-
Question 1
Correct
-
A 45-year-old patient presents to the emergency department with increasing dyspnea on exertion and swelling in both legs. A recent outpatient echocardiogram revealed a left ventricular ejection fraction of 31%. During chest examination, an extra heart sound is detected just prior to the first.
What is the cause of this additional heart sound?Your Answer: Atria contracting forcefully to overcome an abnormally stiff ventricle
Explanation:The presence of S4, which sounds like a ‘gallop rhythm’, can be heard after S2 and in conjunction with a third heart sound. However, if the ventricles are contracting against a stiffened aorta, it would not produce a significant heart sound during this phase of the cardiac cycle. Any sound that may be heard in this scenario would occur between the first and second heart sounds during systole, and it would also cause a raised pulse pressure and be visible on chest X-ray as calcification. Delayed closure of the aortic valve could cause a split second heart sound, but it would appear around the time of S2, not before S1. On the other hand, retrograde flow of blood from the right ventricle into the right atrium, known as tricuspid regurgitation, would cause a systolic murmur instead of an additional isolated heart sound. This condition is often caused by infective endocarditis in intravenous drug users or a history of rheumatic fever.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Correct
-
As a medical student on placement in the pathology lab, you are observing the pathologist examine a section of a blood vessel. Specifically, what can be found within the tunica media of a blood vessel?
Your Answer: Smooth muscle
Explanation:Artery Histology: Layers of Blood Vessel Walls
The wall of a blood vessel is composed of three layers: the tunica intima, tunica media, and tunica adventitia. The innermost layer, the tunica intima, is made up of endothelial cells that are separated by gap junctions. The middle layer, the tunica media, contains smooth muscle cells and is separated from the intima by the internal elastic lamina and from the adventitia by the external elastic lamina. The outermost layer, the tunica adventitia, contains the vasa vasorum, fibroblast, and collagen. This layer is responsible for providing support and protection to the blood vessel. The vasa vasorum are small blood vessels that supply oxygen and nutrients to the larger blood vessels. The fibroblast and collagen provide structural support to the vessel wall. Understanding the histology of arteries is important in diagnosing and treating various cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Correct
-
Which of the following clotting factors is unaffected by warfarin?
Your Answer: Factor XII
Explanation:Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Correct
-
A 50-year-old man comes to the clinic complaining of a painful left foot that he woke up with. Initially, he didn't want to bother the doctor, but now he's concerned because he can't feel his foot or move his toes. Upon examination, the left foot is cold to the touch and very pale. What is the probable diagnosis?
Your Answer: Acute limb ischaemia
Explanation:Acute Limb Ischaemia and Compartment Syndrome
Acute limb ischaemia is a condition that is characterized by six Ps: pain, pallor, pulselessness, perishingly cold, paresthesia, and paralysis. It is a medical emergency that requires immediate attention from a vascular surgeon. Delaying treatment for even a few hours can lead to amputation or death. On the other hand, acute compartment syndrome occurs when the pressure within a closed muscle compartment exceeds the perfusion pressure, resulting in muscle and nerve ischaemia. This condition usually follows a traumatic event, such as a fracture. However, in some cases, there may be no history of trauma.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Correct
-
A newborn male delivered at 38 weeks gestation presents with severe cyanosis within the first hour of life. He experiences worsening respiratory distress and is unable to feed properly. The infant is immediately transferred to the neonatal intensive care unit for supportive care. The mother did not receive any prenatal care and the baby was delivered via an uncomplicated spontaneous vaginal delivery.
During physical examination, the neonate appears lethargic and cyanotic. His vital signs are as follows: respiratory rate 60/min, oxygen saturation 82% (on 65% oxygen), heart rate 155/min, blood pressure 98/68 mmHg. Cardiac auscultation reveals a loud S2 heart sound.
A chest x-ray shows an 'eggs on a string' appearance of the cardiac silhouette. An electrocardiogram (ECG) indicates right ventricular dominance. Further diagnostic testing with echocardiography confirms a congenital heart defect.
