00
Correct
00
Incorrect
00 : 00 : 0 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 68-year-old man with a history of bladder cancer due to beta-naphthylamine exposure...

    Correct

    • A 68-year-old man with a history of bladder cancer due to beta-naphthylamine exposure presents with painless haematuria and suprapubic pain. He underwent successful surgical resection for bladder cancer 5 years ago and is now retired as a chemical engineer. The urology team suspects a possible recurrence with locoregional spread. What imaging modality is most suitable for determining the extent of cancer spread in this patient?

      Your Answer: Pelvic MRI

      Explanation:

      The most effective imaging technique for identifying the locoregional spread of bladder cancer is pelvic MRI.

      Bladder cancer is a common urological cancer that primarily affects males aged 50-80 years old. Smoking and exposure to hydrocarbons increase the risk of developing the disease. Chronic bladder inflammation from Schistosomiasis infection is also a common cause of squamous cell carcinomas in countries where the disease is endemic. Benign tumors of the bladder, such as inverted urothelial papilloma and nephrogenic adenoma, are rare. The most common bladder malignancies are urothelial (transitional cell) carcinoma, squamous cell carcinoma, and adenocarcinoma. Urothelial carcinomas may be solitary or multifocal, with papillary growth patterns having a better prognosis. The remaining tumors may be of higher grade and prone to local invasion, resulting in a worse prognosis.

      The TNM staging system is used to describe the extent of bladder cancer. Most patients present with painless, macroscopic hematuria, and a cystoscopy and biopsies or TURBT are used to provide a histological diagnosis and information on depth of invasion. Pelvic MRI and CT scanning are used to determine locoregional spread, and PET CT may be used to investigate nodes of uncertain significance. Treatment options include TURBT, intravesical chemotherapy, surgery (radical cystectomy and ileal conduit), and radical radiotherapy. The prognosis varies depending on the stage of the cancer, with T1 having a 90% survival rate and any T, N1-N2 having a 30% survival rate.

    • This question is part of the following fields:

      • Renal System
      28.3
      Seconds
  • Question 2 - A 5-year-old boy presents with symptoms of right sided loin pain, lethargy and...

    Incorrect

    • A 5-year-old boy presents with symptoms of right sided loin pain, lethargy and haematuria. On examination he is pyrexial and has a large mass in the right upper quadrant. What is the most probable underlying diagnosis?

      Your Answer: Squamous cell carcinoma of the kidney

      Correct Answer: Nephroblastoma

      Explanation:

      Based on the symptoms presented, it is highly probable that the child has nephroblastoma, while perinephric abscess is an unlikely diagnosis. Even if an abscess were to develop, it would most likely be contained within Gerota’s fascia initially, making anterior extension improbable.

      Nephroblastoma: A Childhood Cancer

      Nephroblastoma, also known as Wilms tumours, is a type of childhood cancer that typically occurs in the first four years of life. The most common symptom is the presence of a mass, often accompanied by haematuria (blood in urine). In some cases, pyrexia (fever) may also occur in about 50% of patients. Unfortunately, nephroblastomas tend to metastasize early, usually to the lungs.

      The primary treatment for nephroblastoma is nephrectomy, which involves the surgical removal of the affected kidney. The prognosis for younger children is generally better, with those under one year of age having an overall 5-year survival rate of 80%. It is important to seek medical attention promptly if any of the symptoms associated with nephroblastoma are present, as early detection and treatment can greatly improve the chances of a positive outcome.

    • This question is part of the following fields:

      • Renal System
      36.6
      Seconds
  • Question 3 - A 50-year-old male is undergoing evaluation for persistent proteinuria. He has a medical...

    Correct

    • A 50-year-old male is undergoing evaluation for persistent proteinuria. He has a medical history of relapsed multiple myeloma. A renal biopsy is performed, and the Congo red stain with light microscopy shows apple-green birefringence under polarised light.

      What is the probable diagnosis?

      Your Answer: Amyloidosis

      Explanation:

      Understanding Amyloidosis

      Amyloidosis is a medical condition that occurs when an insoluble fibrillar protein called amyloid accumulates outside the cells. This protein is derived from various precursor proteins and contains non-fibrillary components such as amyloid-P component, apolipoprotein E, and heparan sulphate proteoglycans. The accumulation of amyloid fibrils can lead to tissue or organ dysfunction.

      Amyloidosis can be classified as systemic or localized, and further characterized by the type of precursor protein involved. For instance, in myeloma, the precursor protein is immunoglobulin light chain fragments, which is abbreviated as AL (A for amyloid and L for light chain fragments).

      To diagnose amyloidosis, doctors may use Congo red staining, which shows apple-green birefringence, or a serum amyloid precursor (SAP) scan. Biopsy of skin, rectal mucosa, or abdominal fat may also be necessary. Understanding amyloidosis is crucial for early detection and treatment of the condition.

    • This question is part of the following fields:

      • Renal System
      35
      Seconds
  • Question 4 - A 70-year-old man is receiving treatment for pneumonia and is currently experiencing delirium....

    Incorrect

    • A 70-year-old man is receiving treatment for pneumonia and is currently experiencing delirium. He has been catheterized and is receiving IV antibiotics. The nurse has observed that he has not urinated overnight, despite attempts to flush the catheter.

      The patient has a medical history of hypertension, chronic back pain, and type 2 diabetes, for which he takes ramipril, furosemide, naproxen, and gliclazide. His daily blood tests are pending, and the morning medication round has begun.

      What is the appropriate course of action regarding his medications?

      Your Answer: Withhold furosemide and gliclazide, continue everything else

      Correct Answer: Withhold furosemide, naproxen, and ramipril, continue gliclazide and IV antibiotics

      Explanation:

      When a patient is suspected to have acute kidney injury (AKI), it is important to stop nephrotoxic medications such as ACE inhibitors, ARBs, diuretics, and NSAIDs. In this case, the patient is on ramipril, furosemide, and naproxen, which should be withheld. Gliclazide and IV antibiotics can be continued, but blood sugar levels should be monitored closely due to the increased risk of hypoglycemia in renal impairment. It is incorrect to give morning medication and wait for blood test results, increase furosemide, withhold all regular medications, or withhold only furosemide and gliclazide while continuing everything else. The appropriate action is to withhold all nephrotoxic medications and continue necessary treatments while monitoring the patient’s condition closely.

      Acute kidney injury (AKI) is a condition where there is a reduction in renal function following an insult to the kidneys. It was previously known as acute renal failure and can result in long-term impaired kidney function or even death. AKI can be caused by prerenal, intrinsic, or postrenal factors. Patients with chronic kidney disease, other organ failure/chronic disease, a history of AKI, or who have used drugs with nephrotoxic potential are at an increased risk of developing AKI. To prevent AKI, patients at risk may be given IV fluids or have certain medications temporarily stopped.

      The kidneys are responsible for maintaining fluid balance and homeostasis, so a reduced urine output or fluid overload may indicate AKI. Symptoms may not be present in early stages, but as renal failure progresses, patients may experience arrhythmias, pulmonary and peripheral edema, or features of uraemia. Blood tests such as urea and electrolytes can be used to detect AKI, and urinalysis and imaging may also be necessary.

      Management of AKI is largely supportive, with careful fluid balance and medication review. Loop diuretics and low-dose dopamine are not recommended, but hyperkalaemia needs prompt treatment to avoid life-threatening arrhythmias. Renal replacement therapy may be necessary in severe cases. Patients with suspected AKI secondary to urinary obstruction require prompt review by a urologist, and specialist input from a nephrologist is required for cases where the cause is unknown or the AKI is severe.

    • This question is part of the following fields:

      • Renal System
      72.6
      Seconds
  • Question 5 - A 27-year-old man is involved in a car crash resulting in a fracture...

    Correct

    • A 27-year-old man is involved in a car crash resulting in a fracture of his right tibia. He undergoes fasciotomies and an external fixator is applied. Within 48 hours, his serum creatinine levels increase and his urine is analyzed, revealing the presence of muddy brown casts. What is the probable underlying diagnosis?

      Your Answer: Acute tubular necrosis

      Explanation:

      It is probable that the patient suffered from compartment syndrome due to a tibial fracture and subsequent fasciotomies, which can result in myoglobinuria. The combination of deteriorating kidney function and the presence of muddy brown casts in the urine strongly indicate acute tubular necrosis. Acute interstitial nephritis is typically caused by drug toxicity and does not typically lead to the presence of muddy brown casts in the urine.

      Understanding the Difference between Acute Tubular Necrosis and Prerenal Uraemia

      Acute kidney injury can be caused by various factors, including prerenal uraemia and acute tubular necrosis. It is important to differentiate between the two to determine the appropriate treatment. Prerenal uraemia occurs when the kidneys hold on to sodium to preserve volume, leading to decreased blood flow to the kidneys. On the other hand, acute tubular necrosis is caused by damage to the kidney tubules, which can be due to various factors such as toxins, infections, or ischemia.

      To differentiate between the two, several factors can be considered. In prerenal uraemia, the urine sodium level is typically less than 20 mmol/L, while in acute tubular necrosis, it is usually greater than 40 mmol/L. The urine osmolality is also higher in prerenal uraemia, typically above 500 mOsm/kg, while in acute tubular necrosis, it is usually below 350 mOsm/kg. The fractional sodium excretion is less than 1% in prerenal uraemia, while it is greater than 1% in acute tubular necrosis. Additionally, the response to fluid challenge is typically good in prerenal uraemia, while it is poor in acute tubular necrosis.

      Other factors that can help differentiate between the two include the serum urea:creatinine ratio, fractional urea excretion, urine:plasma osmolality, urine:plasma urea, specific gravity, and urine sediment. By considering these factors, healthcare professionals can accurately diagnose and treat acute kidney injury.

    • This question is part of the following fields:

      • Renal System
      20.7
      Seconds
  • Question 6 - A fourth year medical student presents to their GP with haemoptysis following a...

