00
Correct
00
Incorrect
00 : 00 : 0 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 48-year-old man visits his local doctor complaining of chest pain that occurs...

    Incorrect

    • A 48-year-old man visits his local doctor complaining of chest pain that occurs during physical activity and subsides with rest. He first noticed it 10 months ago and feels that it has gradually worsened. He now experiences this pain while climbing a few stairs. Previously, he could walk down to the newsagent and back, a distance of 200 yards, without any discomfort. He has a medical history of hypertension and appendectomy.

      His close friend had similar symptoms that were relieved by sublingual glyceryl nitrates. He asks the doctor to prescribe something similar.

      What is the mechanism by which nitrates work?

      Your Answer: Nitrates induced smooth muscle relaxation is due to reduced cGMP

      Correct Answer: Nitrates cause a decrease in intracellular calcium which results in smooth muscle relaxation

      Explanation:

      The reason why nitrates cause a decrease in intracellular calcium is because nitric oxide triggers the activation of smooth muscle soluble guanylyl cyclase (GC) to produce cGMP. This increase in intracellular cGMP inhibits calcium entry into the cell, resulting in a reduction in intracellular calcium levels and inducing smooth muscle relaxation. Additionally, nitric oxide activates K+ channels, leading to hyperpolarization and relaxation. Furthermore, nitric oxide stimulates a cGMP-dependent protein kinase that activates myosin light chain phosphatase, which dephosphorylates myosin light chains, ultimately leading to relaxation. Therefore, the correct answer is the second option.

      Understanding Nitrates and Their Effects on the Body

      Nitrates are a type of medication that can cause blood vessels to widen, which is known as vasodilation. They are commonly used to manage angina and treat heart failure. One of the most frequently prescribed nitrates is sublingual glyceryl trinitrate, which is used to relieve angina attacks in patients with ischaemic heart disease.

      The mechanism of action for nitrates involves the release of nitric oxide in smooth muscle, which activates guanylate cyclase. This enzyme then converts GTP to cGMP, leading to a decrease in intracellular calcium levels. In the case of angina, nitrates dilate the coronary arteries and reduce venous return, which decreases left ventricular work and reduces myocardial oxygen demand.

      However, nitrates can also cause side effects such as hypotension, tachycardia, headaches, and flushing. Additionally, many patients who take nitrates develop tolerance over time, which can reduce their effectiveness. To combat this, the British National Formulary recommends that patients who develop tolerance take the second dose of isosorbide mononitrate after 8 hours instead of 12 hours. This allows blood-nitrate levels to fall for 4 hours and maintains effectiveness. It’s important to note that this effect is not seen in patients who take modified release isosorbide mononitrate.

    • This question is part of the following fields:

      • Cardiovascular System
      35.9
      Seconds
  • Question 2 - A 56-year-old male is admitted to the hospital with increasing fatigue and difficulty...

    Correct

    • A 56-year-old male is admitted to the hospital with increasing fatigue and difficulty exercising. After undergoing various tests, including echocardiography and right heart catheterization, it is determined that he has pulmonary arterial hypertension (PAH) with a mean pulmonary artery pressure of 35 mmhg and a pulmonary capillary wedge pressure of 8mmhg. One of the medications prescribed for him is ambrisentan. What is the mechanism of action of this drug?

      Your Answer: Endothelin-1 receptor antagonist

      Explanation:

      Ambrisentan is an antagonist of endothelin-1 receptors, which are involved in vasoconstriction. In pulmonary arterial hypertension (PAH), the expression of endothelin-1 is increased, leading to constriction of blood vessels. Ambrisentan selectively targets ETA receptors found in vascular smooth muscle, reducing morbidity and mortality in PAH patients. Common side effects include peripheral edema, sinusitis, flushing, and nasal congestion. Prostacyclins like PGI2 can also be used to manage PPH by dilating blood vessels and inhibiting platelet aggregation. PGE2, an inflammatory mediator, is not used in PAH treatment. PDE inhibitors like sildenafil increase cGMP levels in pulmonary vessels, relaxing vascular smooth muscle and reducing pulmonary artery pressure.

      Pulmonary arterial hypertension (PAH) is a condition where the resting mean pulmonary artery pressure is equal to or greater than 25 mmHg. The pathogenesis of PAH is thought to involve endothelin. It is more common in females and typically presents between the ages of 30-50 years. PAH is diagnosed in the absence of chronic lung diseases such as COPD, although certain factors increase the risk. Around 10% of cases are inherited in an autosomal dominant fashion.

      The classical presentation of PAH is progressive exertional dyspnoea, but other possible features include exertional syncope, exertional chest pain, peripheral oedema, and cyanosis. Physical examination may reveal a right ventricular heave, loud P2, raised JVP with prominent ‘a’ waves, and tricuspid regurgitation.

      Management of PAH should first involve treating any underlying conditions. Acute vasodilator testing is central to deciding on the appropriate management strategy. If there is a positive response to acute vasodilator testing, oral calcium channel blockers may be used. If there is a negative response, prostacyclin analogues, endothelin receptor antagonists, or phosphodiesterase inhibitors may be used. Patients with progressive symptoms should be considered for a heart-lung transplant.

    • This question is part of the following fields:

      • Cardiovascular System
      42.6
      Seconds
  • Question 3 - As a certified physician, you are standing at the bus stop waiting to...