What is the most likely embryological pathology underlying this neonate's congenital heart defect?Your Answer: Failure of the aorticopulmonary septum to spiral
Explanation:Transposition of great vessels is caused by the failure of the aorticopulmonary septum to spiral during early life, resulting in a cyanotic heart disease. The classic X-ray description and clinical findings support this diagnosis. Other cyanotic heart defects, such as tricuspid atresia and Tetralogy of Fallot, have different clinical features and X-ray findings. Non-cyanotic heart defects, such as atrial septal defect, have a defect in the interatrial septum. Aortic coarctation is characterized by a narrowing near the insertion of ductus arteriosus.
Understanding Transposition of the Great Arteries
Transposition of the great arteries (TGA) is a type of congenital heart disease that results in cyanosis. This condition occurs when the aorticopulmonary septum fails to spiral during septation, causing the aorta to leave the right ventricle and the pulmonary trunk to leave the left ventricle. Infants born to diabetic mothers are at a higher risk of developing TGA.
The clinical features of TGA include cyanosis, tachypnea, a loud single S2, and a prominent right ventricular impulse. Chest x-rays may show an egg-on-side appearance. To manage TGA, prostaglandins can be used to maintain the ductus arteriosus. However, surgical correction is the definitive treatment for this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
A 70-year-old male arrives at the emergency department complaining of tearing chest pain that radiates to his back. He has a history of uncontrolled hypertension. During auscultation, a diastolic murmur is heard, which is most audible over the 2nd intercostal space, right sternal border. What chest radiograph findings are expected from this patient's presentation?
Your Answer: Cardiomegaly
Correct Answer: Widened mediastinum
Explanation:Aortic dissection can cause a widened mediastinum on a chest x-ray. This condition is characterized by tearing chest pain that radiates to the back, hypertension, and aortic regurgitation. It occurs when there is a tear in the tunica intima of the aorta’s wall, creating a false lumen that fills with a large volume of blood.
Calcification of the arch of the aorta, cardiomegaly, displacement of the trachea from the midline, and enlargement of the aortic knob are not commonly associated with aortic dissection. Calcification of the walls of arteries is a chronic process that occurs with age and is more likely in men. Cardiomegaly can be caused by various conditions, including ischaemic heart disease and congenital abnormalities. Displacement of the trachea from the midline can result from other pathologies such as a tension pneumothorax or an aortic aneurysm. Enlargement of the aortic knob is a classical finding of an aortic aneurysm.
Aortic dissection is classified according to the location of the tear in the aorta. The Stanford classification divides it into type A, which affects the ascending aorta in two-thirds of cases, and type B, which affects the descending aorta distal to the left subclavian origin in one-third of cases. The DeBakey classification divides it into type I, which originates in the ascending aorta and propagates to at least the aortic arch and possibly beyond it distally, type II, which originates in and is confined to the ascending aorta, and type III, which originates in the descending aorta and rarely extends proximally but will extend distally.
To diagnose aortic dissection, a chest x-ray may show a widened mediastinum, but CT angiography of the chest, abdomen, and pelvis is the investigation of choice. However, the choice of investigations should take into account the patient’s clinical stability, as they may present acutely and be unstable. Transoesophageal echocardiography (TOE) is more suitable for unstable patients who are too risky to take to the CT scanner.
The management of type A aortic dissection is surgical, but blood pressure should be controlled to a target systolic of 100-120 mmHg while awaiting intervention. On the other hand, type B aortic dissection is managed conservatively with bed rest and IV labetalol to reduce blood pressure and prevent progression. Complications of a backward tear include aortic incompetence/regurgitation and MI, while complications of a forward tear include unequal arm pulses and BP, stroke, and renal failure. Endovascular repair of type B aortic dissection may have a role in the future.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Incorrect
-
An 68-year-old patient visits the GP complaining of a cough that produces green sputum, fever and shortness of breath. After being treated with antibiotics, her symptoms improve. However, three weeks later, she experiences painful joints, chest pain, fever and an erythema marginatum rash. What is the probable causative organism responsible for the initial infection?
Your Answer: Staphylococcus aureus
Correct Answer: Streptococcus pyogenes
Explanation:An immunological reaction is responsible for the development of rheumatic fever.