    Correct

    • A fourth year medical student presents to their GP with haemoptysis following a recent mild flu-like illness. Upon urinalysis, microscopic haematuria is detected. The GP suspects Goodpasture's syndrome and refers the student to the acute medical unit at the nearby hospital. What type of hypersensitivity reaction is Goodpasture's syndrome an example of?

      Your Answer: Type 2

      Explanation:

      The Gell and Coombs classification of hypersensitivity reactions categorizes reactions into four types. Type 2 reactions involve the binding of IgG and IgM to a cell, resulting in cell death. Examples of type 2 reactions include Goodpasture syndrome, haemolytic disease of the newborn, and rheumatic fever.

      Allergic rhinitis is an instance of a type 1 (immediate) reaction, which is IgE mediated. It is a hypersensitivity to a previously harmless substance.

      Type 3 reactions are mediated by immune complexes, with rheumatoid arthritis being an example of a type 3 hypersensitivity reaction.

      Type 4 (delayed) reactions are mediated by T lymphocytes and cause contact dermatitis.

      Anti-glomerular basement membrane (GBM) disease, previously known as Goodpasture’s syndrome, is a rare form of small-vessel vasculitis that is characterized by both pulmonary haemorrhage and rapidly progressive glomerulonephritis. This condition is caused by anti-GBM antibodies against type IV collagen and is more common in men, with a bimodal age distribution. Goodpasture’s syndrome is associated with HLA DR2.

      The features of this disease include pulmonary haemorrhage and rapidly progressive glomerulonephritis, which can lead to acute kidney injury. Nephritis can result in proteinuria and haematuria. Renal biopsy typically shows linear IgG deposits along the basement membrane, while transfer factor is raised secondary to pulmonary haemorrhages.

      Management of anti-GBM disease involves plasma exchange (plasmapheresis), steroids, and cyclophosphamide. One of the main complications of this condition is pulmonary haemorrhage, which can be exacerbated by factors such as smoking, lower respiratory tract infection, pulmonary oedema, inhalation of hydrocarbons, and young males.

    • This question is part of the following fields:

      • Renal System
      21.1
      Seconds
  • Question 7 - An 85-year-old woman presents with a painful left leg and is diagnosed with...

    Incorrect

    • An 85-year-old woman presents with a painful left leg and is diagnosed with erysipelas. She is admitted and prescribed penicillin in accordance with trust guidelines. However, after two days of inpatient treatment, the patient becomes anuric and confused. A repeat set of U&Es reveals a significant increase in creatinine levels. What is the probable mechanism by which penicillin caused kidney injury in this elderly patient?

      Your Answer: Renal artery vasoconstriction

      Correct Answer: Acute interstitial nephritis

      Explanation:

      AKI can be caused by penicillin due to its tendency to induce acute interstitial nephritis. This condition is characterized by inflammation in the renal interstitium and is known to occur with various medications, such as NSAIDs, antibiotics, and anticonvulsants. While the other choices may lead to acute kidney injury, they are not typically associated with penicillin antibiotics.

      Acute interstitial nephritis is a condition that is responsible for a quarter of all drug-induced acute kidney injuries. The most common cause of this condition is drugs, particularly antibiotics such as penicillin and rifampicin, as well as NSAIDs, allopurinol, and furosemide. Systemic diseases like SLE, sarcoidosis, and Sjögren’s syndrome, as well as infections like Hanta virus and staphylococci, can also cause acute interstitial nephritis. The histology of this condition shows marked interstitial oedema and interstitial infiltrate in the connective tissue between renal tubules. Symptoms of acute interstitial nephritis include fever, rash, arthralgia, eosinophilia, mild renal impairment, and hypertension. Sterile pyuria and white cell casts are common findings in investigations.

      Tubulointerstitial nephritis with uveitis (TINU) is a condition that typically affects young females. Symptoms of TINU include fever, weight loss, and painful, red eyes. Urinalysis is positive for leukocytes and protein.

    • This question is part of the following fields:

      • Renal System
      71.9
      Seconds
  • Question 8 - A 54-year-old individual visits their GP complaining of lower back pain, fatigue, weight...

    Incorrect

    • A 54-year-old individual visits their GP complaining of lower back pain, fatigue, weight loss, and visible haematuria. After ruling out a UTI, the GP refers them through a 2-week wait pathway. An ultrasound reveals a tumour, and a biopsy confirms malignant renal cancer. What is the probable histological type of their cancer?

      Your Answer: Transitional cell carcinoma

      Correct Answer: Clear cell carcinoma

      Explanation:

      Renal cell cancer, also known as hypernephroma, is a primary renal neoplasm that accounts for 85% of cases. It originates from the proximal renal tubular epithelium and is commonly associated with smoking and conditions such as von Hippel-Lindau syndrome and tuberous sclerosis. The clear cell subtype is the most prevalent, comprising 75-85% of tumors.

      Renal cell cancer is more common in middle-aged men and may present with classical symptoms such as haematuria, loin pain, and an abdominal mass. Other features include endocrine effects, such as the secretion of erythropoietin, parathyroid hormone-related protein, renin, and ACTH. Metastases are present in 25% of cases at presentation, and paraneoplastic syndromes such as Stauffer syndrome may also occur.

      The T category criteria for renal cell cancer are based on tumor size and extent of invasion. Management options include partial or total nephrectomy, depending on the tumor size and extent of disease. Patients with a T1 tumor are typically offered a partial nephrectomy, while alpha-interferon and interleukin-2 may be used to reduce tumor size and treat metastases. Receptor tyrosine kinase inhibitors such as sorafenib and sunitinib have shown superior efficacy compared to interferon-alpha.

      In summary, renal cell cancer is a common primary renal neoplasm that is associated with various risk factors and may present with classical symptoms and endocrine effects. Management options depend on the extent of disease and may include surgery and targeted therapies.

    • This question is part of the following fields:

      • Renal System
      55.1
      Seconds
  • Question 9 - A 79-year-old man is brought to the emergency department after fainting. Prior to...

    Incorrect

    • A 79-year-old man is brought to the emergency department after fainting. Prior to losing consciousness, he experienced dizziness and heart palpitations. He was unconscious for less than a minute and denies any chest discomfort. Upon cardiac examination, no abnormalities are detected. An ECG is conducted and reveals indications of hyperkalaemia. What is an ECG manifestation of hyperkalaemia?

      Your Answer: ST segment depression

      Correct Answer: Tall tented T waves

      Explanation:

      Hyperkalaemia can be identified on an ECG by tall tented T waves, small or absent P waves, and broad bizarre QRS complexes. In severe cases, the QRS complexes may form a sinusoidal wave pattern, and asystole may occur. On the other hand, hypokalaemia can be detected by ST segment depression, prominent U waves, small or inverted T waves, a prolonged PR interval (which can also be present in hyperkalaemia), and a long QT interval.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      34.8
      Seconds
  • Question 10 - A 65-year-old male is referred to the cardiology department by his physician due...

    Correct

    • A 65-year-old male is referred to the cardiology department by his physician due to chest pain during physical activity. The cardiologist plans to evaluate for coronary artery blockage and prescribes a coronary CT angiography. The radiologist will administer a contrast dye intravenously during the imaging. What is the most crucial blood test to conduct before giving the contrast agent?

      Your Answer: Urea and electrolytes

      Explanation:

      Before administering contrast medium, it is important to assess renal function by checking the patient’s urea and electrolytes (U&Es) due to the nephrotoxic nature of the contrast medium.

      Although cardiac enzymes can be useful in ruling out myocardial infarction, they are not relevant to the administration of contrast medium in this particular clinical scenario where an acute myocardial infarction is not suspected.

      While a full blood count may be part of the patient’s regular workup, it is not necessary for assessing the administration of contrast medium.

      Liver function does not need to be checked prior to administering contrast medium as it is not known to be hepatotoxic.

      Although contrast medium can affect thyroid function in some patients due to its iodine content, it is not routinely checked before administration.

      Contrast media nephrotoxicity is characterized by a 25% increase in creatinine levels within three days of receiving intravascular contrast media. This condition typically occurs between two to five days after administration and is more likely to affect patients with pre-existing renal impairment, dehydration, cardiac failure, or those taking nephrotoxic drugs like NSAIDs. Procedures that may cause contrast-induced nephropathy include CT scans with contrast and coronary angiography or percutaneous coronary intervention (PCI). Around 5% of patients who undergo PCI experience a temporary increase in plasma creatinine levels of more than 88 µmol/L.

      To prevent contrast-induced nephropathy, intravenous 0.9% sodium chloride should be administered at a rate of 1 mL/kg/hour for 12 hours before and after the procedure. Isotonic sodium bicarbonate may also be used. While N-acetylcysteine was previously used, recent evidence suggests it is not effective. Patients at high risk for contrast-induced nephropathy should have metformin withheld for at least 48 hours and until their renal function returns to normal to avoid the risk of lactic acidosis.

    • This question is part of the following fields:

      • Renal System
      21.8
      Seconds
  • Question 11 - An 73-year-old man visits his doctor complaining of limb weakness, fatigue, and easy...

    Correct

    • An 73-year-old man visits his doctor complaining of limb weakness, fatigue, and easy bruising. Despite maintaining a healthy diet, he has noticed an increase in abdominal weight. Following a positive high dexamethasone test, he is diagnosed with Cushing's disease caused by a pituitary adenoma. Which part of the adrenal gland produces the hormone responsible for his symptoms' pathophysiology?

      Your Answer: Zona fasciculata

      Explanation:

      The correct answer is the zona fasciculata of the adrenal cortex.

      This patient’s symptoms suggest that they may have Cushing’s syndrome, which is caused by excess cortisol production. Cortisol is normally produced in the zona fasciculata of the adrenal cortex.

      The adrenal medulla produces catecholamines like adrenaline and noradrenaline.

