoid mater. Subarachnoid bleeds occur between the arachnoid mater and pia mater, where cerebrospinal fluid circulates. Intracerebral bleeds, on the other hand, occur within the cerebral tissue itself.
Of all the types of intracranial bleeds, intracerebral bleeds are the most common. They typically occur deep within the cerebral hemispheres, affecting the basal ganglia, such as the caudate nucleus and putamen. These types of bleeds are usually caused by hypertension, rather than trauma or atherosclerosis. While it is possible for bleeds to occur in any area of the brain, those that occur in the brainstem are particularly debilitating.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 23
Correct
-
What is the hormone that can be synthesized from cholesterol in the adrenal glands?
Your Answer: Cortisol
Explanation:The Role of Cholesterol in Hormone Production
Cholesterol plays a crucial role in the production of steroid hormones, which are essential for various bodily functions. These hormones are produced in the adrenal glands and include progesterone, cortisol, aldosterone, oestrogens, and androgens. Progesterone is important in pregnancy, while cortisol and other glucocorticoids are required by all body cells and play a role in the fight-or-flight response and glucose homeostasis. Aldosterone regulates salt and water balance, while oestrogens and androgens are required for the development of female and male characteristics, respectively.
The production of steroid hormones is a complex process that involves multiple pathways and is influenced by various factors such as the body’s metabolic needs and the abundance of hormones already present in the cell. Enzyme mutations or deficiencies in this pathway can lead to disorders that affect salt and water balance and reproductive function, such as congenital adrenal hyperplasia.
In addition to steroid hormones, other hormones such as antidiuretic hormone and oxytocin are produced in the posterior pituitary gland, while thyroid hormone is made in the thyroid gland in the neck and parathyroid hormone is made in the parathyroid glands located behind the thyroid gland. the role of cholesterol in hormone production is crucial for maintaining overall health and preventing hormonal imbalances.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 24
Correct
-
A 67-year-old man presents with symptoms of altered bowel habit and weight loss for the past eight weeks. After undergoing screening for faecal occult blood, he is diagnosed with colorectal carcinoma. A biopsy reveals that the tumour has invaded the muscularis propria, but there is no evidence of metastases in the local lymph nodes. What is the likely stage of this cancer?
Your Answer: Duke's stage B
Explanation:Duke’s Staging and Prognostic Value
Duke’s staging system is a useful tool in predicting the prognosis of colorectal cancer patients. The system was developed by Cuthbert Duke, a pathologist from the United Kingdom, in the 1930s. The staging system is based on the extent of tumor invasion and lymph node involvement.
Stage A refers to tumors that are confined to the mucosa, with a five-year survival rate of 90%. Stage B includes tumors that have invaded through the muscularis propria but have no lymph node involvement, with a five-year survival rate of 60%. Stage C includes tumors that have spread to the lymph nodes, with a five-year survival rate of 30%. Finally, stage D describes patients with metastatic disease.
The Duke’s staging system is a valuable tool for clinicians in determining the prognosis of colorectal cancer patients. It provides a clear of the extent of the disease and helps in making treatment decisions. The system has been widely used for many years and has proven to be a reliable predictor of survival rates.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 25
Correct
-
Which type of lipoprotein is involved in the development of atherosclerosis observed in coronary artery disease?
Your Answer: Low density lipoprotein (LDL)
Explanation:Atherosclerosis: The Gradual Narrowing of Arteries
Atherosclerosis is a gradual process that involves the narrowing of arteries due to the accumulation of lipid-rich deposits within artery walls. This condition can take many years to develop and is the primary cause of coronary heart disease, peripheral vascular disease, and ischemic stroke. When a clot forms over an atherosclerotic plaque, it can lead to a heart attack by blocking blood flow to the cardiac muscle.
Monocytes from the blood absorb oxidized LDL particles to form lipid-laden foam cells, which accumulate in the vessel walls and eventually form fatty streaks and atherosclerotic plaques. These foam cells secrete cytokines and chemokines that promote smooth muscle cell proliferation, contributing to the development of the atherosclerotic plaque. Any damage to the plaque can result in the release of tissue factor, which promotes clot formation.
LDL can easily form oxidized LDL, especially in the presence of haem, which is released from damaged red blood cells in areas of turbulent blood flow. Inflammation, obesity, diabetes, and impaired glucose tolerance can also contribute to the formation of oxidized LDL. the causes and mechanisms of atherosclerosis is crucial in preventing and treating this condition.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 26
Correct
-
Can you provide a definition for pseudostratified epithelium?
Your Answer: A single layer of epithelial cells with nuclei at different height
Explanation:Types of Epithelial Tissue
Epithelial tissue is a type of tissue that lines the surfaces of organs, glands, and body cavities. There are different types of epithelial tissue, including simple, stratified, and transitional epithelium. Pseudostratified epithelium is a type of simple epithelium that appears to be several cells deep due to the nuclei being at different heights. This gives the illusion of a stratified epithelium. The lining of the conducting airways, up to the respiratory bronchioles, is lined by ciliated, pseudostratified columnar epithelium.
