00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 30-year-old male presents to his GP with concerns about lumps on his...

    Incorrect

    • A 30-year-old male presents to his GP with concerns about lumps on his hands. He recalls his father having similar spots and is worried about their appearance after comments from his colleagues. On examination, soft yellow papules are found on the base of the 1st and 3rd digit. A blood test reveals elevated cholesterol and triglycerides, with low HDL and high LDL. What is the underlying genetic mutation causing this patient's lipid transport defect?

      Your Answer: Low-density lipoprotein (LDL) receptor

      Correct Answer: Apolipoprotein E (Apo-E)

      Explanation:

      Hyperlipidaemia Classification

      Hyperlipidaemia is a condition characterized by high levels of lipids (fats) in the blood. The Fredrickson classification system was previously used to categorize hyperlipidaemia based on the type of lipid and genetic factors. However, it is now being replaced by a classification system based solely on genetics.

      The Fredrickson classification system included five types of hyperlipidaemia, each with a specific genetic cause. Type I was caused by lipoprotein lipase deficiency or apolipoprotein C-II deficiency, while type IIa was caused by familial hypercholesterolaemia. Type IIb was caused by familial combined hyperlipidaemia, and type III was caused by remnant hyperlipidaemia or apo-E2 homozygosity. Type IV was caused by familial hypertriglyceridaemia or familial combined hyperlipidaemia, and type V was caused by familial hypertriglyceridaemia.

      Hyperlipidaemia can primarily be caused by raised cholesterol or raised triglycerides. Familial hypercholesterolaemia and polygenic hypercholesterolaemia are primarily caused by raised cholesterol, while familial hypertriglyceridaemia and lipoprotein lipase deficiency or apolipoprotein C-II deficiency are primarily caused by raised triglycerides. Mixed hyperlipidaemia disorders, such as familial combined hyperlipidaemia and remnant hyperlipidaemia, involve a combination of raised cholesterol and raised triglycerides.

    • This question is part of the following fields:

      • Renal System
      24.6
      Seconds
  • Question 2 - Which of the following is the primary location for the release of dehydroepiandrosterone...

    Correct

    • Which of the following is the primary location for the release of dehydroepiandrosterone in individuals?

      Your Answer: Zona reticularis of the adrenal gland

      Explanation:

      The adrenal cortex can be remembered with the mnemonic GFR-ACD, where DHEA is a hormone with androgenic effects that is primarily secreted by the adrenal gland.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      28.2
      Seconds
  • Question 3 - A 38-year-old female visits her doctor complaining of tingling sensations around her mouth...

    Incorrect

    • A 38-year-old female visits her doctor complaining of tingling sensations around her mouth and frequent muscle cramps. During the blood pressure check, her wrist and fingers start to cramp and flex. Despite these symptoms, she appears to be in good health.

      What condition is the most probable diagnosis?

      Your Answer: Hyponatraemia

      Correct Answer: Hypocalcaemia

      Explanation:

      Hypocalcaemia is characterized by perioral paraesthesia, cramps, tetany, and convulsions. The female in this scenario is displaying these symptoms, along with a positive Trousseau’s sign and potentially a positive Chvostek’s sign. Hypocalcaemia is commonly caused by hyperparathyroidism, vitamin D deficiency, or phosphate infusions.

      Hyperkalaemia is when there is an elevated level of potassium in the blood, which can be caused by chronic kidney disease, dehydration, and certain medications such as spironolactone. Symptoms may include muscle weakness, heart palpitations, and nausea and vomiting.

      Hypermagnesaemia is rare and can cause decreased respiratory rate, muscle weakness, and decreased reflexes. It may be caused by renal failure, excessive dietary intake, or increased cell destruction.

      Hypokalaemia is relatively common and can cause weakness, fatigue, and muscle cramps. It may be caused by diuretic use, low dietary intake, or vomiting.

      Hyponatraemia may also cause cramps, but typically presents with nausea and vomiting, fatigue, confusion, and in severe cases, seizures or coma. Causes may include syndrome of inappropriate ADH release (SIADH), excessive fluid intake, and certain medications such as diuretics, SSRIs, and antipsychotics.

      Hypocalcaemia: Symptoms and Signs

      Hypocalcaemia is a condition characterized by low levels of calcium in the blood. As calcium is essential for proper muscle and nerve function, many of the symptoms and signs of hypocalcaemia are related to neuromuscular excitability. The most common features of hypocalcaemia include muscle twitching, cramping, and spasms, as well as perioral paraesthesia. In chronic cases, patients may experience depression and cataracts. An electrocardiogram (ECG) may show a prolonged QT interval.

      Two specific signs that are commonly used to diagnose hypocalcaemia are Trousseau’s sign and Chvostek’s sign. Trousseau’s sign is observed when the brachial artery is occluded by inflating the blood pressure cuff and maintaining pressure above systolic. This causes wrist flexion and fingers to be drawn together, which is seen in around 95% of patients with hypocalcaemia and around 1% of normocalcaemic people. Chvostek’s sign is observed when tapping over the parotid gland causes facial muscles to twitch. This sign is seen in around 70% of patients with hypocalcaemia and around 10% of normocalcaemic people. Overall, hypocalcaemia can cause a range of symptoms and signs that are related to neuromuscular excitability, and specific diagnostic signs can be used to confirm the diagnosis.

    • This question is part of the following fields:

      • Renal System
      37.1
      Seconds
  • Question 4 - A 79-year-old male is admitted to hospital with dehydration. Blood tests are sent...

    Incorrect

    • A 79-year-old male is admitted to hospital with dehydration. Blood tests are sent to assess his renal function. The results are below. He is diagnosed with an acute kidney injury.

      Na+ 143 mmol/l
      K+ 4.8 mmol/l
      Urea 32 mmol/l
      Creatinine 383 mmol/l
      eGFR 15 ml/min

      What electrolyte should be monitored closely?

      Your Answer: Sodium

      Correct Answer: Potassium

      Explanation:

      The nephron plays a crucial role in maintaining the balance of electrolytes in the bloodstream, particularly potassium and hydrogen ions, which are regulated in the distal convoluted tubule (DCT) and collecting duct (CD).