      The juxtaglomerular apparatus is located in the kidney and produces renin in response to reduced renal perfusion.

      The zona glomerulosa is the outer layer of the adrenal cortex and produces mineralocorticoids like aldosterone.

      The zona reticularis is the innermost layer of the adrenal cortex and produces androgens like DHEA.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      22.2
      Seconds
  • Question 12 - A 40-year-old man arrives at the emergency department with low blood pressure after...

    Incorrect

    • A 40-year-old man arrives at the emergency department with low blood pressure after a car crash. What is the mechanism by which angiotensin II increases the filtration fraction in the kidney?

      Your Answer: Vasoconstriction of the afferent glomerular arteriole

      Correct Answer: Vasoconstriction of the efferent glomerular arteriole

      Explanation:

      Angiotensin II helps maintain GFR by increasing the filtration fraction through vasoconstriction of the efferent arteriole of the glomerulus. Despite its vasoconstrictive effect on the glomerular arteries, angiotensin II has a greater impact on the efferent arteriole, leading to an increase in glomerular pressure and filtration fraction.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      34.9
      Seconds
  • Question 13 - A 38-year-old male patient complains of a painless lump in his left testicle...

    Incorrect

    • A 38-year-old male patient complains of a painless lump in his left testicle that he discovered during self-examination. Upon examination, a solid nodule is palpable in the left testicle, and ultrasound imaging reveals an irregular mass lesion. The patient's serum AFP and HCG levels are both normal. What is the probable diagnosis?

      Your Answer: Adenomatoid tumour

      Correct Answer: Seminoma

      Explanation:

      A seminoma is the most probable diagnosis for this man based on his age, symptoms, and normal levels of tumour markers. Teratomas and yolk sac tumours usually result in elevated AFP and HCG levels, which are not present in seminomas. Epididymo-orchitis does not cause painless irregular mass lesions.

      Overview of Testicular Disorders

      Testicular disorders can range from benign conditions to malignant tumors. Testicular cancer is the most common malignancy in men aged 20-30 years, with germ-cell tumors accounting for 95% of cases. Seminomas are the most common subtype, while non-seminomatous germ cell tumors include teratoma, yolk sac tumor, choriocarcinoma, and mixed germ cell tumors. Risk factors for testicular cancer include cryptorchidism, infertility, family history, Klinefelter’s syndrome, and mumps orchitis. The most common presenting symptom is a painless lump, but pain, hydrocele, and gynecomastia may also be present.

      Benign testicular disorders include epididymo-orchitis, which is an acute inflammation of the epididymis often caused by bacterial infection. Testicular torsion, which results in testicular ischemia and necrosis, is most common in males aged between 10 and 30. Hydrocele presents as a mass that transilluminates and may occur as a result of a patent processus vaginalis in children. Treatment for these conditions varies, with orchidectomy being the primary treatment for testicular cancer. Surgical exploration is necessary for testicular torsion, while epididymo-orchitis and hydrocele may require medication or surgical procedures depending on the severity of the condition.

    • This question is part of the following fields:

      • Renal System
      24.6
      Seconds
  • Question 14 - You have been requested to evaluate a patient in the endocrinology clinic who...

    Correct

    • You have been requested to evaluate a patient in the endocrinology clinic who is postmenopausal and has presented with generalized hair thinning on the scalp, changes in the tone of her voice, and troublesome acne on her back and upper chest. The patient's serum testosterone is within the normal range, but FSH and LH are elevated, consistent with her postmenopausal status. However, her serum levels of dehydroepiandrosterone (DHEA) are above the normal range, prompting a CT scan that reveals a 4 cm mass in the left adrenal gland.

      Based on the blood results, which part of the adrenal gland is the tumor most likely to originate from?

      Your Answer: Zona reticularis

      Explanation:

      A tumor in the zona reticularis of the adrenal cortex is causing excessive production of dehydroepiandrosterone (DHEA), an androgen hormone that can be converted into testosterone. This can lead to hyper-androgenic effects such as hirsutism, deepening of the voice, and increased libido. The zona glomerulosa and zona fasciculata are other areas of the adrenal cortex that produce aldosterone and cortisol respectively. The adrenal medulla produces catecholamines such as adrenaline and noradrenaline. The adrenal gland is supplied by the superior, middle, and inferior adrenal arteries, which are not involved in hormone production. A useful mnemonic for remembering which section of the cortex produces which hormones is GFR – ACD.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      40.5
      Seconds
  • Question 15 - A 32-year-old male is undergoing renal transplant surgery. Shortly after the donor kidney...

    Correct

    • A 32-year-old male is undergoing renal transplant surgery. Shortly after the donor kidney has been inserted, the transplanted organ begins to lose its color and becomes limp. Is hyperacute transplant rejection the likely cause of this? What is the underlying mechanism behind it?

      Your Answer: Pre-existing recipient antibodies against donor HLA/ABO antigens

      Explanation:

      Hyperacute transplant rejection is a rapid rejection of a donor organ that can occur within minutes to hours after transplantation. This rejection is caused by pre-existing antibodies against ABO or HLA antigens in the donor organ. If the rejection is widespread, it can activate the coagulation cascade and lead to occlusive thrombosis of the donated organ. Donor organs are carefully matched to recipients to minimize the risk of rejection.

      Mast cell degranulation is an allergic reaction that is mediated by IgE and results in the release of histamine.

      Acute rejection occurs days to weeks after transplantation and is an inflammatory process against the donated organ. Immunosuppressives can be used to slow down this process.

      Chronic rejection occurs months to years after transplantation and is characterized by atrophy of the organ and arteriosclerosis, rather than acute inflammatory processes.

      Graft vs Host disease occurs when donor T-cells mount a cell-mediated response against host tissues. This can lead to cholestasis, jaundice, a widespread rash, and diarrhea. It typically occurs within the first year following transplantation.

      The HLA system, also known as the major histocompatibility complex (MHC), is located on chromosome 6 and is responsible for human leucocyte antigens. Class 1 antigens include A, B, and C, while class 2 antigens include DP, DQ, and DR. When matching for a renal transplant, the importance of HLA antigens is ranked as DR > B > A.

      Graft survival rates for renal transplants are high, with a 90% survival rate at one year and a 60% survival rate at ten years for cadaveric transplants. Living-donor transplants have even higher survival rates, with a 95% survival rate at one year and a 70% survival rate at ten years. However, postoperative problems can occur, such as acute tubular necrosis of the graft, vascular thrombosis, urine leakage, and urinary tract infections.

      Hyperacute rejection can occur within minutes to hours after a transplant and is caused by pre-existing antibodies against ABO or HLA antigens. This type of rejection is an example of a type II hypersensitivity reaction and leads to widespread thrombosis of graft vessels, resulting in ischemia and necrosis of the transplanted organ. Unfortunately, there is no treatment available for hyperacute rejection, and the graft must be removed.

      Acute graft failure, which occurs within six months of a transplant, is usually due to mismatched HLA and is caused by cell-mediated cytotoxic T cells. This type of failure is usually asymptomatic and is detected by a rising creatinine, pyuria, and proteinuria. Other causes of acute graft failure include cytomegalovirus infection, but it may be reversible with steroids and immunosuppressants.

      Chronic graft failure, which occurs after six months of a transplant, is caused by both antibody and cell-mediated mechanisms that lead to fibrosis of the transplanted kidney, known as chronic allograft nephropathy. The recurrence of the original renal disease, such as MCGN, IgA, or FSGS, can also cause chronic graft failure.

    • This question is part of the following fields:

      • Renal System
      33.7
      Seconds
  • Question 16 - A 75-year-old woman is admitted for a laparoscopic cholecystectomy. As part of her...

    Correct

    • A 75-year-old woman is admitted for a laparoscopic cholecystectomy. As part of her pre-operative evaluation, it is discovered that she is taking furosemide to manage her hypertension. What percentage of the sodium filtered at the glomerulus will be eliminated?

      Your Answer: Up to 25%

      Explanation:

      Loop diuretics cause significant increases in sodium excretion by acting on both the medullary and cortical regions of the thick ascending limb of the loop of Henle. This leads to a reduction in the medullary osmolal gradient and an increase in the excretion of free water, along with sodium loss. Unlike thiazide diuretics, which do not affect urine concentration and are more likely to cause hyponatremia, loop diuretics result in the loss of both sodium and water.

      Diuretic drugs are classified into three major categories based on the location where they inhibit sodium reabsorption. Loop diuretics act on the thick ascending loop of Henle, thiazide diuretics on the distal tubule and connecting segment, and potassium sparing diuretics on the aldosterone-sensitive principal cells in the cortical collecting tubule. Sodium is reabsorbed in the kidney through Na+/K+ ATPase pumps located on the basolateral membrane, which return reabsorbed sodium to the circulation and maintain low intracellular sodium levels. This ensures a constant concentration gradient.

      The physiological effects of commonly used diuretics vary based on their site of action. furosemide, a loop diuretic, inhibits the Na+/K+/2Cl- carrier in the ascending limb of the loop of Henle and can result in up to 25% of filtered sodium being excreted. Thiazide diuretics, which act on the distal tubule and connecting segment, inhibit the Na+Cl- carrier and typically result in between 3 and 5% of filtered sodium being excreted. Finally, spironolactone, a potassium sparing diuretic, inhibits the Na+/K+ ATPase pump in the cortical collecting tubule and typically results in between 1 and 2% of filtered sodium being excreted.

    • This question is part of the following fields:

      • Renal System
      31.4
      Seconds
  • Question 17 - What are the probable outcomes of the discharge of vasopressin from the pituitary...

    Incorrect

    • What are the probable outcomes of the discharge of vasopressin from the pituitary gland?

      Your Answer: Increased secretion of aldosterone from the macula densa

      Correct Answer: Increased water permeability of the distal tubule cells of the kidney

      Explanation:

      Aquaporin channels are inserted into the apical membrane of the distal tubule and collecting ducts as a result of ADH (vasopressin).