    Correct

    • As a certified physician, you are standing at the bus stop waiting to head to work. A 78-year-old woman is standing next to you and suddenly begins to express discomfort in her chest. She then collapses and loses consciousness. Fortunately, there is no threat to your safety. What steps do you take in this situation?

      Your Answer: Perform basic life support for the lady, ask the husband to call 999

      Explanation:

      In accordance with the Good Medical Practice 2013, it is your responsibility to provide assistance in the event of emergencies occurring in clinical settings or within the community. However, you must consider your own safety, level of expertise, and the availability of alternative care options before offering aid. This obligation encompasses providing basic life support and administering first aid. In situations where you are the sole individual present, it is incumbent upon you to fulfill this duty.

      The 2015 Resus Council guidelines for adult advanced life support outline the steps to be taken in the event of a cardiac arrest. Patients are divided into those with ‘shockable’ rhythms (ventricular fibrillation/pulseless ventricular tachycardia) and ‘non-shockable’ rhythms (asystole/pulseless-electrical activity). Key points include the ratio of chest compressions to ventilation (30:2), continuing chest compressions while a defibrillator is charged, and delivering drugs via IV access or the intraosseous route. Adrenaline and amiodarone are recommended for non-shockable rhythms and VF/pulseless VT, respectively. Thrombolytic drugs should be considered if a pulmonary embolism is suspected. Atropine is no longer recommended for routine use in asystole or PEA. Following successful resuscitation, oxygen should be titrated to achieve saturations of 94-98%. The ‘Hs’ and ‘Ts’ outline reversible causes of cardiac arrest, including hypoxia, hypovolaemia, and thrombosis.

    • This question is part of the following fields:

      • Cardiovascular System
      23.2
      Seconds
  • Question 4 - A 29-year-old man is brought to the emergency surgical theatre with multiple stab...

    Incorrect

    • A 29-year-old man is brought to the emergency surgical theatre with multiple stab wounds to his abdomen and is hypotensive despite resuscitative measures. During a laparotomy, a profusely bleeding vessel is found at a certain level of the lumbar vertebrae. The vessel is identified as the testicular artery and is ligated to stop the bleeding. At which vertebral level was the artery identified?

      Your Answer: L6

      Correct Answer: L2

      Explanation:

      The testicular arteries originate from the abdominal aorta at the level of the second lumbar vertebrae (L2).

      The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.

    • This question is part of the following fields:

      • Cardiovascular System
      28.1
      Seconds
  • Question 5 - With respect to the basilic vein, which statement is not true? ...

    Incorrect

    • With respect to the basilic vein, which statement is not true?

      Your Answer: It joins the brachial vein to form the axillary vein

      Correct Answer: Its deep anatomical location makes it unsuitable for use as an arteriovenous access site in fistula surgery

      Explanation:

      A basilic vein transposition is a surgical procedure that utilizes it during arteriovenous fistula surgery.

      The Basilic Vein: A Major Pathway of Venous Drainage for the Arm and Hand

      The basilic vein is one of the two main pathways of venous drainage for the arm and hand, alongside the cephalic vein. It begins on the medial side of the dorsal venous network of the hand and travels up the forearm and arm. Most of its course is superficial, but it passes deep under the muscles midway up the humerus. Near the region anterior to the cubital fossa, the basilic vein joins the cephalic vein.

      At the lower border of the teres major muscle, the anterior and posterior circumflex humeral veins feed into the basilic vein. It is often joined by the medial brachial vein before draining into the axillary vein. The basilic vein is continuous with the palmar venous arch distally and the axillary vein proximally. Understanding the path and function of the basilic vein is important for medical professionals in diagnosing and treating conditions related to venous drainage in the arm and hand.

    • This question is part of the following fields:

      • Cardiovascular System
      26.9
      Seconds
  • Question 6 - A patient with chronic heart failure with reduced ejection fraction has been prescribed...

    Correct

    • A patient with chronic heart failure with reduced ejection fraction has been prescribed a new medication as part of their drug regimen. This drug aims to improve myocardial contractility, but it is also associated with various side effects, such as arrhythmias. Its mechanism of action is blocking a protein with an important role in the resting potential of cardiac muscle cells.

      What protein is the drug targeting?

      Your Answer: Na+/K+ ATPases

      Explanation:

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      37.3
      Seconds
  • Question 7 - You are participating in a cardiology ward round with a senior consultant and...

    Incorrect

    • You are participating in a cardiology ward round with a senior consultant and encounter an 80-year-old patient. Your consultant requests that you auscultate the patient's heart and provide feedback.

      During your examination, you detect a very faint early-diastolic murmur. To identify additional indications, you palpate the patient's wrist and observe a collapsing pulse.

      What intervention could potentially amplify the intensity of the murmur?

      Your Answer: Asking the patient to breathe in

      Correct Answer: Asking patient to perform a handgrip manoeuvre

      Explanation:

      The intensity of an aortic regurgitation murmur can be increased by performing the handgrip manoeuvre, which raises afterload by contracting the arm muscles and compressing the arteries. Conversely, amyl nitrate is a vasodilator that reduces afterload by dilating peripheral arteries, while ACE inhibitors are used to treat aortic regurgitation by lowering afterload. Asking the patient to breathe in will not accentuate the murmur, but standing up or performing the Valsalva manoeuvre can decrease venous return to the heart and reduce the intensity of the murmur.