      Dehydration-induced acute kidney injury (AKI) is considered a pre-renal cause that reduces the glomerular filtration rate (GFR). In response, the kidney attempts to reabsorb as much fluid as possible to compensate for the body’s fluid depletion. As a result, minimal filtrate reaches the DCT and CD, leading to reduced potassium excretion. High levels of potassium can be extremely hazardous, especially due to its impact on the myocardium. Therefore, monitoring potassium levels is crucial in such situations, which can be done quickly through a venous blood gas (VBG) test.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      32.6
      Seconds
  • Question 5 - During your placement on a gastro ward, a patient in their late 60s...

    Correct

    • During your placement on a gastro ward, a patient in their late 60s develops excessive diarrhea. Can you identify the location in the gastrointestinal tract where most of the water is absorbed?

      Your Answer: Jejunum

      Explanation:

      The absorption of water in the gastrointestinal tract is facilitated by the absorption of ions across cell membranes. The majority of water is absorbed in the small intestine, particularly in the jejunum.

      Water Absorption in the Human Body

      Water absorption in the human body is a crucial process that occurs in the small bowel and colon. On average, a person ingests up to 2000ml of liquid orally within a 24-hour period. Additionally, gastrointestinal secretions contribute to a further 8000ml of fluid entering the small bowel. The process of intestinal water absorption is passive and is dependent on the solute load. In the jejunum, the active absorption of glucose and amino acids creates a concentration gradient that facilitates the flow of water across the membrane. On the other hand, in the ileum, most water is absorbed through facilitated diffusion, which involves the movement of water molecules with sodium ions.

      The colon also plays a significant role in water absorption, with approximately 150ml of water entering it daily. However, the colon can adapt and increase this amount following resection. Overall, water absorption is a complex process that involves various mechanisms and is essential for maintaining proper hydration levels in the body.

    • This question is part of the following fields:

      • Renal System
      22.5
      Seconds
  • Question 6 - Which one of the following structures is not located behind the left kidney?...

    Correct

    • Which one of the following structures is not located behind the left kidney?

      Your Answer: 10th rib

      Explanation:

      Renal Anatomy: Understanding the Structure and Relations of the Kidneys

      The kidneys are two bean-shaped organs located in a deep gutter alongside the vertebral bodies. They measure about 11cm long, 5cm wide, and 3 cm thick, with the left kidney usually positioned slightly higher than the right. The upper pole of both kidneys approximates with the 11th rib, while the lower border is usually alongside L3. The kidneys are surrounded by an outer cortex and an inner medulla, which contains pyramidal structures that terminate at the renal pelvis into the ureter. The renal sinus lies within the kidney and contains branches of the renal artery, tributaries of the renal vein, major and minor calyces, and fat.

      The anatomical relations of the kidneys vary depending on the side. The right kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, and transversus abdominis, while the left kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, transversus abdominis, stomach, pancreas, spleen, and distal part of the small intestine. Each kidney and suprarenal gland is enclosed within a common layer of investing fascia, derived from the transversalis fascia, which is divided into anterior and posterior layers (Gerotas fascia).

      At the renal hilum, the renal vein lies most anteriorly, followed by the renal artery (an end artery), and the ureter lies most posteriorly. Understanding the structure and relations of the kidneys is crucial in diagnosing and treating renal diseases and disorders.

    • This question is part of the following fields:

      • Renal System
      35.7
      Seconds
  • Question 7 - A 26-year-old man falls and lands on a manhole cover, resulting in an...

    Incorrect

    • A 26-year-old man falls and lands on a manhole cover, resulting in an injury to his anterior bulbar urethra. Where is the likely location for the accumulation of extravasated urine?

      Your Answer: Lesser pelvis

      Correct Answer: Connective tissue of the scrotum

      Explanation:

      The section of the urethra located between the perineal membrane and the membranous layer of the superficial fascia is tightly bound to the ischiopubic rami. This prevents urine from leaking backwards as the two layers are seamlessly connected around the superficial transverse perineal muscles.

      Lower Genitourinary Tract Trauma: Types of Injury and Management

      Lower genitourinary tract trauma can occur due to blunt trauma, with most bladder injuries associated with pelvic fractures. However, these injuries can easily be overlooked during trauma assessment. Up to 10% of male pelvic fractures are associated with urethral or bladder injuries.

      Urethral injuries mainly occur in males and can be identified by blood at the meatus in 50% of cases. There are two types of urethral injury: bulbar rupture, which is the most common and often caused by straddle-type injuries such as bicycles, and membranous rupture, which can be extra or intraperitoneal and commonly caused by pelvic fractures. Penile or perineal oedema/hematoma and displacement of the prostate upwards during PR examination are also signs of urethral injury. An ascending urethrogram is used for investigation, and management involves surgical placement of a suprapubic catheter.

      External genitalia injuries, such as those to the penis and scrotum, can be caused by penetration, blunt trauma, continence- or sexual pleasure-enhancing devices, and mutilation.

      Bladder injuries can be intra or extraperitoneal and present with haematuria or suprapubic pain. A history of pelvic fracture and inability to void should always raise suspicion of bladder or urethral injury. Inability to retrieve all fluid used to irrigate the bladder through a Foley catheter also indicates bladder injury. IVU or cystogram is used for investigation, and management involves laparotomy if intraperitoneal and conservative treatment if extraperitoneal.

      In summary, lower genitourinary tract trauma can result in urethral or bladder injuries, which can be identified through various signs and symptoms. Proper investigation and management are crucial for successful treatment.

    • This question is part of the following fields:

      • Renal System
      32.3
      Seconds
  • Question 8 - A 56-year-old man with a history of alcohol excess and type 2 diabetes...

    Correct

    • A 56-year-old man with a history of alcohol excess and type 2 diabetes presents to the emergency department in an intoxicated state. He takes metformin and his recent HbA1c was 44 mmol/mol. On arrival, his blood sugar is 5.1 mmol/L and he frequently needs to urinate. The examination is unremarkable except for his intoxicated state. His blood test shows a creatinine level of 66 µmol/L (55 - 120). What is causing the patient's polyuria?

      Your Answer: ADH suppression in the posterior pituitary gland

      Explanation:

      Alcohol bingeing can result in the suppression of ADH in the posterior pituitary gland, leading to polyuria.

      Polyuria, or excessive urination, can be caused by a variety of factors. A recent review in the BMJ categorizes these causes by their frequency of occurrence. The most common causes of polyuria include the use of diuretics, caffeine, and alcohol, as well as diabetes mellitus, lithium, and heart failure. Less common causes include hypercalcaemia and hyperthyroidism, while rare causes include chronic renal failure, primary polydipsia, and hypokalaemia. The least common cause of polyuria is diabetes insipidus, which occurs in less than 1 in 10,000 cases. It is important to note that while these frequencies may not align with exam questions, understanding the potential causes of polyuria can aid in diagnosis and treatment.