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      59.4
      Seconds
  • Question 18 - A 13-year-old boy presents to his pediatrician with complaints of red-colored urine and...

    Correct

    • A 13-year-old boy presents to his pediatrician with complaints of red-colored urine and foamy urine for a while. His parents also noticed puffiness in his face and high blood pressure for his age and sex. The boy has been complaining of hearing difficulties in class and requested to be seated in front. The doctor suspects a genetically inherited disease that is passed down from affected mothers to fifty percent of their daughters and from fathers to all their sons. What is the underlying pathology of this patient's condition?

      Your Answer: Abnormal type IV collagen causing glomerular basement membrane splitting

      Explanation:

      The patient’s symptoms suggest a combination of nephritic and nephrotic syndrome, along with hearing problems, indicating a likely diagnosis of Alport syndrome. This X-linked dominant condition is caused by a defect in type IV collagen, which forms the basement membrane. The glomerular basement membrane in Alport syndrome is characterized by thinning and thickening with areas of splitting, resulting in a basketweave appearance on electron microscopy. The condition is inherited from affected mothers to 50% of their daughters and from fathers to all their sons.

      IgA nephropathy, also known as Berger disease, is characterized by IgA-based mesangial deposits on immunofluorescence and mesangial proliferation on light microscopy. Type 1 membranoproliferative glomerulonephritis presents with symptoms of both nephritic and nephrotic syndrome and is characterized by a tram-track appearance on periodic acid-Schiff stain due to mesangium proliferating into the glomerular basement membrane. Subendothelial immunocomplex deposits are seen on immunofluorescence. Poststreptococcal glomerulonephritis is a type of nephritic syndrome that occurs after a group A streptococcal infection and is characterized by enlarged and hypercellular glomeruli on light microscopy and subepithelial immunocomplexes on electron microscopy. Diffuse proliferative glomerulonephritis, often seen in SLE patients, presents with symptoms of both nephritic and nephrotic syndrome and is characterized by wire looping of capillaries on light microscopy and subendothelial immunocomplex deposits on electron microscopy. A granular appearance is found on immunofluorescence.

      Alport’s syndrome is a genetic disorder that is typically inherited in an X-linked dominant pattern. It is caused by a defect in the gene responsible for producing type IV collagen, which leads to an abnormal glomerular-basement membrane (GBM). The disease is more severe in males, with females rarely developing renal failure. Symptoms usually present in childhood and may include microscopic haematuria, progressive renal failure, bilateral sensorineural deafness, lenticonus, retinitis pigmentosa, and splitting of the lamina densa seen on electron microscopy. In some cases, an Alport’s patient with a failing renal transplant may have anti-GBM antibodies, leading to a Goodpasture’s syndrome-like picture. Diagnosis can be made through molecular genetic testing, renal biopsy, or electron microscopy. In around 85% of cases, the syndrome is inherited in an X-linked dominant pattern, while 10-15% of cases are inherited in an autosomal recessive fashion, with rare autosomal dominant variants existing.

    • This question is part of the following fields:

      • Renal System
      45.2
      Seconds
  • Question 19 - During an on-call shift, you are reviewing the blood results of a 72-year-old...

    Incorrect

    • During an on-call shift, you are reviewing the blood results of a 72-year-old man. He was admitted with abdominal pain and has a working diagnosis of acute cholecystitis. He is currently on intravenous cefuroxime and metronidazole, awaiting further surgical review. His blood results are as follows:

      Hb 115 g/L : (115 - 160)
      Platelets 320* 109/L (150 - 400)
      WBC 18.2* 109/L (4.0 - 11.0)
      Na+ 136 mmol/L (135 - 145)
      K+ 6.9 mmol/L (3.5 - 5.0)
      Urea 14.8 mmol/L (2.0 - 7.0)
      Creatinine 225 µmol/L (55 - 120)
      CRP 118 mg/L (< 5)

      Bilirubin 15 µmol/L (3 - 17)
      ALP 410 u/L (30 - 100)
      ALT 32 u/L (3 - 40)
      Albumin 39 g/L (35 - 50)

      You initiate treatment with intravenous calcium gluconate, salbutamol nebulisers, and furosemide. On discussion with the renal team, they recommend additional treatment with calcium resonium.

      What is the mechanism of action of calcium resonium?

      Your Answer: It acts on the NKCC2 channel to increase potassium excretion

      Correct Answer: It increases potassium excretion by preventing enteral absorption

      Explanation:

      The correct answer is that calcium resonium increases potassium excretion by preventing enteral absorption. This is achieved through cation ion exchange, where the resin exchanges potassium for Ca++ in the body. The onset of action is usually 2-12 hours when taken orally and longer when administered rectally. It is important to note that calcium resonium does not act on the Na+/K+-ATPase pump, which is the mechanism of action for drugs like digoxin. Additionally, it does not shift potassium from the extracellular to the intracellular compartment, which is the mechanism of action for salbutamol nebulisers. Lastly, calcium resonium does not stabilise the cardiac membrane, which is the action of calcium gluconate.

      Managing Hyperkalaemia: A Step-by-Step Guide

      Hyperkalaemia is a serious condition that can lead to life-threatening arrhythmias if left untreated. To manage hyperkalaemia, it is important to address any underlying factors that may be contributing to the condition, such as acute kidney injury, and to stop any aggravating drugs, such as ACE inhibitors. Treatment can be categorised based on the severity of the hyperkalaemia, which is classified as mild, moderate, or severe based on the patient’s potassium levels.

      ECG changes are also important in determining the appropriate management for hyperkalaemia. Peaked or ‘tall-tented’ T waves, loss of P waves, broad QRS complexes, and a sinusoidal wave pattern are all associated with hyperkalaemia and should be evaluated in all patients with new hyperkalaemia.

      The principles of treatment modalities for hyperkalaemia include stabilising the cardiac membrane, shifting potassium from extracellular to intracellular fluid compartments, and removing potassium from the body. IV calcium gluconate is used to stabilise the myocardium, while insulin/dextrose infusion and nebulised salbutamol can be used to shift potassium from the extracellular to intracellular fluid compartments. Calcium resonium, loop diuretics, and dialysis can be used to remove potassium from the body.

      In practical terms, all patients with severe hyperkalaemia or ECG changes should receive emergency treatment, including IV calcium gluconate to stabilise the myocardium and insulin/dextrose infusion to shift potassium from the extracellular to intracellular fluid compartments. Other treatments, such as nebulised salbutamol, may also be used to temporarily lower serum potassium levels. Further management may involve stopping exacerbating drugs, treating any underlying causes, and lowering total body potassium through the use of calcium resonium, loop diuretics, or dialysis.

    • This question is part of the following fields:

      • Renal System
      104.5
      Seconds
  • Question 20 - A 45-year-old patient presents to the clinic with complaints of abdominal pain. Upon...

    Correct

    • A 45-year-old patient presents to the clinic with complaints of abdominal pain. Upon routine blood tests, the following results were obtained:

      Na+ 142 mmol/l
      K+ 4.0 mmol/l
      Chloride 104 mmol/l
      Bicarbonate 19 mmol/l
      Urea 7.0 mmol/l
      Creatinine 112 µmol/l

      What is the calculated anion gap?

      Your Answer: 23 mmol/L

      Explanation:

      Understanding Anion Gap in Metabolic Acidosis

      Metabolic acidosis is a condition where the body produces too much acid or loses too much bicarbonate. Anion gap is a useful tool in diagnosing metabolic acidosis. It is calculated by subtracting the sum of bicarbonate and chloride from the sum of sodium and potassium. A normal anion gap is between 8-14 mmol/L.

      There are two types of metabolic acidosis: normal anion gap and raised anion gap. Normal anion gap or hyperchloraemic metabolic acidosis can be caused by gastrointestinal bicarbonate loss, renal tubular acidosis, drugs like acetazolamide, ammonium chloride injection, and Addison’s disease. On the other hand, raised anion gap metabolic acidosis can be caused by lactate due to shock or hypoxia, ketones in diabetic ketoacidosis or alcohol, urate in renal failure, acid poisoning from salicylates or methanol, and 5-oxoproline from chronic paracetamol use.

      Understanding anion gap in metabolic acidosis is crucial in identifying the underlying cause of the condition. It helps healthcare professionals in providing appropriate treatment and management to patients.

    • This question is part of the following fields:

      • Renal System
      72.5
      Seconds
  • Question 21 - A 6-year-old girl is undergoing a renal biopsy due to recent haematuria and...

    Incorrect

    • A 6-year-old girl is undergoing a renal biopsy due to recent haematuria and proteinuria. Upon histological analysis, immune complex deposition is found within the glomeruli. Further investigation reveals the presence of IgG, IgM, and C3 within the complexes.

      What is the probable diagnosis?

      Your Answer: Focal segmental glomerulosclerosis

      Correct Answer: Post-streptococcal glomerulonephritis

      Explanation:

      The correct diagnosis is post-streptococcal glomerulonephritis, which is a condition that commonly affects young children following an upper respiratory tract infection. Symptoms include haematuria, proteinuria, and general malaise. Biopsy samples typically show immune complex deposition of IgG, IgM, and C3, endothelial proliferation with neutrophils, and a subepithelial ‘hump’ appearance on electron microscopy. Immunofluorescence may show a granular or ‘starry sky’ appearance.

      Minimal change disease is an incorrect diagnosis as it typically presents with nephrotic syndrome and does not include haematuria as a symptom. Additionally, minimal changes in glomerular structure should be seen on histology.

      IgA nephropathy is also an incorrect diagnosis as it has IgA complex deposition on histology, which is different from the immune complex deposition seen in post-streptococcal glomerulonephritis.

      Amyloidosis is another incorrect diagnosis as it is a cause of nephrotic syndrome and is characterised by amyloid deposition.