      Aortic regurgitation is a condition where the aortic valve of the heart leaks, causing blood to flow in the opposite direction during ventricular diastole. This can be caused by disease of the aortic valve or by distortion or dilation of the aortic root and ascending aorta. The most common causes of AR due to valve disease include rheumatic fever, calcific valve disease, and infective endocarditis. On the other hand, AR due to aortic root disease can be caused by conditions such as aortic dissection, hypertension, and connective tissue diseases like Marfan’s and Ehler-Danlos syndrome.

      The features of AR include an early diastolic murmur, a collapsing pulse, wide pulse pressure, Quincke’s sign, and De Musset’s sign. In severe cases, a mid-diastolic Austin-Flint murmur may also be present. Suspected AR should be investigated with echocardiography.

      Management of AR involves medical management of any associated heart failure and surgery in symptomatic patients with severe AR or asymptomatic patients with severe AR who have LV systolic dysfunction.

    • This question is part of the following fields:

      • Cardiovascular System
      26
      Seconds
  • Question 8 - A woman visits her physician and undergoes lying and standing blood pressure tests....

    Correct

    • A woman visits her physician and undergoes lying and standing blood pressure tests. Upon standing, her baroreceptors sense reduced stretch, triggering the baroreceptor reflex. This results in a decrease in baroreceptor activity, leading to an elevation in sympathetic discharge.

      What is the function of the neurotransmitter that is released?

      Your Answer: Noradrenaline binds to β 1 receptors in the SA node increasing depolarisation

      Explanation:

      The binding of noradrenaline to β 1 receptors in the SA node is responsible for an increase in heart rate due to an increase in depolarisation in the pacemaker action potential, allowing for more frequent firing of action potentials. As the SA node is the pacemaker in a healthy individual, the predominant β receptor found in the heart, β 1, is the one that noradrenaline acts on more than β 2 and α 2 receptors. Therefore, the correct answer is that noradrenaline binds to β 1 receptors in the SA node.

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      45.4
      Seconds
  • Question 9 - A father is extremely worried that his 2-day-old baby appears blue following a...

    Incorrect

    • A father is extremely worried that his 2-day-old baby appears blue following a forceps delivery. What causes the ductus arteriosus to close during birth?

      Your Answer: Decreased oxygen tension

      Correct Answer: Reduced level of prostaglandins

      Explanation:

      During fetal development, the ductus arteriosus links the pulmonary artery to the proximal descending aorta. This enables blood from the right ventricle to bypass the non-functioning lungs and enter the systemic circulation.

      After birth, the blood’s oxygen tension increases, and the level of prostaglandins decreases. These changes cause the patent ductus arteriosus to close. Additionally, an increase in left atrial pressure leads to the closure of the foramen ovale, which connects the left and right atria. Nitric oxide plays a role in vasodilation, particularly during pregnancy, but it is not directly responsible for duct closure. VEGF promotes angiogenesis in hypoxic conditions, but it is largely irrelevant in this context.

      Understanding Patent Ductus Arteriosus

      Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.

      This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.

      The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      13
      Seconds
  • Question 10 - Which one of the following statements relating to the basilar artery and its...

    Correct

    • Which one of the following statements relating to the basilar artery and its branches is false?

      Your Answer: The posterior inferior cerebellar artery is the largest of the cerebellar arteries arising from the basilar artery

      Explanation:

      The largest of the cerebellar arteries that originates from the vertebral artery is the posterior inferior cerebellar artery. The labyrinthine artery, which is thin and lengthy, may emerge from the lower section of the basilar artery. It travels alongside the facial and vestibulocochlear nerves into the internal auditory meatus. The posterior cerebral artery is frequently bigger than the superior cerebellar artery and is separated from the vessel, close to its source, by the oculomotor nerve. Arterial decompression is a widely accepted treatment for trigeminal neuralgia.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      3.3
      Seconds
  • Question 11 - A 75-year-old woman is hospitalized with acute mesenteric ischemia. During a CT angiogram,...

    Incorrect

    • A 75-year-old woman is hospitalized with acute mesenteric ischemia. During a CT angiogram, a narrowing is observed at the point where the superior mesenteric artery originates. At what level does this artery branch off from the aorta?

      Your Answer: L3

      Correct Answer: L1

      Explanation:

      The inferior pancreatico-duodenal artery is the first branch of the SMA, which exits the aorta at L1 and travels beneath the neck of the pancreas.

      The Superior Mesenteric Artery and its Branches

      The superior mesenteric artery is a major blood vessel that branches off the aorta at the level of the first lumbar vertebrae. It supplies blood to the small intestine from the duodenum to the mid transverse colon. However, due to its more oblique angle from the aorta, it is more susceptible to receiving emboli than the coeliac axis.

      The superior mesenteric artery is closely related to several structures, including the neck of the pancreas superiorly, the third part of the duodenum and uncinate process postero-inferiorly, and the left renal vein posteriorly. Additionally, the right superior mesenteric vein is also in close proximity.

      The superior mesenteric artery has several branches, including the inferior pancreatico-duodenal artery, jejunal and ileal arcades, ileo-colic artery, right colic artery, and middle colic artery. These branches supply blood to various parts of the small and large intestine. An overview of the superior mesenteric artery and its branches can be seen in the accompanying image.