    • This question is part of the following fields:

      • Renal System
      40.8
      Seconds
  • Question 9 - A 45-year-old woman visits her doctor complaining of muscle cramps and fatigue. Upon...

    Correct

    • A 45-year-old woman visits her doctor complaining of muscle cramps and fatigue. Upon ruling out any musculoskeletal issues, a blood test is conducted which reveals hyperparathyroidism and low serum phosphate levels. It is suspected that the low phosphate levels are due to the inhibitory effect of parathyroid hormone on renal phosphate reabsorption. Which site in the kidney is most likely affected by parathyroid hormone to cause these blood results?

      Your Answer: Proximal convoluted tubule

      Explanation:

      The proximal convoluted tubule is responsible for the majority of renal phosphate reabsorption. This occurs through co-transport with sodium and up to two thirds of filtered water. The thin ascending limb of the Loop of Henle is impermeable to water but highly permeable to sodium and chloride, while reabsorption of these ions occurs in the thick ascending limb. Parathyroid hormone is most effective at the proximal convoluted tubule due to its role in regulating phosphate reabsorption.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      47.4
      Seconds
  • Question 10 - A 67-year-old patient is being evaluated after being admitted for treatment of a...

    Correct

    • A 67-year-old patient is being evaluated after being admitted for treatment of a persistent Clostridium difficile infection. The patient had received treatment for a previous infection three weeks ago, but the symptoms did not subside, and she continued to experience diarrhoea. The patient was hospitalized three days ago due to a life-threatening Clostridium difficile infection.

      The patient has been receiving oral vancomycin and IV metronidazole for the past few days, but there has been no improvement in her symptoms. What would be the venous blood gas results in this case?

      Your Answer: Metabolic acidosis + hypokalaemia

      Explanation:

      If a patient experiences prolonged diarrhoea, they may develop metabolic acidosis and hypokalaemia. This is likely the case for a patient with a history of prolonged Clostridium difficile infection, as the loss of bicarbonate ions from the GI tract during diarrhoea can lead to metabolic acidosis. Prolonged diarrhoea can also result in hypokalaemia due to the direct loss of potassium from the GI tract, which the body may be unable to compensate for. Therefore, metabolic acidosis and hypokalaemia are the expected outcomes in this scenario.

      Understanding Metabolic Acidosis

      Metabolic acidosis is a condition that can be classified based on the anion gap, which is calculated by subtracting the sum of chloride and bicarbonate from the sum of sodium and potassium. The normal range for anion gap is 10-18 mmol/L. If a question provides the chloride level, it may be an indication to calculate the anion gap.

      Hyperchloraemic metabolic acidosis is a type of metabolic acidosis with a normal anion gap. It can be caused by gastrointestinal bicarbonate loss, prolonged diarrhea, ureterosigmoidostomy, fistula, renal tubular acidosis, drugs like acetazolamide, ammonium chloride injection, and Addison’s disease. On the other hand, raised anion gap metabolic acidosis is caused by lactate, ketones, urate, acid poisoning, and other factors.

      Lactic acidosis is a type of metabolic acidosis that is caused by high lactate levels. It can be further classified into two types: lactic acidosis type A, which is caused by sepsis, shock, hypoxia, and burns, and lactic acidosis type B, which is caused by metformin. Understanding the different types and causes of metabolic acidosis is important in diagnosing and treating the condition.

    • This question is part of the following fields:

      • Renal System
      54.7
      Seconds
  • Question 11 - A middle-aged woman presents with collapse and weakness on her left side. Her...

    Incorrect

    • A middle-aged woman presents with collapse and weakness on her left side. Her husband reports that she has a medical history of hyperthyroidism, diabetes, and autosomal dominant polycystic kidney disease, but no known drug allergies. A CT scan of her head reveals a significant intracerebral bleed on the left side. What is the probable cause of the bleed?

      Your Answer: Hypertension

      Correct Answer: Ruptured berry aneurysm

      Explanation:

      Autosomal dominant polycystic kidney disease increases the risk of brain haemorrhage due to ruptured berry aneurysms.

      Autosomal dominant polycystic kidney disease (ADPKD) is a commonly inherited kidney disease that affects 1 in 1,000 Caucasians. The disease is caused by mutations in two genes, PKD1 and PKD2, which produce polycystin-1 and polycystin-2 respectively. ADPKD type 1 accounts for 85% of cases, while ADPKD type 2 accounts for 15% of cases. ADPKD type 1 is caused by a mutation in the PKD1 gene on chromosome 16, while ADPKD type 2 is caused by a mutation in the PKD2 gene on chromosome 4. ADPKD type 1 tends to present with renal failure earlier than ADPKD type 2.

      To screen for ADPKD in relatives of affected individuals, an abdominal ultrasound is recommended. The diagnostic criteria for ultrasound include the presence of two cysts, either unilateral or bilateral, if the individual is under 30 years old. If the individual is between 30-59 years old, two cysts in both kidneys are required for diagnosis. If the individual is over 60 years old, four cysts in both kidneys are necessary for diagnosis.

      For some patients with ADPKD, tolvaptan, a vasopressin receptor 2 antagonist, may be an option to slow the progression of cyst development and renal insufficiency. However, NICE recommends tolvaptan only for adults with ADPKD who have chronic kidney disease stage 2 or 3 at the start of treatment, evidence of rapidly progressing disease, and if the company provides it with the agreed discount in the patient access scheme.

    • This question is part of the following fields:

      • Renal System
      50.3
      Seconds
  • Question 12 - Which one of the following changes are not typically seen in established dehydration?...

    Incorrect

    • Which one of the following changes are not typically seen in established dehydration?

      Your Answer: Rising haematocrit

      Correct Answer: Decreased serum urea to creatinine ratio

      Explanation:

      The diagnosis of dehydration can be complex, with laboratory characteristics being a key factor to consider.