      Post-streptococcal glomerulonephritis is a condition that typically occurs 7-14 days after an infection caused by group A beta-haemolytic Streptococcus, usually Streptococcus pyogenes. It is more common in young children and is caused by the deposition of immune complexes (IgG, IgM, and C3) in the glomeruli. Symptoms include headache, malaise, visible haematuria, proteinuria, oedema, hypertension, and oliguria. Blood tests may show a raised anti-streptolysin O titre and low C3, which confirms a recent streptococcal infection.

      It is important to note that IgA nephropathy and post-streptococcal glomerulonephritis are often confused as they both can cause renal disease following an upper respiratory tract infection. Renal biopsy features of post-streptococcal glomerulonephritis include acute, diffuse proliferative glomerulonephritis with endothelial proliferation and neutrophils. Electron microscopy may show subepithelial ‘humps’ caused by lumpy immune complex deposits, while immunofluorescence may show a granular or ‘starry sky’ appearance.

      Despite its severity, post-streptococcal glomerulonephritis carries a good prognosis.

    • This question is part of the following fields:

      • Renal System
      69.5
      Seconds
  • Question 22 - A 55-year-old man has recently been prescribed atorvastatin due to a high QRISK...

    Correct

    • A 55-year-old man has recently been prescribed atorvastatin due to a high QRISK score and elevated cholesterol levels. He has a medical history of hypertension and takes amlodipine for it. However, he has returned to the GP after three weeks of taking atorvastatin, complaining of intolerable leg cramps. The GP is worried about the potential cardiac complications if the patient's cholesterol levels are not controlled. What alternative treatment options can be considered as second-line therapy?

      Your Answer: Ezetimibe

      Explanation:

      Ezetimibe is the recommended second line treatment for patients who cannot tolerate the side effects of statins, according to NICE guidelines. Atorvastatin is the preferred statin due to its lower incidence of side effects compared to simvastatin. Switching to simvastatin may not be beneficial and its dose would be limited to 20mg due to the concurrent use of amlodipine, which weakly inhibits the CYP enzyme responsible for simvastatin metabolism, effectively doubling the dose. Other options are not recommended by NICE as alternatives to statin therapy.

      The Use of Ezetimibe in Treating Hypercholesterolaemia

      Ezetimibe is a medication that helps lower cholesterol levels by inhibiting cholesterol receptors in the small intestine, reducing cholesterol absorption. In 2016, the National Institute for Health and Care Excellence (NICE) released guidelines on the use of ezetimibe in treating primary heterozygous-familial and non-familial hypercholesterolaemia.

      For individuals who cannot tolerate or are unable to take statin therapy, ezetimibe monotherapy is recommended as an option for treating primary hypercholesterolaemia in adults. Additionally, for those who have already started statin therapy but are not seeing appropriate control of serum total or LDL cholesterol levels, ezetimibe can be coadministered with initial statin therapy. This is also recommended when a change from initial statin therapy to an alternative statin is being considered.

      Overall, ezetimibe can be a useful medication in managing hypercholesterolaemia, particularly for those who cannot tolerate or do not see adequate results from statin therapy.

    • This question is part of the following fields:

      • Renal System
      22.4
      Seconds
  • Question 23 - At what level is the hilum of the right kidney located? ...

    Correct

    • At what level is the hilum of the right kidney located?

      Your Answer: L1

      Explanation:

      Renal Anatomy: Understanding the Structure and Relations of the Kidneys

      The kidneys are two bean-shaped organs located in a deep gutter alongside the vertebral bodies. They measure about 11cm long, 5cm wide, and 3 cm thick, with the left kidney usually positioned slightly higher than the right. The upper pole of both kidneys approximates with the 11th rib, while the lower border is usually alongside L3. The kidneys are surrounded by an outer cortex and an inner medulla, which contains pyramidal structures that terminate at the renal pelvis into the ureter. The renal sinus lies within the kidney and contains branches of the renal artery, tributaries of the renal vein, major and minor calyces, and fat.

      The anatomical relations of the kidneys vary depending on the side. The right kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, and transversus abdominis, while the left kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, transversus abdominis, stomach, pancreas, spleen, and distal part of the small intestine. Each kidney and suprarenal gland is enclosed within a common layer of investing fascia, derived from the transversalis fascia, which is divided into anterior and posterior layers (Gerotas fascia).

      At the renal hilum, the renal vein lies most anteriorly, followed by the renal artery (an end artery), and the ureter lies most posteriorly. Understanding the structure and relations of the kidneys is crucial in diagnosing and treating renal diseases and disorders.

    • This question is part of the following fields:

      • Renal System
      11.1
      Seconds
  • Question 24 - A 54-year-old man visits the clinic after his spouse was diagnosed with hypertension...

    Correct

    • A 54-year-old man visits the clinic after his spouse was diagnosed with hypertension and advised him to get his blood pressure checked. He has no symptoms. Upon measurement, his blood pressure is 155/92 mmHg. To further evaluate, a 24-hour blood pressure monitoring is scheduled. During the consultation, you discuss the physiology of blood pressure and mention the significance of the renin-angiotensin-aldosterone system in maintaining blood pressure homeostasis. Can you identify the primary site of aldosterone action in the kidney?

      Your Answer: Distal convoluted tubule and collecting duct of the nephron

      Explanation:

      Aldosterone functions in the distal convoluted tubule and collecting ducts of the nephron. Spironolactone is a diuretic that preserves potassium levels by blocking aldosterone receptors. The loop of Henle and Bowman’s capsule are located closer to the beginning of the nephron. Prostaglandins regulate the afferent arteriole of the glomerulus, causing vasodilation. NSAIDs can lead to renal failure by inhibiting prostaglandin production. The vasa recta are straight capillaries that run parallel to the loop of Henle in the kidney. To confirm a diagnosis of hypertension, NICE recommends a 24-hour ambulatory blood pressure reading to account for the potential increase in blood pressure in clinical settings.

      Aldosterone is a hormone that is primarily produced by the adrenal cortex in the zona glomerulosa. Its main function is to stimulate the reabsorption of sodium from the distal tubules, which results in the excretion of potassium. It is regulated by various factors such as angiotensin II, potassium, and ACTH, which increase its secretion. However, when there is an overproduction of aldosterone, it can lead to primary hyperaldosteronism, which is a common cause of secondary hypertension. This condition can be caused by an adrenal adenoma, which is also known as Conn’s syndrome. It is important to note that spironolactone, an aldosterone antagonist, can cause hyperkalemia.

    • This question is part of the following fields:

      • Renal System
      65.1
      Seconds
  • Question 25 - At which of the following locations is the highest amount of water absorbed?...

    Correct

    • At which of the following locations is the highest amount of water absorbed?

      Your Answer: Jejunum

      Explanation:

      The small bowel, specifically the jejunum and ileum, is the primary location for water absorption in the gastrointestinal tract. While the colon does play a role in water absorption, its contribution is minor in comparison. However, if there is a significant removal of the small bowel, the importance of the colon in water absorption may become more significant.

      Water Absorption in the Human Body

      Water absorption in the human body is a crucial process that occurs in the small bowel and colon. On average, a person ingests up to 2000ml of liquid orally within a 24-hour period. Additionally, gastrointestinal secretions contribute to a further 8000ml of fluid entering the small bowel. The process of intestinal water absorption is passive and is dependent on the solute load. In the jejunum, the active absorption of glucose and amino acids creates a concentration gradient that facilitates the flow of water across the membrane. On the other hand, in the ileum, most water is absorbed through facilitated diffusion, which involves the movement of water molecules with sodium ions.

      The colon also plays a significant role in water absorption, with approximately 150ml of water entering it daily. However, the colon can adapt and increase this amount following resection. Overall, water absorption is a complex process that involves various mechanisms and is essential for maintaining proper hydration levels in the body.

    • This question is part of the following fields:

      • Renal System
      6.1
      Seconds
  • Question 26 - A 79-year-old woman visits her primary care physician for routine blood tests to...

    Incorrect

    • A 79-year-old woman visits her primary care physician for routine blood tests to monitor her declining kidney function. During her latest test, her serum potassium level was slightly above the normal range. The patient appeared to be in good health, and this has never been an issue before, so the physician orders a repeat blood test before taking any action. What is the most probable cause of an artificial increase in potassium levels (i.e., a serum potassium result that is higher than the actual value found in the patient)?

      Your Answer: Retrieving an FBC sample after the U&E sample

      Correct Answer: Delayed analysis of the sample

      Explanation:

      Delayed analysis of the sample is the cause of pseudohyperkalaemia, which is a laboratory artefact. Potassium is mainly found inside cells, and if the sample is not processed promptly, potassium leaks out of the cells and into the serum, resulting in a higher reading than the actual level in the patient. This can be a significant issue in primary care. It is recommended to retrieve the FBC sample before the U&E sample to avoid exposing the latter to the potassium-based anticoagulant in FBC bottles, which can cause an artifactual result. Sunlight exposure is not a known cause of artifactual results. If a patient vomits or has diarrhoea after the sample is retrieved, the sample still reflects the serum potassium level at the time of retrieval and is not artefactual. Additionally, diarrhoea and vomiting can cause a decrease in potassium, not an increase as stated in the question.

      Understanding Pseudohyperkalaemia

      Pseudohyperkalaemia is a condition where there is an apparent increase in serum potassium levels due to the excessive leakage of potassium from cells during or after blood is drawn. This is a laboratory artefact and does not reflect the actual serum potassium concentration. Since most of the potassium is intracellular, any leakage from cells can significantly affect serum levels. The release of potassium occurs when large numbers of platelets aggregate and degranulate.

      There are several causes of pseudohyperkalaemia, including haemolysis during venipuncture, delay in processing the blood specimen, abnormally high numbers of platelets, leukocytes, or erythrocytes, and familial causes. To obtain an accurate result, measuring an arterial blood gas is recommended. For obtaining a lab sample, using a lithium heparin tube, requesting a slow spin on the lab centrifuge, and walking the sample to the lab should ensure an accurate result. Understanding pseudohyperkalaemia is important to avoid misdiagnosis and unnecessary treatment.