Rheumatic fever is a condition that occurs as a result of an immune response to a recent Streptococcus pyogenes infection, typically occurring 2-4 weeks after the initial infection. The pathogenesis of rheumatic fever involves the activation of the innate immune system, leading to antigen presentation to T cells. B and T cells then produce IgG and IgM antibodies, and CD4+ T cells are activated. This immune response is thought to be cross-reactive, mediated by molecular mimicry, where antibodies against M protein cross-react with myosin and the smooth muscle of arteries. This response leads to the clinical features of rheumatic fever, including Aschoff bodies, which are granulomatous nodules found in rheumatic heart fever.
To diagnose rheumatic fever, evidence of recent streptococcal infection must be present, along with 2 major criteria or 1 major criterion and 2 minor criteria. Major criteria include erythema marginatum, Sydenham’s chorea, polyarthritis, carditis and valvulitis, and subcutaneous nodules. Minor criteria include raised ESR or CRP, pyrexia, arthralgia, and prolonged PR interval.
Management of rheumatic fever involves antibiotics, typically oral penicillin V, as well as anti-inflammatories such as NSAIDs as first-line treatment. Any complications that develop, such as heart failure, should also be treated. It is important to diagnose and treat rheumatic fever promptly to prevent long-term complications such as rheumatic heart disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Correct
-
Which of the following structures separates the subclavian artery from the subclavian vein?
And for the age change:
Which of the following structures separates the subclavian artery from the subclavian vein in a 30-year-old patient?Your Answer: Scalenus anterior
Explanation:The scalenus anterior muscle separates the artery and vein. It originates from the transverse processes of C3, C4, C5, and C6 and inserts onto the scalene tubercle of the first rib.
The Subclavian Artery: Origin, Path, and Branches
The subclavian artery is a major blood vessel that supplies blood to the upper extremities, neck, and head. It has two branches, the left and right subclavian arteries, which arise from different sources. The left subclavian artery originates directly from the arch of the aorta, while the right subclavian artery arises from the brachiocephalic artery (trunk) when it bifurcates into the subclavian and the right common carotid artery.
From its origin, the subclavian artery travels laterally, passing between the anterior and middle scalene muscles, deep to scalenus anterior and anterior to scalenus medius. As it crosses the lateral border of the first rib, it becomes the axillary artery and is superficial within the subclavian triangle.
The subclavian artery has several branches that supply blood to different parts of the body. These branches include the vertebral artery, which supplies blood to the brain and spinal cord, the internal thoracic artery, which supplies blood to the chest wall and breast tissue, the thyrocervical trunk, which supplies blood to the thyroid gland and neck muscles, the costocervical trunk, which supplies blood to the neck and upper back muscles, and the dorsal scapular artery, which supplies blood to the muscles of the shoulder blade.
In summary, the subclavian artery is an important blood vessel that plays a crucial role in supplying blood to the upper extremities, neck, and head. Its branches provide blood to various parts of the body, ensuring proper functioning and health.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Correct
-
A 65-year-old woman with confirmed heart failure visits her GP with swelling and discomfort in both legs. During the examination, the GP observes pitting edema and decides to prescribe a brief trial of a diuretic. Which diuretic targets the thick ascending limb of the loop of Henle?
Your Answer: Furosemide (loop diuretic)
Explanation:Loop Diuretics: Mechanism of Action and Clinical Applications
Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.
Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
A 30-year-old male patient complains of shortness of breath, weight loss, and night sweats for the past six weeks. Despite being generally healthy, he has been experiencing these symptoms. During the examination, the patient's fingers show clubbing, and his temperature is 37.8°C. His pulse is 88 bpm, and his blood pressure is 128/80 mmHg. A pansystolic murmur is audible upon auscultation of the heart. What is the probable diagnosis?
Your Answer: Lung carcinoma
Correct Answer: Infective endocarditis
Explanation:Possible Diagnosis for a Young Man with Night Sweats and Clubbing of Fingers
This young man has been experiencing night sweats and has clubbing of the fingers, which suggests a long history of illness. These symptoms, along with the presence of a murmur, point towards a possible diagnosis of infective endocarditis. Other symptoms that may be present in such cases include splinter haemorrhages in the nails, Roth spots in the eyes, and Osler’s nodes and Janeway lesions in the palms and fingers of the hands.
In summary, the combination of night sweats, clubbing of fingers, and a murmur in a young man may indicate infective endocarditis. It is important to look for other symptoms such as splinter haemorrhages, Roth spots, Osler’s nodes, and Janeway lesions to confirm the diagnosis.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)