      Pre-Operative Fluid Management Guidelines

      Proper fluid management is crucial in preparing patients for surgery. The British Consensus guidelines on IV fluid therapy for Adult Surgical patients (GIFTASUP) and NICE (CG174 December 2013) have provided recommendations for pre-operative fluid management. These guidelines suggest the use of Ringer’s lactate or Hartmann’s for resuscitation or replacement of fluids, instead of 0.9% N. Saline due to the risk of hyperchloraemic acidosis. For maintenance fluids, 4%/0.18% dextrose saline or 5% dextrose should be used. Patients should not be nil by mouth for more than two hours, and carbohydrate-rich drinks should be given 2-3 hours before surgery. Mechanical bowel preparation should be avoided, but if used, simultaneous administration of Hartmann’s or Ringer’s lactate should be considered.

      In cases of excessive fluid loss from vomiting, a crystalloid with potassium replacement should be given. Hartmann’s or Ringer lactate should be given for diarrhoea, ileostomy, ileus, obstruction, or sodium losses secondary to diuretics. High-risk patients should receive fluids and inotropes, and pre or operative hypovolaemia should be detected using flow-based measurements or clinical evaluation. In cases of blood loss or infection causing hypovolaemia, a balanced crystalloid or colloid should be used until blood is available. If IV fluid resuscitation is needed, crystalloids containing sodium in the range of 130-154 mmol/l should be used, with a bolus of 500 ml over less than 15 minutes. These guidelines aim to ensure that patients are properly hydrated and prepared for surgery, reducing the risk of complications and improving outcomes.

    • This question is part of the following fields:

      • Renal System
      33
      Seconds
  • Question 13 - What is the effect of vasodilation of the efferent arterioles of the kidney?...

    Incorrect

    • What is the effect of vasodilation of the efferent arterioles of the kidney?

      Your Answer: Glomerular filtration rate

      Correct Answer: Renal blood flow

      Explanation:

      Effects of Dilatation of Efferent Arterioles on Renal Function

      Dilatation of the efferent arterioles results in a decrease in glomerular capillary hydrostatic pressure, which in turn reduces the resistance to flow through the afferent arterioles. This leads to an increase in renal blood flow, although to a lesser extent than if the afferent arterioles were dilated. However, the reduction in glomerular capillary hydrostatic pressure causes a decrease in glomerular filtration rate. The peritubular capillary oncotic pressure is influenced by the filtration fraction, which increases with a rise in GFR and no change in renal blood flow. Consequently, a greater filtration fraction would result in an increase in peritubular capillary oncotic pressure. Therefore, dilatation of the efferent arterioles causes a decrease in peritubular capillary oncotic pressure. Although urine volume is not significantly affected by this change, a sustained reduction in GFR may lead to a decrease in urine volume.

    • This question is part of the following fields:

      • Renal System
      13.3
      Seconds
  • Question 14 - A 29-year-old female patient complains of dysuria and frequent urination for the past...

    Incorrect

    • A 29-year-old female patient complains of dysuria and frequent urination for the past 3 days. She denies experiencing any vaginal discharge or heavy menstrual bleeding. Upon urine dipstick examination, leukocytes and nitrites are detected. A urine culture reveals the presence of a urease-producing bacteria identified as Proteus mirabilis. The patient is prescribed antibiotics for treatment.

      What type of renal stones are patients at risk for developing with chronic and recurrent infections caused by this bacteria?

      Your Answer: Calcium phosphate

      Correct Answer: Ammonium magnesium phosphate (struvite)

      Explanation:

      The formation of kidney stones is a common condition that involves the accumulation of mineral deposits in the kidneys. This condition is influenced by various risk factors such as low urine volume, dry weather conditions, and acidic pH levels. It is also closely linked to hyperuricemia, which is commonly associated with gout, as well as diseases that involve high cell turnover, such as leukemia.

      Renal stones can be classified into different types based on their composition. Calcium oxalate stones are the most common, accounting for 85% of all calculi. These stones are formed due to hypercalciuria, hyperoxaluria, and hypocitraturia. They are radio-opaque and may also bind with uric acid stones. Cystine stones are rare and occur due to an inherited recessive disorder of transmembrane cystine transport. Uric acid stones are formed due to purine metabolism and may precipitate when urinary pH is low. Calcium phosphate stones are associated with renal tubular acidosis and high urinary pH. Struvite stones are formed from magnesium, ammonium, and phosphate and are associated with chronic infections. The pH of urine can help determine the type of stone present, with calcium phosphate stones forming in normal to alkaline urine, uric acid stones forming in acidic urine, and struvate stones forming in alkaline urine. Cystine stones form in normal urine pH.

    • This question is part of the following fields:

      • Renal System
      42.4
      Seconds
  • Question 15 - A 26-year-old male visits his doctor complaining of fever and coryzal symptoms. He...

    Incorrect

    • A 26-year-old male visits his doctor complaining of fever and coryzal symptoms. He has no significant medical history and is not sexually active.

      During the physical examination, the doctor notes a soft, slightly tender abdomen with no guarding. The patient's temperature is 38.2 ºC.

      To investigate further, the doctor orders a complete blood count, urea and electrolytes, and C-reactive protein. Additionally, a mid-stream urine sample is sent for microscopy, culture, and sensitivity.

      What might be observed in the urine on microscopy?

      Your Answer: Rhomboid-shaped crystals

      Correct Answer: Hyaline casts

      Explanation:

      During fever, exercise, or use of loop diuretics, it is normal to observe hyaline casts in urine. Nephritic syndrome is associated with red cell casts, while gout is characterized by needle-shaped crystals. Acute tubular necrosis is indicated by brown granular casts, and pseudogout is identified by rhomboid-shaped crystals.

      Different Types of Urinary Casts and Their Significance

      Urine contains various types of urinary casts that can provide important information about the underlying condition of the patient. Hyaline casts, for instance, are composed of Tamm-Horsfall protein that is secreted by the distal convoluted tubule. These casts are commonly seen in normal urine, after exercise, during fever, or with loop diuretics. On the other hand, brown granular casts in urine are indicative of acute tubular necrosis.

      In prerenal uraemia, the urinary sediment appears ‘bland’, which means that there are no significant abnormalities in the urine. Lastly, red cell casts are associated with nephritic syndrome, which is a condition characterized by inflammation of the glomeruli in the kidneys. By analyzing the type of urinary casts present in the urine, healthcare professionals can diagnose and manage various kidney diseases and disorders. Proper identification and interpretation of urinary casts can help in the early detection and treatment of kidney problems.

    • This question is part of the following fields:

      • Renal System
      30.9
      Seconds
  • Question 16 - A patient diagnosed with chronic primary hyperparathyroidism underwent parathyroidectomy and is now being...