    • This question is part of the following fields:

      • Renal System
      60.7
      Seconds
  • Question 27 - A 65-year-old man comes to the clinic for a medication review. He reports...

    Correct

    • A 65-year-old man comes to the clinic for a medication review. He reports no negative effects and wishes to continue his current treatment. After conducting a blood test, you notice that his serum potassium level is slightly elevated. Which of the following frequently prescribed drugs is linked to an increase in serum potassium?

      Your Answer: Ramipril

      Explanation:

      Ramipril is the correct answer. Before starting ACE inhibitor therapy, a baseline potassium level is measured because these drugs can cause an increase in serum potassium.

      Loop diuretics like furosemide can cause hypokalaemia and hyponatraemia.

      Salbutamol does not lead to hyperkalaemia and can actually be used to lower serum potassium levels in emergency situations.

      Taking paracetamol within recommended doses does not affect potassium levels.

      Drugs and their Effects on Potassium Levels

      Many commonly prescribed drugs have the potential to alter the levels of potassium in the bloodstream. Some drugs can decrease the amount of potassium in the blood, while others can increase it.

      Drugs that can decrease serum potassium levels include thiazide and loop diuretics, as well as acetazolamide. On the other hand, drugs that can increase serum potassium levels include ACE inhibitors, angiotensin-2 receptor blockers, spironolactone, and potassium-sparing diuretics like amiloride and triamterene. Additionally, taking potassium supplements like Sando-K or Slow-K can also increase potassium levels in the blood.

      It’s important to note that the above list does not include drugs used to temporarily decrease serum potassium levels for patients with hyperkalaemia, such as salbutamol or calcium resonium.

      Overall, it’s crucial for healthcare providers to be aware of the potential effects of medications on potassium levels and to monitor patients accordingly.

    • This question is part of the following fields:

      • Renal System
      35.6
      Seconds
  • Question 28 - A 25-year-old patient arrives at the emergency department with a head injury after...

    Correct

    • A 25-year-old patient arrives at the emergency department with a head injury after a night of heavy drinking. All his vital signs are normal, and his pupils react to light equally. A CT scan of his head shows no abnormalities. He reports feeling thirsty and experiencing excessive urination.

      What is causing his polyuria?

      Your Answer: Inhibition of posterior pituitary gland

      Explanation:

      Excessive alcohol consumption can result in the suppression of ADH in the posterior pituitary gland, which can lead to polyuria.

      Normally, dehydration causes an increase in plasma osmolality, which triggers the release of vasopressin (antidiuretic hormone) from the posterior pituitary gland. This hormone increases the insertion of aquaporin 2 channels in the distal convoluted tubules and collecting duct in the kidney, which in turn increases water reabsorption. This leads to a decrease in plasma osmolality and a reduction in the volume of urine produced, i.e., antidiuretic.

      However, alcohol inhibits this mechanism, resulting in polyuria and dehydration. Polyuria can then cause thirst, i.e., polydipsia.

      It is important to note that the sugars in alcohol do not typically cause osmotic diuresis unless there is an underlying condition such as diabetes and hyperglycemia.

      Polyuria, or excessive urination, can be caused by a variety of factors. A recent review in the BMJ categorizes these causes by their frequency of occurrence. The most common causes of polyuria include the use of diuretics, caffeine, and alcohol, as well as diabetes mellitus, lithium, and heart failure. Less common causes include hypercalcaemia and hyperthyroidism, while rare causes include chronic renal failure, primary polydipsia, and hypokalaemia. The least common cause of polyuria is diabetes insipidus, which occurs in less than 1 in 10,000 cases. It is important to note that while these frequencies may not align with exam questions, understanding the potential causes of polyuria can aid in diagnosis and treatment.

    • This question is part of the following fields:

      • Renal System
      18.2
      Seconds
  • Question 29 - A 72-year-old man, with a past medical history of diabetes, hypertension and stable...

    Incorrect

    • A 72-year-old man, with a past medical history of diabetes, hypertension and stable angina visits his family physician for a routine check-up. He is currently taking metoprolol, daily aspirin and insulin glargine. He lives alone and is able to manage his daily activities. He used to work as a teacher and his wife passed away from a stroke 5 years ago. During the examination, his heart rate is 60 beats per minute, respiratory rate is 14 breaths per minute and blood pressure is 125/80 mmHg. What is the direct effect of the metoprolol medication on this patient?

      Your Answer: Dilation of arterioles

      Correct Answer: Decrease in renin secretion

      Explanation:

      During the patient’s regular follow-up for diabetes and hypertension management, it was noted that both conditions increase the risk of cardiovascular complications and other related complications such as kidney and eye problems. To manage hypertension, the patient was prescribed metoprolol, a beta-blocker that reduces blood pressure by decreasing heart rate and cardiac output. Additionally, metoprolol blocks beta-1 adrenergic receptors in the juxtaglomerular apparatus of the kidneys, leading to a decrease in renin secretion. Renin is responsible for converting angiotensinogen to angiotensin I, which is further converted to angiotensin II, a hormone that increases blood pressure through vasoconstriction and sodium retention. By blocking renin secretion, metoprolol causes a decrease in blood pressure. Other antihypertensive medications work through different mechanisms, such as calcium channel blockers that dilate arterioles, ACE inhibitors that decrease angiotensin II secretion, and beta-blockers that decrease renin secretion.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      39.2
      Seconds
  • Question 30 - A 56-year-old man with end stage diabetic nephropathy is undergoing evaluation for a...

    Incorrect

    • A 56-year-old man with end stage diabetic nephropathy is undergoing evaluation for a renal transplant. In terms of HLA matching between donor and recipient, which HLA antigen is the most crucial to match?

      Your Answer: A

      Correct Answer: DR

      Explanation:

      The HLA system, also known as the major histocompatibility complex (MHC), is located on chromosome 6 and is responsible for human leucocyte antigens. Class 1 antigens include A, B, and C, while class 2 antigens include DP, DQ, and DR. When matching for a renal transplant, the importance of HLA antigens is ranked as DR > B > A.

      Graft survival rates for renal transplants are high, with a 90% survival rate at one year and a 60% survival rate at ten years for cadaveric transplants. Living-donor transplants have even higher survival rates, with a 95% survival rate at one year and a 70% survival rate at ten years. However, postoperative problems can occur, such as acute tubular necrosis of the graft, vascular thrombosis, urine leakage, and urinary tract infections.

      Hyperacute rejection can occur within minutes to hours after a transplant and is caused by pre-existing antibodies against ABO or HLA antigens. This type of rejection is an example of a type II hypersensitivity reaction and leads to widespread thrombosis of graft vessels, resulting in ischemia and necrosis of the transplanted organ. Unfortunately, there is no treatment available for hyperacute rejection, and the graft must be removed.

      Acute graft failure, which occurs within six months of a transplant, is usually due to mismatched HLA and is caused by cell-mediated cytotoxic T cells. This type of failure is usually asymptomatic and is detected by a rising creatinine, pyuria, and proteinuria. Other causes of acute graft failure include cytomegalovirus infection, but it may be reversible with steroids and immunosuppressants.

      Chronic graft failure, which occurs after six months of a transplant, is caused by both antibody and cell-mediated mechanisms that lead to fibrosis of the transplanted kidney, known as chronic allograft nephropathy. The recurrence of the original renal disease, such as MCGN, IgA, or FSGS, can also cause chronic graft failure.

    • This question is part of the following fields:

      • Renal System
      22.9
      Seconds
  • Question 31 - A female infant is being assessed for recurrent urinary tract infections. An abdominal...

    Correct

    • A female infant is being assessed for recurrent urinary tract infections. An abdominal ultrasound scan displays bilateral hydronephrosis, a thickened bladder wall with thickened smooth muscle trabeculations. Voiding cystourethrogram (VCUG) reveals reflux.

      What is the most probable diagnosis, which is commonly seen in this scenario?

      Your Answer: Posterior urethral valves

      Explanation:

      Posterior urethral valves are a common cause of bladder outlet obstruction in male infants, which can be detected before birth through the presence of hydronephrosis. On the other hand, epispadias and hypospadias are conditions where the urethra opens on the dorsal and ventral surface of the penis, respectively, but they are not typically associated with bladder outlet obstruction. Urethral atresia, a rare condition where the urethra is absent, can also cause bladder outlet obstruction.

      Posterior urethral valves are a frequent cause of blockage in the lower urinary tract in males. They can be detected during prenatal ultrasound screenings. Due to the high pressure required for bladder emptying during fetal development, the child may experience damage to the renal parenchyma, resulting in renal impairment in 70% of boys upon diagnosis. Treatment involves the use of a bladder catheter, and endoscopic valvotomy is the preferred definitive treatment. Cystoscopic and renal follow-up is necessary.

    • This question is part of the following fields:

      • Renal System
      27.2
      Seconds
  • Question 32 - Whilst on the ward, you observe that a severely underweight 25-year-old male patient...

    Incorrect

    • Whilst on the ward, you observe that a severely underweight 25-year-old male patient with anorexia nervosa has become acutely drowsy and confused. You are informed that he was artificially fed 30 minutes ago, are given a set of blood tests taken since his new symptoms began and suspect that he has refeeding syndrome.

      What are the blood results that you are likely to observe?

      Your Answer: Hyperkalaemia, hyperphosphataemia and hypermagnesemia

      Correct Answer: Hypokalaemia, hypophosphataemia and hypomagnesemia

      Explanation:

      When severely underweight patients are given high levels of artificial feeding, it can trigger refeeding syndrome. This condition is characterized by a sudden surge of insulin, which causes protein channels to move to the apical layer of cell membranes. As a result, glucose and electrolytes like potassium, phosphate, and magnesium are rapidly taken up by cells, leading to a significant drop in their serum levels. This can cause hypokalemia, hypophosphatemia, and hypomagnesemia.