    • This question is part of the following fields:

      • Cardiovascular System
      8.9
      Seconds
  • Question 12 - As a doctor on the cardiology ward, I am currently treating a 50-year-old...

    Incorrect

    • As a doctor on the cardiology ward, I am currently treating a 50-year-old patient who was admitted due to syncope and dyspnoea. The patient has just returned from an echocardiography which revealed a pedunculated mass. What is the most probable primary tumor that this patient is suffering from?

      Your Answer: Fibroma

      Correct Answer: Myxoma

      Explanation:

      Atrial myxoma is the most frequently occurring primary cardiac tumor.

      Primary cardiac tumors are uncommon, and among them, myxomas are the most prevalent. Most of these tumors are benign and are found in the atria. Imaging typically reveals a pedunculated mass.

      The remaining options are also primary cardiac tumors.

      Atrial Myxoma: Overview and Features

      Atrial myxoma is a primary cardiac tumor that is commonly found in the left atrium, with 75% of cases occurring in this area. It is more prevalent in females and is often attached to the fossa ovalis. Symptoms of atrial myxoma include dyspnea, fatigue, weight loss, pyrexia of unknown origin, and clubbing. Emboli and atrial fibrillation may also occur. A mid-diastolic murmur, known as a tumor plop, may be present. Diagnosis is typically made through echocardiography, which shows a pedunculated heterogeneous mass attached to the fossa ovalis region of the interatrial septum.

    • This question is part of the following fields:

      • Cardiovascular System
      33.2
      Seconds
  • Question 13 - A 50-year-old man is brought to the acute medical ward with red flag...

    Incorrect

    • A 50-year-old man is brought to the acute medical ward with red flag sepsis, possibly originating from the urinary tract. Upon arrival, his blood pressure is recorded as 90/60mmHg, and he exhibits cool, mottled skin peripherally. To increase his preload and stroke volume, a fluid bolus is administered. What other physiological parameter is likely to be observed?

      Your Answer: Increased heart rate

      Correct Answer: Increased pulse pressure

      Explanation:

      When stroke volume increases, pulse pressure also increases. This is important to consider in the management of shock, where intravenous fluids can increase preload and stroke volume. Factors that affect stroke volume include preload, cardiac contractility, and afterload. Pulse pressure can be calculated by subtracting diastolic blood pressure from systolic blood pressure.

      Decreased cardiac output is not a result of increased stroke volume, as cardiac output is calculated by multiplying stroke volume by heart rate. An increase in stroke volume would actually lead to an increase in cardiac output.

      Similarly, decreased mean arterial pressure is not a result of increased stroke volume, as mean arterial pressure is calculated by multiplying cardiac output by total peripheral resistance. An increase in stroke volume would lead to an increase in mean arterial pressure.

      Lastly, increased heart rate is not a direct result of increased stroke volume, as heart rate is calculated by dividing cardiac output by stroke volume. An increase in stroke volume would actually lead to a decrease in heart rate.

      Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.

      Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.

      Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      45
      Seconds
  • Question 14 - A 20-year-old man has a tonsillectomy due to recurrent acute tonsillitis. During recovery,...

    Incorrect

    • A 20-year-old man has a tonsillectomy due to recurrent acute tonsillitis. During recovery, he experiences a postoperative bleeding. Which vessel is the most probable cause of the bleeding?

      Your Answer: None of the above

      Correct Answer: External palatine vein

      Explanation:

      If the external palatine vein is harmed during tonsillectomy, it can result in reactionary bleeding and is located adjacent to the tonsil.

      Tonsil Anatomy and Tonsillitis

      The tonsils are located in the pharynx and have two surfaces, a medial and lateral surface. They vary in size and are usually supplied by the tonsillar artery and drained by the jugulodigastric and deep cervical nodes. Tonsillitis is a common condition that is usually caused by bacteria, with group A Streptococcus being the most common culprit. It can also be caused by viruses. In some cases, tonsillitis can lead to the development of an abscess, which can distort the uvula. Tonsillectomy is recommended for patients with recurrent acute tonsillitis, suspected malignancy, or enlargement causing sleep apnea. The preferred technique for tonsillectomy is dissection, but it can be complicated by hemorrhage, which is the most common complication. Delayed otalgia may also occur due to irritation of the glossopharyngeal nerve.

    • This question is part of the following fields:

      • Cardiovascular System
      6
      Seconds
  • Question 15 - A 75-year-old collapses at home and is rushed to the Emergency Room but...

    Incorrect

    • A 75-year-old collapses at home and is rushed to the Emergency Room but dies despite resuscitation efforts. He had a myocardial infarction five weeks prior. What histological findings would be expected in his heart?

      Your Answer: Coagulative necrosis, neutrophils, wavy fibres, hypercontraction of myofibrils

      Correct Answer: Contracted scar

      Explanation:

      The histology findings of a myocardial infarction (MI) vary depending on the time elapsed since the event. Within the first 24 hours, early coagulative necrosis, neutrophils, wavy fibres, and hypercontraction of myofibrils are observed, which increase the risk of ventricular arrhythmia, heart failure, and cardiogenic shock. Between 1-3 days post-MI, extensive coagulative necrosis and neutrophils are present, which can lead to fibrinous pericarditis. From 3-14 days post-MI, macrophages and granulation tissue are seen at the margins, and there is a high risk of complications such as free wall rupture (resulting in mitral regurgitation), papillary muscle rupture, and left ventricular pseudoaneurysm. Finally, from 2 weeks to several months post-MI, a contracted scar is formed, which is associated with Dressler syndrome, heart failure, arrhythmias, and mural thrombus.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      9.6
      Seconds
  • Question 16 - As a medical student assisting a consultant cardiologist during a percutaneous coronary angiogram...