A simple epithelium is a single layer of epithelial cells with nuclei at the same height, while a stratified epithelium is multiple layers of epithelial cells upon each other, usually stratified squamous. The skin is an example of a stratified epithelium. A transitional epithelium is multiple layers of epithelial cells that stretch over each other. This type of epithelium is found in the ureters and bladder. When contracted, the epithelium is stratified, but when stretched, the epithelial cells slide to give a simple epithelium. This allows for expansion with a minimal increase in wall pressure.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 27
Incorrect
-
What is the hormone responsible for controlling blood sodium levels?
Your Answer: Triiodothyronine
Correct Answer: Antidiuretic hormone
Explanation:The Role of Antidiuretic Hormone in Regulating Blood Sodium Levels
Antidiuretic hormone (ADH) is a polypeptide hormone produced in the hypothalamus and released into the circulation by the posterior pituitary. Its main function is to promote the reabsorption of water from the kidney, preventing its loss in the urine. This, in turn, has a secondary effect on blood sodium levels.
ADH works by stimulating the production of a water channel called aquaporin, which is inserted into the cell membrane of cells lining the collecting duct of the kidney. This allows water molecules to move from the collecting duct lumen into the cells, from where they can move back to the interstitial fluid and the bloodstream. As a result, less water is lost in the urine, and blood sodium levels are regulated.
In summary, ADH plays a crucial role in regulating blood sodium levels by conserving water and preventing its loss in the urine. Its action on aquaporin production allows for the reabsorption of water from the kidney, which has a secondary effect on blood sodium levels.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 28
Incorrect
-
Which type of cell makes up the majority of yellow bone marrow?
Your Answer: Megakaryocytes
Correct Answer: Adipocytes
Explanation:Anatomy of Bones and Bone Marrow
Bones are composed of two types of bone tissue: compact bone and cancellous bone. The medullary cavity is located within the cancellous bone and contains trabeculae. Blood vessels and bone marrow are also present within the cavity. The bone marrow is responsible for producing blood cells, with red marrow being the site of active haematopoiesis. Yellow marrow, on the other hand, is predominantly made up of adipocytes and fibroblasts.
Chondrocytes are specialized cells found in cartilage that secrete the collagen matrix. Fibroblasts also contribute to the extracellular matrix by secreting collagen. Haematopoietic stem cells are found in bone marrow and are the common ancestor of all haematologic cells. Megakaryocytes, which are also found in bone marrow, are the precursor to platelets. the anatomy of bones and bone marrow is crucial in their functions and the processes that occur within them.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 29
Correct
-
A 42-year-old patient is exhibiting symptoms of pellagra. What is the underlying cause of this condition?
Your Answer: Vitamin B3 deficiency
Explanation:Pellagra: A Vitamin B3 Deficiency
Pellagra is a condition caused by a lack of vitamin B3 (niacin) in the body. It is characterized by various symptoms, including skin changes on sun-exposed areas, an inflamed and swollen tongue, reduced appetite, gastrointestinal upset, anxiety, insomnia, confusion, and in severe cases, hallucinations, paranoia, and severe depression. Niacin can be obtained from the diet through nicotinamide or nicotinic acid, and the body can also produce it from tryptophan found in dietary protein. Good dietary sources of niacin include liver, chicken, nuts, tuna, and white fish. However, the body has limited capacity to store niacin, and symptoms of deficiency can appear within a few weeks.
Niacin deficiency is rare and is associated with low protein diets, malabsorption disorders such as coeliac disease and Crohn’s disease, and heavy alcohol consumption. Additionally, a deficiency of riboflavin and pyridoxine can reduce the body’s ability to produce niacin from tryptophan. It is important to maintain a balanced diet to prevent the development of pellagra and other vitamin deficiencies.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 30
Incorrect
-
What is the hormone that controls the levels of calcium in the blood?
Your Answer: Adrenaline
Correct Answer: Parathyroid hormone
Explanation:The Importance of Parathyroid Hormone in Regulating Blood Calcium Levels
Calcium plays a crucial role in various bodily functions, including bone support, blood clotting, muscle contraction, nervous transmission, and hormone production. However, excessively high or low levels of calcium in the blood and interstitial fluid can lead to serious health issues such as arrhythmias and cardiac arrest. This is where parathyroid hormone comes in.
Parathyroid hormone is responsible for regulating blood calcium levels. It works directly on the bone, stimulating bone production or resorption depending on the concentration and duration of exposure. It also acts on the kidney, increasing the loss of phosphate in the urine, decreasing the loss of calcium in the urine, and promoting the activity of the enzyme 1-alpha hydroxylase, which activates vitamin D. Additionally, parathyroid hormone indirectly affects the gut through the action of activated vitamin D.
Overall, the regulation of blood calcium levels is crucial for maintaining optimal bodily functions. Parathyroid hormone plays a vital role in this process by directly and indirectly affecting various organs and systems in the body.
-
This question is part of the following fields:
- Clinical Sciences
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)