      Hypophosphataemia is a medical condition characterized by low levels of phosphate in the blood. This condition can be caused by various factors such as alcohol excess, acute liver failure, diabetic ketoacidosis, refeeding syndrome, primary hyperparathyroidism, and osteomalacia.

      Alcohol excess, acute liver failure, and diabetic ketoacidosis are some of the common causes of hypophosphataemia. Refeeding syndrome, which occurs when a malnourished individual is given too much food too quickly, can also lead to this condition. Primary hyperparathyroidism, a condition where the parathyroid gland produces too much hormone, and osteomalacia, a condition where bones become soft and weak, can also cause hypophosphataemia.

      Hypophosphataemia can have serious consequences on the body. Low levels of phosphate can lead to red blood cell haemolysis, white blood cell and platelet dysfunction, muscle weakness, and rhabdomyolysis. It can also cause central nervous system dysfunction, which can lead to confusion, seizures, and coma. Therefore, it is important to identify and treat hypophosphataemia promptly to prevent any further complications.

    • This question is part of the following fields:

      • Renal System
      47.3
      Seconds
  • Question 33 - A 5-year-old boy presents with pain in the abdomen and painless blood in...

    Incorrect

    • A 5-year-old boy presents with pain in the abdomen and painless blood in the urine. Upon examination, a lump is felt in the left flank. What is the probable diagnosis?

      Your Answer: Cystitis

      Correct Answer: Wilms' tumour

      Explanation:

      A Wilms’ tumour is the most prevalent type of renal carcinoma in children, making renal cell carcinoma an incorrect diagnosis. Ulcerative colitis is rare in children of this age, and the other potential diagnoses are unlikely based on the child’s symptoms.

      Wilms’ Tumour: A Common Childhood Malignancy

      Wilms’ tumour, also known as nephroblastoma, is a prevalent type of cancer in children, with a median age of diagnosis at 3 years old. It is often associated with Beckwith-Wiedemann syndrome, hemihypertrophy, and a loss-of-function mutation in the WT1 gene on chromosome 11. The most common presenting feature is an abdominal mass, which is usually painless, but other symptoms such as haematuria, flank pain, anorexia, and fever may also occur. In 95% of cases, the tumour is unilateral, and metastases are found in 20% of patients, most commonly in the lungs.

      If a child presents with an unexplained enlarged abdominal mass, it is crucial to arrange a paediatric review within 48 hours to rule out Wilms’ tumour. The management of this cancer typically involves nephrectomy, chemotherapy, and radiotherapy if the disease is advanced. Fortunately, the prognosis for Wilms’ tumour is good, with an 80% cure rate.

      Histologically, Wilms’ tumour is characterized by epithelial tubules, areas of necrosis, immature glomerular structures, stroma with spindle cells, and small cell blastomatous tissues resembling the metanephric blastema. Overall, early detection and prompt treatment are essential for a successful outcome in children with Wilms’ tumour.

    • This question is part of the following fields:

      • Renal System
      20.6
      Seconds
  • Question 34 - A 28-year-old male patient comes to you with worries about his increasing breast...

    Correct

    • A 28-year-old male patient comes to you with worries about his increasing breast size, despite not experiencing any weight gain in other areas. Upon further inquiry, he also mentions a painless lump in his right testicle. He reveals that his father had testicular cancer in the past.

      What is the probable reason for gynaecomastia in this scenario?

      Your Answer: Increased oestrogen: androgen ratio

      Explanation:

      Gynaecomastia is a common symptom of testicular cancer and is caused by an increased oestrogen:androgen ratio. This occurs because germ-cell tumours produce hCG, which causes Leydig cells to produce more oestradiol in relation to testosterone. Leydig cell tumours also directly secrete more oestradiol and convert additional androgen precursors to oestrogens. This results in a relative reduction in androgen concentration and an increased conversion of androgens to oestrogens.

      Obesity can also cause gynaecomastia due to increased levels of aromatase, the enzyme responsible for the conversion of androgens to oestrogens. However, this is not the most likely cause in this case as the patient has not gained weight elsewhere and presents with symptoms of testicular cancer.

      Undescended testis is a significant risk factor for testicular cancer, but it is not a direct cause of gynaecomastia. Similarly, a prolactinoma can cause breast enlargement in males, but it is not commonly associated with testicular cancer or gynaecomastia.

      In summary, gynaecomastia in testicular cancer is caused by an increased oestrogen:androgen ratio, which can result from germ-cell or Leydig cell tumours. Other potential causes, such as obesity, undescended testis, or prolactinoma, are less likely in this clinical scenario.

      Testicular cancer is a common type of cancer that affects men between the ages of 20 and 30. The majority of cases (95%) are germ-cell tumors, which can be further classified as seminomas or non-seminomas. Non-germ cell tumors, such as Leydig cell tumors and sarcomas, are less common. Risk factors for testicular cancer include infertility, cryptorchidism, family history, Klinefelter’s syndrome, and mumps orchitis. Symptoms may include a painless lump, pain, hydrocele, and gynaecomastia.

      Tumour markers can be used to diagnose testicular cancer. For germ cell tumors, hCG may be elevated in seminomas, while AFP and/or beta-hCG are elevated in non-seminomas. LDH may also be elevated in germ cell tumors. Ultrasound is the first-line diagnostic tool.

      Treatment for testicular cancer depends on the type and stage of the tumor. Orchidectomy, chemotherapy, and radiotherapy may be used. Prognosis is generally excellent, with a 5-year survival rate of around 95% for Stage I seminomas and 85% for Stage I teratomas.

    • This question is part of the following fields:

      • Renal System
      17.5
      Seconds
  • Question 35 - John, 72-years-old, visits his GP with concerns of frequent urination accompanied by a...

    Incorrect

    • John, 72-years-old, visits his GP with concerns of frequent urination accompanied by a burning sensation and interrupted flow of urine that have persisted for approximately 5 months. During a digital rectal examination, his GP detects an enlarged prostate without nodules and his PSA levels are moderately elevated. The diagnosis is BPH. Which zone of the prostate experiences enlargement in BPH?

      Your Answer: Fibromuscular zone

      Correct Answer: Transitional zone

      Explanation:

      The periurethral gland area of the prostate gland does not have a distinct functional or histological identity. It is composed of cells from various regions of the prostate that are linked to different medical conditions. This part of the prostate does not typically experience enlargement and lacks glandular elements. Instead, it consists solely of fibrous tissue and smooth muscle cells, as its name implies.

      Benign prostatic hyperplasia (BPH) is a common condition that affects older men, with around 50% of 50-year-old men showing evidence of BPH and 30% experiencing symptoms. The risk of BPH increases with age, with around 80% of 80-year-old men having evidence of the condition. Ethnicity also plays a role, with black men having a higher risk than white or Asian men. BPH typically presents with lower urinary tract symptoms (LUTS), which can be categorised into obstructive (voiding) symptoms and irritative (storage) symptoms. Complications of BPH can include urinary tract infections, retention, and obstructive uropathy.

      Assessment of BPH may involve dipstick urine testing, U&Es, and PSA testing if obstructive symptoms are present or if the patient is concerned about prostate cancer. A urinary frequency-volume chart and the International Prostate Symptom Score (IPSS) can also be used to assess the severity of LUTS and their impact on quality of life. Management options for BPH include watchful waiting, alpha-1 antagonists, 5 alpha-reductase inhibitors, combination therapy, and surgery. Alpha-1 antagonists are considered first-line for moderate-to-severe voiding symptoms and can improve symptoms in around 70% of men, but may cause adverse effects such as dizziness and dry mouth. 5 alpha-reductase inhibitors may slow disease progression and reduce prostate volume, but can cause adverse effects such as erectile dysfunction and reduced libido. Combination therapy may be used for bothersome moderate-to-severe voiding symptoms and prostatic enlargement. Antimuscarinic drugs may be tried for persistent storage symptoms. Surgery, such as transurethral resection of the prostate (TURP), may also be an option.

    • This question is part of the following fields:

      • Renal System
      60.8
      Seconds
  • Question 36 - John, 72-years-old, visits his GP with concerns of frequent urination accompanied by a...

    Incorrect

    • John, 72-years-old, visits his GP with concerns of frequent urination accompanied by a burning sensation and interrupted flow of urine that have persisted for approximately 5 months. During a digital rectal examination, an enlarged, nodular prostate is detected and his PSA levels are significantly elevated. Following a biopsy, he is diagnosed with prostate cancer. Which zone of the prostate is commonly affected by prostate cancer and experiences enlargement?

      Your Answer: Fibromuscular zone

      Correct Answer: Peripheral zone

      Explanation:

      Prostate cancer is a common condition with up to 30,000 men diagnosed and 9,000 deaths per year in the UK. Diagnosis involves PSA measurement, digital rectal examination, and imaging for staging. Pathology shows 95% adenocarcinoma, often multifocal and graded using the Gleason system. Treatment options include watchful waiting, radiotherapy, surgery, and hormonal therapy. Active surveillance is recommended for low-risk men, with treatment decisions made based on disease progression and individual factors.

    • This question is part of the following fields:

      • Renal System
      22.4
      Seconds
  • Question 37 - A 95-year-old man is discovered collapsed in his residence and is transported to...

    Correct

    • A 95-year-old man is discovered collapsed in his residence and is transported to the hospital. Upon examination, he is diagnosed with dehydration and hypotension, prompting the release of renin by the juxtaglomerular cells. What is the mechanism of action of renin?

      Your Answer: Hydrolyse angiotensinogen to form angiotensin I

      Explanation:

      Angiotensin I is formed when renin breaks down angiotensinogen, which is a process that occurs within the renin-angiotensin-aldosterone system and is facilitated by juxtaglomerular cells.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      38.5
      Seconds
  • Question 38 - A 26-year-old male presents to his general practitioner with polyuria. He complains that...