    Correct

    • As a medical student assisting a consultant cardiologist during a percutaneous coronary angiogram on a male patient, you are shown the patient's previous angiogram that reveals a severe occlusion in the left main stem coronary artery. The consultant then poses a question to you about atherosclerosis. Specifically, which modifiable risk factor is involved in the initial development of the atherosclerotic plaque due to its contribution to shear stress?

      Your Answer: Hypertension

      Explanation:

      The Role of Endothelial Damage in Atherosclerosis

      The development of atherosclerosis requires endothelial damage to occur. Hypertension is the most likely risk factor to cause this damage, as it alters blood flow and increases shearing forces on the endothelium. Once damage occurs, pro-inflammatory mediators are released, leading to leucocyte adhesion and increased permeability in the vessel wall. Endothelial damage is particularly atherogenic due to the release of platelet-derived growth factor and thrombin, which stimulate platelet adhesion and activate the clotting cascade.

      Diabetes mellitus, hypercholesterolaemia, and obesity increase LDL levels, which infiltrate the arterial intima and contribute to the formation of atheromatous plaques. However, before LDLs can infiltrate the vessel wall, they must bind to endothelial adhesion molecules, which are released after endothelial damage occurs. Therefore, hypertension-induced endothelial damage is required for the initial development of atherosclerosis.

      Smoking is also a risk factor for atherosclerosis, but the mechanism is not well understood. It is believed that free radicals and aromatic compounds in tobacco smoke inhibit the production of nitric oxide, leading to endothelial damage. Overall, the role of endothelial damage in atherosclerosis can help identify effective prevention and treatment strategies.

    • This question is part of the following fields:

      • Cardiovascular System
      39.5
      Seconds
  • Question 17 - You are designing a research project looking at the sensitivities and specificities of...

    Incorrect

    • You are designing a research project looking at the sensitivities and specificities of various markers in relation to myocardial necrosis. Specifically you want to assess the molecule which troponin C binds to.

      Which molecule will you study in your research project?

      You are designing a research project looking at the sensitivities and specificities of various markers in relation to myocardial necrosis. Specifically, you want to assess the molecule which troponin C binds to.

      Which molecule will you study in your research project?

      Your Answer: Tropomyosin

      Correct Answer: Calcium ions

      Explanation:

      Troponin C plays a crucial role in muscle contraction by binding to calcium ions. However, it is not a specific marker for myocardial necrosis as it can be released due to damage in both skeletal and cardiac muscles.

      On the other hand, Troponin T and Troponin I are specific markers for myocardial necrosis. Troponin T binds to tropomyosin to form a complex, while Troponin I holds the troponin-tropomyosin complex in place by binding to actin.

      Muscle contraction occurs when actin slides along myosin, which is the thick component of muscle fibers. The sarcoplasmic reticulum plays a crucial role in regulating the concentration of calcium ions in the cytoplasm of striated muscle cells.

      Understanding Troponin: The Proteins Involved in Muscle Contraction

      Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.

      Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.

      Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.

    • This question is part of the following fields:

      • Cardiovascular System
      25.3
      Seconds
  • Question 18 - A 45-year-old woman presents to the emergency department with a severe headache that...

    Incorrect

    • A 45-year-old woman presents to the emergency department with a severe headache that started suddenly during exercise. She reports vomiting and recurrent vertigo sensations. On examination, she has an ataxic gait, left-sided horizontal nystagmus, and an intention tremor during the 'finger-to-nose' test. An urgent CT scan is ordered. Which arteries provide blood supply to the affected area of the brain?

      Your Answer: Anterior and posterior spinal arteries

      Correct Answer: Basilar and the vertebral arteries

      Explanation:

      The correct answer is the basilar and vertebral arteries, which form branches that supply the cerebellum. The patient’s sudden onset headache, vomiting, and vertigo suggest a pathology focused on the brain, with ataxia, nystagmus, and intention tremor indicating cerebellar syndrome. A CT scan is necessary to rule out a cerebellar haemorrhage or stroke, as the basilar and vertebral arteries are the main arterial supply to the cerebellum.

      The incorrect answer is the anterior and middle cerebral arteries, which supply the cerebral cortex and would present with different symptoms. The anterior and posterior spinal arteries are also incorrect, as they supply the spine and would present with different symptoms. The ophthalmic and central retinal artery is also incorrect, as it would only present with visual symptoms and not the other symptoms seen in this patient.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      7.1
      Seconds
  • Question 19 - A newborn male delivered at 38 weeks gestation presents with severe cyanosis within...

    Incorrect

    • A newborn male delivered at 38 weeks gestation presents with severe cyanosis within the first hour of life. He experiences worsening respiratory distress and is unable to feed properly. The infant is immediately transferred to the neonatal intensive care unit for supportive care. The mother did not receive any prenatal care and the baby was delivered via an uncomplicated spontaneous vaginal delivery.