    Incorrect

    • A patient diagnosed with chronic primary hyperparathyroidism underwent parathyroidectomy and is now being seen for follow-up. The patient's postoperative blood results are as follows:

      Parathyroid hormone: 1.8 pmol/L (normal range: 1.6 - 6.9 pmol/L)
      Corrected calcium: 1.7 mmol/L (normal range: 2.1 - 2.6 mmol/L)
      Phosphate: 0.1 mmol/L (normal range: 0.1 - 0.8 mmol/L)

      What is the most likely explanation for these results?

      Your Answer: Parathyroid adenoma

      Correct Answer: Hungry bone syndrome

      Explanation:

      The sudden drop in previously high parathyroid hormone levels can lead to hungry bone syndrome, which is a significant complication of a parathyroidectomy following chronic hyperparathyroidism. This condition causes hypocalcaemia and is rare but important to recognize. Osteomalacia, rickets, and scurvy are not consistent with this patient’s history and are not the correct answers.

      Understanding Hungry Bone Syndrome

      Hungry bone syndrome is a rare condition that can occur after a parathyroidectomy, especially if the patient has had hyperparathyroidism for a long time. The condition is caused by high levels of parathyroid hormone before surgery, which stimulate osteoclast activity and lead to demineralization of the bones, resulting in hypercalcemia. If left untreated, this can cause x-ray changes that resemble metastatic lytic lesions.

      During the parathyroidectomy, the parathyroid adenoma is removed, causing a rapid drop in hormone levels, which have a short half-life. As a result, osteoclast activity decreases, and the bones begin to rapidly re-mineralize, leading to hungry bone syndrome. This process can be uncomfortable and can also cause systemic hypocalcemia.

    • This question is part of the following fields:

      • Renal System
      35.7
      Seconds
  • Question 17 - A 65-year-old woman with chronic kidney failure has been instructed by her nephrologist...

    Correct

    • A 65-year-old woman with chronic kidney failure has been instructed by her nephrologist to adhere to a 'renal diet'. She visits you to gain more knowledge about this.

      What is typically recommended to individuals with chronic kidney disease?

      Your Answer: Low potassium diet

      Explanation:

      Dietary Recommendations for Chronic Kidney Disease Patients

      Chronic kidney disease patients are recommended to follow a specific diet that is low in protein, phosphate, sodium, and potassium. This dietary advice is given to reduce the strain on the kidneys, as these substances are typically excreted by the kidneys. By limiting the intake of these nutrients, patients can help slow the progression of their kidney disease and manage their symptoms more effectively. It is important for patients to work closely with their healthcare provider or a registered dietitian to ensure they are meeting their nutritional needs while following these dietary restrictions. With proper guidance and adherence to this diet, patients with chronic kidney disease can improve their overall health and quality of life.

    • This question is part of the following fields:

      • Renal System
      13.1
      Seconds
  • Question 18 - Which of the following medications can lead to hyperkalemia? ...

    Incorrect

    • Which of the following medications can lead to hyperkalemia?

      Your Answer: Codeine phosphate

      Correct Answer: Heparin

      Explanation:

      Hyperkalaemia can be caused by both unfractionated and low-molecular weight heparin due to their ability to inhibit aldosterone secretion. Salbutamol is a known remedy for hyperkalaemia.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      20.4
      Seconds
  • Question 19 - A 65-year-old man is being evaluated at the liver clinic of his local...

    Incorrect

    • A 65-year-old man is being evaluated at the liver clinic of his local hospital. The physician in charge observes that he has developed ascites due to secondary hyperaldosteronism, which is common in patients with liver cirrhosis. To counteract the elevated aldosterone levels by blocking its action in the nephron, she intends to initiate a diuretic.

      Which part of the nephron is the diuretic most likely to target in this patient?

      Your Answer: Thin descending limb of the Loop of Henle

      Correct Answer: Cortical collecting ducts

      Explanation:

      Spironolactone is a diuretic that acts as an aldosterone antagonist on the cortical collecting ducts. It is the first-line treatment for controlling ascites in this gentleman as it blocks the secondary hyperaldosteronism underlying the condition. The main site of action for spironolactone’s diuretic effects is the cortical collecting duct.

      Spironolactone is a medication that works as an aldosterone antagonist in the cortical collecting duct. It is used to treat various conditions such as ascites, hypertension, heart failure, nephrotic syndrome, and Conn’s syndrome. In patients with cirrhosis, spironolactone is often prescribed in relatively large doses of 100 or 200 mg to counteract secondary hyperaldosteronism. It is also used as a NICE ‘step 4’ treatment for hypertension. In addition, spironolactone has been shown to reduce all-cause mortality in patients with NYHA III + IV heart failure who are already taking an ACE inhibitor, according to the RALES study.

      However, spironolactone can cause adverse effects such as hyperkalaemia and gynaecomastia, although the latter is less common with eplerenone. It is important to monitor potassium levels in patients taking spironolactone to prevent hyperkalaemia, which can lead to serious complications such as cardiac arrhythmias. Overall, spironolactone is a useful medication for treating various conditions, but its potential adverse effects should be carefully considered and monitored.

    • This question is part of the following fields:

      • Renal System
      27.2
      Seconds
  • Question 20 - A 54-year-old man from Egypt has been experiencing repeated episodes of haematuria for...

    Correct

    • A 54-year-old man from Egypt has been experiencing repeated episodes of haematuria for several years. He complains of discomfort in the suprapubic region and upon cystoscopy, a mass lesion is discovered in his bladder. What is the probable diagnosis?

      Your Answer: Squamous cell carcinoma

      Explanation:

      Schistosomiasis is more prevalent in Egypt than in the UK and can lead to repeated occurrences of haematuria. If individuals with this condition develop a bladder tumor, the most frequent type is SCC.

      Bladder cancer is a common urological cancer that primarily affects males aged 50-80 years old. Smoking and exposure to hydrocarbons increase the risk of developing the disease. Chronic bladder inflammation from Schistosomiasis infection is also a common cause of squamous cell carcinomas in countries where the disease is endemic. Benign tumors of the bladder, such as inverted urothelial papilloma and nephrogenic adenoma, are rare. The most common bladder malignancies are urothelial (transitional cell) carcinoma, squamous cell carcinoma, and adenocarcinoma. Urothelial carcinomas may be solitary or multifocal, with papillary growth patterns having a better prognosis. The remaining tumors may be of higher grade and prone to local invasion, resulting in a worse prognosis.

      The TNM staging system is used to describe the extent of bladder cancer. Most patients present with painless, macroscopic hematuria, and a cystoscopy and biopsies or TURBT are used to provide a histological diagnosis and information on depth of invasion. Pelvic MRI and CT scanning are used to determine locoregional spread, and PET CT may be used to investigate nodes of uncertain significance. Treatment options include TURBT, intravesical chemotherapy, surgery (radical cystectomy and ileal conduit), and radical radiotherapy. The prognosis varies depending on the stage of the cancer, with T1 having a 90% survival rate and any T, N1-N2 having a 30% survival rate.

    • This question is part of the following fields:

      • Renal System
      26.4
      Seconds
  • Question 21 - A 44-year-old woman arrives at the Emergency Department with intermittent sharp pain in...

    Incorrect

    • A 44-year-old woman arrives at the Emergency Department with intermittent sharp pain in her right flank and haematuria. She reports feeling slightly nauseous, but otherwise feels well. She has a medical history of hyperparathyroidism, but has never experienced these symptoms before. Her body mass index is 28kg/m² and she admits to regularly consuming takeaways. During examination, she appears restless and exhibits tenderness in her right flank.

      What is the probable substance responsible for causing this patient's pain?

      Your Answer: Calcium phosphate

      Correct Answer: Calcium oxalate

      Explanation:

      Renal stones are predominantly made up of calcium phosphate, and individuals with renal tubular acidosis are at a higher risk of developing them. Uric acid stones, which make up only 5-10% of cases, are often associated with malignancies.

      Renal stones can be classified into different types based on their composition. Calcium oxalate stones are the most common, accounting for 85% of all calculi. These stones are formed due to hypercalciuria, hyperoxaluria, and hypocitraturia. They are radio-opaque and may also bind with uric acid stones. Cystine stones are rare and occur due to an inherited recessive disorder of transmembrane cystine transport. Uric acid stones are formed due to purine metabolism and may precipitate when urinary pH is low. Calcium phosphate stones are associated with renal tubular acidosis and high urinary pH. Struvite stones are formed from magnesium, ammonium, and phosphate and are associated with chronic infections. The pH of urine can help determine the type of stone present, with calcium phosphate stones forming in normal to alkaline urine, uric acid stones forming in acidic urine, and struvate stones forming in alkaline urine. Cystine stones form in normal urine pH.

    • This question is part of the following fields:

      • Renal System
      43.9
      Seconds
  • Question 22 - A 25-year-old male presents to his GP with recurrent episodes of haematuria. He...

    Incorrect

    • A 25-year-old male presents to his GP with recurrent episodes of haematuria. He reports having a sore throat and mild cough for the past three days. Upon examination, his urine dipstick is negative for leukocytes and nitrates. His vital signs are as follows: SpO2 99%, respiratory rate 16/min, blood pressure 140/90mmHg, heart rate 80bpm, and temperature 37.1ºC. The initial blood results show a Hb of 14.8 g/dL, platelets of 290 * 109/L, WBC of 14.9 * 109/L, Na+ of 138 mmol/L, K+ of 4.5 mmol/L, urea of 7.2 mmol/L, creatinine of 150 µmol/L, and CRP of 1.2 mg/L. What is the most likely mechanism responsible for his haematuria?

      Your Answer: Activation of the coagulation cascade

      Correct Answer: Immune complex deposition

      Explanation:

      The likely diagnosis for the man is IgA nephropathy, which is characterized by immune complex deposition in the glomerulus and recurrent macroscopic haematuria following an upper respiratory tract infection. Disseminated intravascular coagulation (DIC) caused by activation of the coagulation cascade and damage from toxins such as Shiga toxin in haemolytic uraemic syndrome are not responsible mechanisms for IgA nephropathy. Benign prostatic hypertrophy (BPH), which is caused by hypertrophy of prostatic cells, can also cause haematuria, but it is unlikely in this patient as it typically affects older men and presents with other urinary symptoms.

      Understanding IgA Nephropathy

      IgA nephropathy, also known as Berger’s disease, is the most common cause of glomerulonephritis worldwide. It typically presents as macroscopic haematuria in young people following an upper respiratory tract infection. The condition is thought to be caused by mesangial deposition of IgA immune complexes, and there is considerable pathological overlap with Henoch-Schonlein purpura (HSP). Histology shows mesangial hypercellularity and positive immunofluorescence for IgA and C3.

      Differentiating between IgA nephropathy and post-streptococcal glomerulonephritis is important. Post-streptococcal glomerulonephritis is associated with low complement levels and the main symptom is proteinuria, although haematuria can occur. There is typically an interval between URTI and the onset of renal problems in post-streptococcal glomerulonephritis.

      Management of IgA nephropathy depends on the severity of the condition. If there is isolated hematuria, no or minimal proteinuria, and a normal glomerular filtration rate (GFR), no treatment is needed other than follow-up to check renal function. If there is persistent proteinuria and a normal or only slightly reduced GFR, initial treatment is with ACE inhibitors. If there is active disease or failure to respond to ACE inhibitors, immunosuppression with corticosteroids may be necessary.

      The prognosis for IgA nephropathy varies. 25% of patients develop ESRF. Markers of good prognosis include frank haematuria, while markers of poor prognosis include male gender, proteinuria (especially > 2 g/day), hypertension, smoking, hyperlipidaemia, and ACE genotype DD.

      Overall, understanding IgA nephropathy is important for proper diagnosis and management of the condition. Proper management can help improve outcomes and prevent progression to ESRF.

    • This question is part of the following fields:

      • Renal System
      50.3
      Seconds
  • Question 23 - A 28-year-old woman with autosomal dominant polycystic kidney disease type 1 is seeking...

    Incorrect

    • A 28-year-old woman with autosomal dominant polycystic kidney disease type 1 is seeking guidance from her general practitioner regarding family planning. She recently lost her father to a subarachnoid haemorrhage, which prompted her to undergo genetic testing to confirm her diagnosis. Despite her desire to start a family with her husband, she is worried about the possibility of passing on the renal disease to her children. On which chromosome is the genetic defect for this condition most commonly found?