      During physical examination, the neonate appears lethargic and cyanotic. His vital signs are as follows: respiratory rate 60/min, oxygen saturation 82% (on 65% oxygen), heart rate 155/min, blood pressure 98/68 mmHg. Cardiac auscultation reveals a loud S2 heart sound.

      A chest x-ray shows an 'eggs on a string' appearance of the cardiac silhouette. An electrocardiogram (ECG) indicates right ventricular dominance. Further diagnostic testing with echocardiography confirms a congenital heart defect.

      What is the most likely embryological pathology underlying this neonate's congenital heart defect?

      Your Answer: Aortic narrowing near insertion of ductus arteriosus

      Correct Answer: Failure of the aorticopulmonary septum to spiral

      Explanation:

      Transposition of great vessels is caused by the failure of the aorticopulmonary septum to spiral during early life, resulting in a cyanotic heart disease. The classic X-ray description and clinical findings support this diagnosis. Other cyanotic heart defects, such as tricuspid atresia and Tetralogy of Fallot, have different clinical features and X-ray findings. Non-cyanotic heart defects, such as atrial septal defect, have a defect in the interatrial septum. Aortic coarctation is characterized by a narrowing near the insertion of ductus arteriosus.

      Understanding Transposition of the Great Arteries

      Transposition of the great arteries (TGA) is a type of congenital heart disease that results in cyanosis. This condition occurs when the aorticopulmonary septum fails to spiral during septation, causing the aorta to leave the right ventricle and the pulmonary trunk to leave the left ventricle. Infants born to diabetic mothers are at a higher risk of developing TGA.

      The clinical features of TGA include cyanosis, tachypnea, a loud single S2, and a prominent right ventricular impulse. Chest x-rays may show an egg-on-side appearance. To manage TGA, prostaglandins can be used to maintain the ductus arteriosus. However, surgical correction is the definitive treatment for this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      44.3
      Seconds
  • Question 20 - A 57-year-old Asian man arrived at the emergency department with complaints of chest...

    Correct

    • A 57-year-old Asian man arrived at the emergency department with complaints of chest pain. After initial investigations, he was diagnosed with a non-ST elevation myocardial infarction. The patient was prescribed dual antiplatelet therapy, consisting of aspirin and ticagrelor, along with subcutaneous fondaparinux. However, a few days after starting the treatment, he reported experiencing shortness of breath. What is the mechanism of action of the drug responsible for this adverse reaction?

      Your Answer: Inhibits ADP binding to platelet receptors

      Explanation:

      ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.

    • This question is part of the following fields:

      • Cardiovascular System
      55.8
      Seconds
  • Question 21 - A fifth-year medical student is requested to perform an abdominal examination on a...

    Incorrect

    • A fifth-year medical student is requested to perform an abdominal examination on a 58-year-old man who was admitted to the hospital with diffuse abdominal discomfort. The patient has a medical history of chronic obstructive pulmonary disease. The student noted diffuse tenderness in the abdomen without any signs of peritonism, masses, or organ enlargement. The student observed that the liver was bouncing up and down intermittently on the tips of her fingers.

      What could be the probable reason for this observation?

      Your Answer: Mitral regurgitation

      Correct Answer: Tricuspid regurgitation

      Explanation:

      Tricuspid regurgitation causes pulsatile hepatomegaly due to backflow of blood into the liver during the cardiac cycle. Other conditions such as hepatitis, mitral stenosis or mitral regurgitation do not cause this symptom.

      Tricuspid Regurgitation: Causes and Signs

      Tricuspid regurgitation is a heart condition characterized by the backflow of blood from the right ventricle to the right atrium due to the incomplete closure of the tricuspid valve. This condition can be identified through various signs, including a pansystolic murmur, prominent or giant V waves in the jugular venous pulse, pulsatile hepatomegaly, and a left parasternal heave.

      There are several causes of tricuspid regurgitation, including right ventricular infarction, pulmonary hypertension (such as in cases of COPD), rheumatic heart disease, infective endocarditis (especially in intravenous drug users), Ebstein’s anomaly, and carcinoid syndrome. It is important to identify the underlying cause of tricuspid regurgitation in order to determine the appropriate treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      17.7
      Seconds
  • Question 22 - A 58-year-old man has an out-of-hospital cardiac arrest and is pronounced dead at...

    Correct

    • A 58-year-old man has an out-of-hospital cardiac arrest and is pronounced dead at the scene. A post-mortem examination is carried out to determine the cause of death, which demonstrates 90% stenosis of the left anterior descending artery.

      What is the ultimate stage in the development of this stenosis?

      Your Answer: Smooth muscle proliferation and migration from the tunica media into the intima

      Explanation:

      Understanding Atherosclerosis and its Complications

      Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.

      Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      32.2
      Seconds
  • Question 23 - A 63-year-old man visits his physician complaining of exertional dyspnea. To assess his...

    Incorrect

    • A 63-year-old man visits his physician complaining of exertional dyspnea. To assess his heart function, he undergoes a transthoracic echocardiogram.

      What is the method used to determine his cardiac output from the echocardiogram?

      Your Answer: (end systolic LV volume - end diastolic LV volume) x heart rate

      Correct Answer: (end diastolic LV volume - end systolic LV volume) x heart rate

      Explanation:

      Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.

      Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.

      Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      44.7
      Seconds
  • Question 24 - A 16-year-old competitive swimmer visits the paediatric clinic after experiencing palpitations during races...

    Incorrect

    • A 16-year-old competitive swimmer visits the paediatric clinic after experiencing palpitations during races or intense training. She has never had shortness of breath or chest pain, but one persistent episode led her to the emergency department where an ECG was taken. Based on the shortening of one of the ECG intervals, a provisional diagnosis of Wolff-Parkinson-White syndrome was made. What does this abnormal section of the ECG represent in terms of electrical activity?

      Your Answer: Atrial repolarisation alone

      Correct Answer: The time between atrial depolarisation and ventricular depolarisation

      Explanation:

      The PR interval on an ECG represents the duration between atrial depolarisation and ventricular depolarisation. In Wolff-Parkinson-White syndrome, an accessory pathway called the Bundle of Kent exists between the atrium and ventricle, allowing electrical signals to bypass the atrioventricular node and potentially leading to tachyarrhythmias. This results in a shorter PR interval on the ECG. Atrial repolarisation is not visible on the ECG, while the depolarisation of the sinoatrial node is represented by the p wave. The QT interval on the ECG represents the time between ventricular depolarisation and repolarisation, while the QRS complex represents ventricular depolarisation, not the PR interval.

      Understanding the Normal ECG

      The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.

      The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.

      Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      28.9
      Seconds
  • Question 25 - A 57-year-old man presents to the emergency department with a severe headache that...

    Incorrect

    • A 57-year-old man presents to the emergency department with a severe headache that started 3 weeks ago and is localised to the back of the head. He rates it 8/10 on a pain scale and reports that it has gradually become worse. The patient has a medical history of Ehlers-Danlos syndrome.

      Unfortunately, the patient passes away after suffering a brainstem stroke.

      During the autopsy, a vertebral artery dissection is discovered at the point of entry into the cranial cavity.

      Where is this location?

      Your Answer: Foramen spinosum

      Correct Answer: Foramen magnum

      Explanation:

      The vertebral arteries pass through the foramen magnum to enter the cranial cavity.

      Other foramina and their corresponding arteries include the stylomastoid foramen for the posterior auricular artery (stylomastoid branch), the foramen ovale for the accessory meningeal artery, and the foramen spinosum for the middle meningeal artery.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      19.8
      Seconds
  • Question 26 - An occlusion of the anterior cerebral artery may affect the blood supply to...

    Incorrect

    • An occlusion of the anterior cerebral artery may affect the blood supply to which of the following structures, except for:

      Your Answer: Medial surface of the frontal lobe

      Correct Answer: Brocas area

      Explanation:

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      25.4
      Seconds
  • Question 27 - An 80-year-old man visits his GP with complaints of worsening shortness of breath,...

    Incorrect

    • An 80-year-old man visits his GP with complaints of worsening shortness of breath, dry cough, and fatigue over the past 6 weeks. The patient reports having to stop multiple times during his daily walk to catch his breath and sleeping with an extra pillow at night to aid his breathing. He has a medical history of hypertension and a smoking history of 30 pack-years. His current medications include ramipril, amlodipine, and atorvastatin.

      During the examination, the GP observes end-inspiratory crackles at both lung bases. The patient's oxygen saturation is 94% on room air, his pulse is regular at 110 /min, and his respiratory rate is 24 /min.

      What is the most probable underlying diagnosis?

      Your Answer: Pulmonary fibrosis

      Correct Answer: Chronic heart failure

      Explanation:

      Orthopnoea is a useful indicator to distinguish between heart failure and COPD.

      The Framingham diagnostic criteria for heart failure include major criteria such as acute pulmonary oedema and cardiomegaly, as well as minor criteria like ankle oedema and dyspnoea on exertion. Other minor criteria include hepatomegaly, nocturnal cough, pleural effusion, tachycardia (>120 /min), neck vein distension, and a third heart sound.

      In this case, the patient exhibits orthopnoea (needing an extra pillow to alleviate breathlessness), rales (crackles heard during inhalation), and dyspnoea on exertion, all of which are indicative of heart failure.

      While COPD can present with similar symptoms such as coughing, fatigue, shortness of breath, and desaturation, the presence of orthopnoea helps to differentiate between the two conditions.

      Pulmonary fibrosis, on the other hand, does not typically present with orthopnoea.

      Features of Chronic Heart Failure

      Chronic heart failure is a condition that affects the heart’s ability to pump blood effectively. It is characterized by several features that can help in its diagnosis. Dyspnoea, or shortness of breath, is a common symptom of chronic heart failure. Patients may also experience coughing, which can be worse at night and accompanied by pink or frothy sputum. Orthopnoea, or difficulty breathing while lying down, and paroxysmal nocturnal dyspnoea, or sudden shortness of breath at night, are also common symptoms.

      Another feature of chronic heart failure is the presence of a wheeze, known as a cardiac wheeze. Patients may also experience weight loss, known as cardiac cachexia, which occurs in up to 15% of patients. However, this may be hidden by weight gained due to oedema. On examination, bibasal crackles may be heard, and signs of right-sided heart failure, such as a raised JVP, ankle oedema, and hepatomegaly, may be present.