      Your Answer: Chromosome 13

      Correct Answer: Chromosome 16

      Explanation:

      The patient’s autosomal dominant polycystic kidney disease type 1 is not caused by a gene on chromosomes 13, 18, or 21. It is important to note that nondisjunction of these chromosomes can lead to other genetic disorders such as Patau syndrome, Edward’s syndrome, and Down’s syndrome. The chance of the patient passing on the autosomal dominant polycystic kidney disease type 1 to her children would depend on the inheritance pattern of the specific gene mutation causing the disease.

      Autosomal dominant polycystic kidney disease (ADPKD) is a commonly inherited kidney disease that affects 1 in 1,000 Caucasians. The disease is caused by mutations in two genes, PKD1 and PKD2, which produce polycystin-1 and polycystin-2 respectively. ADPKD type 1 accounts for 85% of cases, while ADPKD type 2 accounts for 15% of cases. ADPKD type 1 is caused by a mutation in the PKD1 gene on chromosome 16, while ADPKD type 2 is caused by a mutation in the PKD2 gene on chromosome 4. ADPKD type 1 tends to present with renal failure earlier than ADPKD type 2.

      To screen for ADPKD in relatives of affected individuals, an abdominal ultrasound is recommended. The diagnostic criteria for ultrasound include the presence of two cysts, either unilateral or bilateral, if the individual is under 30 years old. If the individual is between 30-59 years old, two cysts in both kidneys are required for diagnosis. If the individual is over 60 years old, four cysts in both kidneys are necessary for diagnosis.

      For some patients with ADPKD, tolvaptan, a vasopressin receptor 2 antagonist, may be an option to slow the progression of cyst development and renal insufficiency. However, NICE recommends tolvaptan only for adults with ADPKD who have chronic kidney disease stage 2 or 3 at the start of treatment, evidence of rapidly progressing disease, and if the company provides it with the agreed discount in the patient access scheme.

    • This question is part of the following fields:

      • Renal System
      7.4
      Seconds
  • Question 24 - A 65-year-old man comes in with symptoms related to his lower urinary tract...

    Incorrect

    • A 65-year-old man comes in with symptoms related to his lower urinary tract and is given the option to take a PSA test. What factor could potentially affect the accuracy of his PSA level?

      Your Answer: Poorly controlled diabetes mellitus

      Correct Answer: Vigorous exercise in the past 48 hours

      Explanation:

      Understanding PSA Testing for Prostate Cancer

      Prostate specific antigen (PSA) is an enzyme produced by the prostate gland that has become an important marker for prostate cancer. However, there is still much debate about its usefulness as a screening tool. The NHS Prostate Cancer Risk Management Programme (PCRMP) has published guidelines on how to handle requests for PSA testing in asymptomatic men. While a recent European trial showed a reduction in prostate cancer deaths, there is also a high risk of over-diagnosis and over-treatment. As a result, the National Screening Committee has decided not to introduce a prostate cancer screening programme yet, but rather allow men to make an informed choice.

      PSA levels may be raised by various factors, including benign prostatic hyperplasia, prostatitis, ejaculation, vigorous exercise, urinary retention, and instrumentation of the urinary tract. However, PSA levels are not always a reliable indicator of prostate cancer. For example, around 20% of men with prostate cancer have a normal PSA level, while around 33% of men with a PSA level of 4-10 ng/ml will be found to have prostate cancer. To add greater meaning to a PSA level, age-adjusted upper limits and monitoring changes in PSA level over time (PSA velocity or PSA doubling time) are used. The PCRMP recommends age-adjusted upper limits for PSA levels, with a limit of 3.0 ng/ml for men aged 50-59 years, 4.0 ng/ml for men aged 60-69 years, and 5.0 ng/ml for men over 70 years old.

    • This question is part of the following fields:

      • Renal System
      26.7
      Seconds
  • Question 25 - A 27-year-old woman is hospitalized with AKI following the initiation of ramipril for...

    Correct

    • A 27-year-old woman is hospitalized with AKI following the initiation of ramipril for hypertension 3 weeks ago. A USS reveals stenosis of the renal arteries on both sides, resulting in decreased renal perfusion.

      What would be the body's response to this situation?

      Your Answer: Renin

      Explanation:

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      23.6
      Seconds
  • Question 26 - A 25-year-old man visits his primary care physician worried about a lump on...

    Incorrect

    • A 25-year-old man visits his primary care physician worried about a lump on his testes. He has no significant medical history and has recently started a new job after completing his education. His cousin was diagnosed with testicular cancer last year, and he is anxious that he might have the same condition.

      During the examination, the physician observes a diffuse swelling of the testes with tenderness on palpation.

      After prescribing a short course of ibuprofen, the patient remains concerned about testicular cancer and inquires about its presenting features in young men.

      What could be a possible presenting feature of testicular cancer in men in their mid-twenties?

      Your Answer: Epididymitis

      Correct Answer: Hydrocele

      Explanation:

      Testicular cancer in young men may manifest as a hydrocele, which is the accumulation of fluid around the testicle. Therefore, it is important to investigate all cases of hydrocele to rule out cancer. On the other hand, epididymitis, which is usually caused by a bacterial infection, is unlikely to be a presenting feature of testicular cancer. If a male patient presents with frank haematuria, urgent investigation is necessary to rule out bladder cancer. A chancre, which is a painless genital ulcer commonly seen in the primary stage of syphilis, is not a presenting feature of testicular cancer.

      Testicular cancer is a common type of cancer that affects men between the ages of 20 and 30. The majority of cases (95%) are germ-cell tumors, which can be further classified as seminomas or non-seminomas. Non-germ cell tumors, such as Leydig cell tumors and sarcomas, are less common. Risk factors for testicular cancer include infertility, cryptorchidism, family history, Klinefelter’s syndrome, and mumps orchitis. Symptoms may include a painless lump, pain, hydrocele, and gynaecomastia.

      Tumour markers can be used to diagnose testicular cancer. For germ cell tumors, hCG may be elevated in seminomas, while AFP and/or beta-hCG are elevated in non-seminomas. LDH may also be elevated in germ cell tumors. Ultrasound is the first-line diagnostic tool.

      Treatment for testicular cancer depends on the type and stage of the tumor. Orchidectomy, chemotherapy, and radiotherapy may be used. Prognosis is generally excellent, with a 5-year survival rate of around 95% for Stage I seminomas and 85% for Stage I teratomas.

    • This question is part of the following fields:

      • Renal System
      28.1
      Seconds
  • Question 27 - A 65-year-old man with type 2 diabetes mellitus is undergoing his annual diabetic...