      In summary, chronic heart failure is a condition that can be identified by several features, including dyspnoea, coughing, orthopnoea, paroxysmal nocturnal dyspnoea, wheezing, weight loss, bibasal crackles, and signs of right-sided heart failure. Early recognition and management of these symptoms can help improve outcomes for patients with chronic heart failure.

    • This question is part of the following fields:

      • Cardiovascular System
      25.9
      Seconds
  • Question 28 - A 57-year-old man presents to the emergency department with acute, severe shortness of...

    Incorrect

    • A 57-year-old man presents to the emergency department with acute, severe shortness of breath.

      During the clinical examination, an elevated JVP is noted, and bilateral basal crackles are heard on auscultation. An S3 gallop is also heard on auscultation of his heart.

      The physician places him on high flow oxygen and positions him upright. You are asked to review the patient's medication chart and discontinue any medications that may be contraindicated in his current condition.

      Which medication should you discontinue?

      Your Answer: Morphine

      Correct Answer: Nicorandil

      Explanation:

      Nicorandil is a medication that is commonly used to treat angina. It works by activating potassium channels, which leads to vasodilation. This process is achieved through the activation of guanylyl cyclase, which results in an increase in cGMP. However, there are some adverse effects associated with the use of nicorandil, including headaches, flushing, and the development of ulcers on the skin, mucous membranes, and eyes. Additionally, gastrointestinal ulcers, including anal ulceration, may also occur. It is important to note that nicorandil should not be used in patients with left ventricular failure.

    • This question is part of the following fields:

      • Cardiovascular System
      12.3
      Seconds
  • Question 29 - A 50-year-old man presents to the emergency department with acute chest pain. His...

    Incorrect

    • A 50-year-old man presents to the emergency department with acute chest pain. His ECG reveals ST depression in leads II, III, & aVF, and his troponin levels are elevated. He is diagnosed with NSTEMI and prescribed ticagrelor as part of his treatment plan.

      What is the mechanism of action of ticagrelor?

      Your Answer: Inhibits the production of prostaglandins

      Correct Answer: Inhibits ADP binding to platelet receptors

      Explanation:

      Clopidogrel and ticagrelor have a similar mechanism of action in that they both inhibit the binding of ADP to platelet receptors. Heparin activates antithrombin III, which in turn inhibits factor Xa and IIa. DOACs like rivaroxaban directly inhibit factor Xa that is bound to the prothrombinase complex and associated with clots. Aspirin works by inhibiting the production of prostaglandins, while warfarin inhibits VKORC1, which is responsible for the activation of vitamin K.

      ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.

    • This question is part of the following fields:

      • Cardiovascular System
      68.7
      Seconds
  • Question 30 - A 23-year-old male university student presents to the emergency department with lightheadedness and...

    Incorrect

    • A 23-year-old male university student presents to the emergency department with lightheadedness and a fall an hour earlier, associated with loss of consciousness. He admits to being short of breath on exertion with chest pain for several months. The patient denies vomiting or haemoptysis. The symptoms are not exacerbated or relieved by any positional changes or during phases of respiration.

      He has no relevant past medical history, is not on any regular medications, and has no documented drug allergies. There is no relevant family history. He is a non-smoker and drinks nine unite of alcohol a week. He denies any recent travel or drug use.

      On examination, the patient appears to be comfortable at rest. His heart rate is 68/min, blood pressure 112/84 mmHg, oxygen saturation 99% on air, respiratory rate of 16 breaths per minute, temperature 36.7ºC.

      An ejection systolic murmur is audible throughout the praecordium, loudest over the sternum bilaterally. No heaves or thrills are palpable, and there are no radiations. The murmur gets louder when the patient is asked to perform the Valsalva manoeuvre. The murmur is noted as grade II. Lung fields are clear on auscultation. The abdomen is soft and non-tender, with bowel sounds present. His body mass index is 20 kg/m².

      His ECG taken on admission reveals sinus rhythm, with generalised deep Q waves and widespread T waves. There is evidence of left ventricular hypertrophy.

      What is the most likely diagnosis?

      Your Answer:

      Correct Answer: Hypertrophic obstructive cardiomyopathy

      Explanation:

      The patient’s symptoms and findings suggest the possibility of hypertrophic obstructive cardiomyopathy (HOCM), which is characterized by exertional dyspnea, chest pain, syncope, and ejection systolic murmur that is louder during Valsalva maneuver and quieter during squatting. The ECG changes observed are also consistent with HOCM. Given the patient’s young age, it is crucial to rule out this diagnosis as HOCM is a leading cause of sudden cardiac death in young individuals.

      Brugada syndrome, an autosomal dominant cause of sudden cardiac death in young people, may also present with unexplained falls. However, the absence of a family history of cardiac disease and the unlikely association with the murmur and ECG changes described make this diagnosis less likely. It is important to note that performing Valsalva maneuver in a patient with Brugada syndrome can be life-threatening due to the risk of arrhythmias such as ventricular fibrillation.

      Chagas disease, a parasitic disease prevalent in South America, is caused by an insect bite and has a long dormant period before causing ventricular damage. However, the patient’s age and absence of exposure to the disease make this diagnosis less likely.

      Myocardial infarction can cause central chest pain and ECG changes, but it is rare for it to present with falls. Moreover, the ECG changes observed are not typical of myocardial infarction. The patient’s young age and lack of cardiac risk factors also make this diagnosis less likely.

      Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (11/29) 38%
Passmed