    Correct

    • A 65-year-old man with type 2 diabetes mellitus is undergoing his annual diabetic examination. He reports feeling more fatigued than usual and has missed his previous three annual check-ups. His blood glucose control has been inadequate, and he has not been adhering to his medications. His blood pressure measures 170/90 mmHg, and a urinalysis reveals microalbuminuria. A blood test shows that his glomerular filtration rate (GFR) is 27mL/min per 1.73m².

      Assuming a renal biopsy is conducted on this patient, what are the anticipated findings?

      Your Answer: Nodular glomerulosclerosis and hyaline arteriosclerosis

      Explanation:

      The patient in question is suffering from T2DM that is poorly controlled, resulting in diabetic nephropathy. The histological examination reveals the presence of Kimmelstiel-Wilson lesions (nodular glomerulosclerosis) and hyaline arteriosclerosis, which are caused by nonenzymatic glycosylation.

      Amyloidosis is characterized by apple-green birefringence under polarised light.

      Acute post-streptococcal glomerulonephritis is identified by enlarged and hypercellular glomeruli.

      Rapidly progressive (crescentic) glomerulonephritis is characterized by crescent moon-shaped glomeruli.

      Diffuse proliferative glomerulonephritis (often due to SLE) is identified by wire looping of capillaries in the glomeruli.

      Understanding Diabetic Nephropathy: The Common Cause of End-Stage Renal Disease

      Diabetic nephropathy is the leading cause of end-stage renal disease in the western world. It affects approximately 33% of patients with type 1 diabetes mellitus by the age of 40 years, and around 5-10% of patients with type 1 diabetes mellitus develop end-stage renal disease. The pathophysiology of diabetic nephropathy is not fully understood, but changes to the haemodynamics of the glomerulus, such as increased glomerular capillary pressure, and non-enzymatic glycosylation of the basement membrane are thought to play a key role. Histological changes include basement membrane thickening, capillary obliteration, mesangial widening, and the development of nodular hyaline areas in the glomeruli, known as Kimmelstiel-Wilson nodules.

      There are both modifiable and non-modifiable risk factors for developing diabetic nephropathy. Modifiable risk factors include hypertension, hyperlipidaemia, smoking, poor glycaemic control, and raised dietary protein. On the other hand, non-modifiable risk factors include male sex, duration of diabetes, and genetic predisposition, such as ACE gene polymorphisms. Understanding these risk factors and the pathophysiology of diabetic nephropathy is crucial in the prevention and management of this condition.

    • This question is part of the following fields:

      • Renal System
      27.7
      Seconds
  • Question 28 - An 80-year-old man is undergoing investigation for haematuria, with no other urinary symptoms...

    Correct

    • An 80-year-old man is undergoing investigation for haematuria, with no other urinary symptoms reported. He has no significant medical history and previously worked in the textiles industry. During a flexible cystoscopy, a sizable mass is discovered in the lower part of his bladder, raising suspicion of bladder cancer. A PET scan is planned to check for any nodal metastasis. Which lymph nodes are most likely to be affected?

      Your Answer: External and internal iliac lymph nodes

      Explanation:

      The bladder’s lymphatic drainage is mainly to the external and internal iliac nodes. A man with haematuria and a history of working with dye is found to have a bladder tumour. To stage the tumour, nodal metastasis should be investigated, and the correct lymph nodes to check are the external and internal iliac nodes. Other options such as deep inguinal, para-aortic, and superficial inguinal nodes are incorrect.

      Bladder Anatomy and Innervation

      The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.

    • This question is part of the following fields:

      • Renal System
      44
      Seconds
  • Question 29 - A 72-year-old man is brought to the emergency department by ambulance after collapsing...

    Incorrect

    • A 72-year-old man is brought to the emergency department by ambulance after collapsing at work due to dizziness. The paramedic reports that his ECG indicates hyperkalaemia. What is an ECG sign of hyperkalaemia?

      Your Answer: Small or inverted T waves

      Correct Answer: Sinusoidal waveform

      Explanation:

      Hyperkalaemia can be identified on an ECG by the presence of a sinusoidal waveform, as well as small or absent P waves, tall-tented T waves, and broad bizarre QRS complexes. In severe cases, the QRS complexes may even form a sinusoidal wave pattern. Asystole can also occur as a result of hyperkalaemia.

      On the other hand, ECG signs of hypokalaemia include small or inverted T waves, ST segment depression, and prominent U waves. A prolonged PR interval and long QT interval may also be present, although the latter can also be a sign of hyperkalaemia. In healthy individuals, narrow QRS complexes are typically observed, whereas hyperkalaemia can cause the QRS complexes to become wide and abnormal.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      13.2
      Seconds
  • Question 30 - A 58-year-old man is having a radical nephrectomy performed through a posterior approach....

    Correct

    • A 58-year-old man is having a radical nephrectomy performed through a posterior approach. What is the structure that is most likely to be encountered during the surgical procedure?

      Your Answer: 12th rib

      Explanation:

      During a posterior approach, the kidneys may come across the 11th and 12th ribs which are located at the back. It is important to note that a potential complication of this surgery is the occurrence of a pneumothorax.

      Renal Anatomy: Understanding the Structure and Relations of the Kidneys

      The kidneys are two bean-shaped organs located in a deep gutter alongside the vertebral bodies. They measure about 11cm long, 5cm wide, and 3 cm thick, with the left kidney usually positioned slightly higher than the right. The upper pole of both kidneys approximates with the 11th rib, while the lower border is usually alongside L3. The kidneys are surrounded by an outer cortex and an inner medulla, which contains pyramidal structures that terminate at the renal pelvis into the ureter. The renal sinus lies within the kidney and contains branches of the renal artery, tributaries of the renal vein, major and minor calyces, and fat.

      The anatomical relations of the kidneys vary depending on the side. The right kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, and transversus abdominis, while the left kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, transversus abdominis, stomach, pancreas, spleen, and distal part of the small intestine. Each kidney and suprarenal gland is enclosed within a common layer of investing fascia, derived from the transversalis fascia, which is divided into anterior and posterior layers (Gerotas fascia).

      At the renal hilum, the renal vein lies most anteriorly, followed by the renal artery (an end artery), and the ureter lies most posteriorly. Understanding the structure and relations of the kidneys is crucial in diagnosing and treating renal diseases and disorders.

    • This question is part of the following fields:

      • Renal System
      9.6
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Renal System (12/30) 40%
Passmed