    Correct

    • A 26-year-old male presents to his general practitioner with polyuria. He complains that it has been affecting his social life, as he often has to go to the bathroom in the middle of social situations. The patient mentions that he notices this mostly when he drinks alcohol with his friends. He is otherwise feeling well. There is no significant past medical history and he is not on any regular medication. Clinical examinations are normal. A urine dipstick test shows no abnormalities. Blood results show no electrolyte abnormalities. The general practitioner explains that his symptoms are likely related to alcohol intake, as alcohol can cause polyuria.

      What is the most likely physiological explanation for this patient's polyuria?

      Your Answer: Suppressed antidiuretic hormone secretion

      Explanation:

      Polyuria in the patient is most likely caused by alcohol bingeing, which can suppress ADH secretion in the posterior pituitary gland. This leads to decreased water reabsorption in the kidneys and subsequent polyuria. Other potential causes such as ADH resistance from chronic lithium ingestion, diabetes insipidus, osmotic diuresis from hyperglycemia, and chronic kidney disease are less likely based on the patient’s symptoms and investigative findings.

      Polyuria, or excessive urination, can be caused by a variety of factors. A recent review in the BMJ categorizes these causes by their frequency of occurrence. The most common causes of polyuria include the use of diuretics, caffeine, and alcohol, as well as diabetes mellitus, lithium, and heart failure. Less common causes include hypercalcaemia and hyperthyroidism, while rare causes include chronic renal failure, primary polydipsia, and hypokalaemia. The least common cause of polyuria is diabetes insipidus, which occurs in less than 1 in 10,000 cases. It is important to note that while these frequencies may not align with exam questions, understanding the potential causes of polyuria can aid in diagnosis and treatment.

    • This question is part of the following fields:

      • Renal System
      56.1
      Seconds
  • Question 39 - A 49-year-old man with a history of chronic alcohol abuse presents with abdominal...

    Incorrect

    • A 49-year-old man with a history of chronic alcohol abuse presents with abdominal distension and is diagnosed with decompensated alcoholic liver disease with ascites. The consultant initiates treatment with spironolactone to aid in the management of his ascites.

      What is the mode of action of spironolactone?

      Your Answer: Inhibition of the sodium/chloride transporter in the distal convoluted tubule

      Correct Answer: Inhibition of the mineralocorticoid receptor in the cortical collecting ducts

      Explanation:

      Aldosterone antagonists function as diuretics by targeting the cortical collecting ducts.

      By inhibiting the mineralocorticoid receptor in the cortical collecting ducts, spironolactone acts as an aldosterone antagonist.

      Loop diuretics like furosemide work by blocking the sodium/potassium/chloride transporter in the loop of Henle.

      Thiazide diuretics, such as bendroflumethiazide, block the sodium/chloride transporter in the distal convoluted tubules.

      Carbonic anhydrase inhibitors, like dorzolamide, act on the proximal tubules.

      Amiloride inhibits the epithelial sodium transporter in the distal convoluted tubules.

      Spironolactone is a medication that works as an aldosterone antagonist in the cortical collecting duct. It is used to treat various conditions such as ascites, hypertension, heart failure, nephrotic syndrome, and Conn’s syndrome. In patients with cirrhosis, spironolactone is often prescribed in relatively large doses of 100 or 200 mg to counteract secondary hyperaldosteronism. It is also used as a NICE ‘step 4’ treatment for hypertension. In addition, spironolactone has been shown to reduce all-cause mortality in patients with NYHA III + IV heart failure who are already taking an ACE inhibitor, according to the RALES study.

      However, spironolactone can cause adverse effects such as hyperkalaemia and gynaecomastia, although the latter is less common with eplerenone. It is important to monitor potassium levels in patients taking spironolactone to prevent hyperkalaemia, which can lead to serious complications such as cardiac arrhythmias. Overall, spironolactone is a useful medication for treating various conditions, but its potential adverse effects should be carefully considered and monitored.

    • This question is part of the following fields:

      • Renal System
      53.6
      Seconds
  • Question 40 - What is measured to obtain renal plasma flow if the patient is a...

    Incorrect

    • What is measured to obtain renal plasma flow if the patient is a few years older?

      Your Answer: Creatinine

      Correct Answer: Para-amino hippuric acid (PAH)

      Explanation:

      The normal value for renal plasma flow is 660ml/min, which is calculated by dividing the amount of PAH in urine per unit time by the difference in PAH concentration in the renal artery or vein.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      24.2
      Seconds
  • Question 41 - A 50-year-old man visits his GP complaining of haematuria. He has experienced two...

    Incorrect

    • A 50-year-old man visits his GP complaining of haematuria. He has experienced two episodes of haematuria in the past week and has not experienced any abdominal pain or fevers. He is asymptomatic, but did have a cough and runny nose that resolved about a week ago. Upon examination, nothing unusual is found.

      The GP refers the patient to a nephrologist and performs an ultrasound and cystoscopy, both of which come back negative. However, the patient continues to experience microscopic haematuria, prompting the decision to perform a renal biopsy. The biopsy results reveal mesangial hypercellularity.

      What is the most likely diagnosis?

      Your Answer: Lupus nephritis

      Correct Answer: IgA nephropathy

      Explanation:

      The patient’s symptoms and renal biopsy findings are consistent with IgA nephropathy, which is characterized by mesangial hypercellularity and positive immunofluorescence for IgA and C3. The patient experienced episodes of macroscopic hematuria with ongoing microscopic hematuria, which were preceded by recent infection within 1-2 days. In contrast, acute proliferative glomerulonephritis typically presents with hematuria weeks after an upper respiratory or cutaneous infection with Streptococcus pyogenes, and histology shows enlarged glomeruli and the presence of IgG and IgM on immunofluorescence. Alport syndrome, a genetic disorder that causes hematuria, is characterized by frank hematuria from early adolescence, and kidney biopsy findings are usually non-specific. Henoch-Schonlein purpura, also known as IgA vasculitis, can present with hematuria following infection and can be similar to IgA nephropathy on kidney biopsy, but it also involves palpable purpura, abdominal pain, and arthritis. Lupus nephritis, which is glomerulonephritis secondary to systemic lupus erythematosus, is unlikely in the absence of other symptoms or signs of systemic lupus erythematosus.

      Understanding IgA Nephropathy

      IgA nephropathy, also known as Berger’s disease, is the most common cause of glomerulonephritis worldwide. It typically presents as macroscopic haematuria in young people following an upper respiratory tract infection. The condition is thought to be caused by mesangial deposition of IgA immune complexes, and there is considerable pathological overlap with Henoch-Schonlein purpura (HSP). Histology shows mesangial hypercellularity and positive immunofluorescence for IgA and C3.

      Differentiating between IgA nephropathy and post-streptococcal glomerulonephritis is important. Post-streptococcal glomerulonephritis is associated with low complement levels and the main symptom is proteinuria, although haematuria can occur. There is typically an interval between URTI and the onset of renal problems in post-streptococcal glomerulonephritis.

      Management of IgA nephropathy depends on the severity of the condition. If there is isolated hematuria, no or minimal proteinuria, and a normal glomerular filtration rate (GFR), no treatment is needed other than follow-up to check renal function. If there is persistent proteinuria and a normal or only slightly reduced GFR, initial treatment is with ACE inhibitors. If there is active disease or failure to respond to ACE inhibitors, immunosuppression with corticosteroids may be necessary.

      The prognosis for IgA nephropathy varies. 25% of patients develop ESRF. Markers of good prognosis include frank haematuria, while markers of poor prognosis include male gender, proteinuria (especially > 2 g/day), hypertension, smoking, hyperlipidaemia, and ACE genotype DD.

      Overall, understanding IgA nephropathy is important for proper diagnosis and management of the condition. Proper management can help improve outcomes and prevent progression to ESRF.

    • This question is part of the following fields:

      • Renal System
      33.4
      Seconds
  • Question 42 - You have been requested to evaluate a 45-year-old Caucasian individual who has recently...

    Correct

    • You have been requested to evaluate a 45-year-old Caucasian individual who has recently been diagnosed with hypertension. Despite making dietary modifications and engaging in physical activity, their blood pressure remains above 160/100 mmHg, prompting you to recommend medication.

      During the consultation, the patient inquires about the drug's mechanism of action. You clarify that the medication obstructs an enzyme responsible for converting a peptide hormone into its active state.

      Based on the medication you have prescribed, which of the following alterations is expected to happen?

      Your Answer: Reduced ADH release

      Explanation:

      The drug in question is most likely an ACE inhibitor, which is commonly prescribed as first-line therapy for hypertension in older patients of certain races. ACE inhibitors work by inhibiting the enzyme responsible for converting angiotensin I to angiotensin II, which is a key component of the renin-angiotensin-aldosterone system that regulates blood pressure. Angiotensin II has several actions that help to counteract drops in blood pressure, including vasoconstriction, increased aldosterone secretion, and increased ADH release. ACE inhibitors have the opposite effect, leading to reduced levels of ADH. However, ACE inhibitors can also cause a buildup of bradykinin, which may result in a persistent dry cough as a side effect.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      98.3
      Seconds
  • Question 43 - A 49-year-old male presents to the GP for a routine blood check and...

    Correct

    • A 49-year-old male presents to the GP for a routine blood check and follow-up. He has a medical history of angina, hypertension, asthma, and hyperlipidemia. Upon reviewing his medications, it is noted that he is taking fenofibrate, a drug that reduces triglyceride levels and increases the synthesis of high-density lipoprotein (HDL). What is the mechanism of action of this medication?

      Your Answer: Activation of PPAR receptor resulting in increase lipoprotein lipase (LPL) activity

      Explanation:

      Fibrates activate PPAR alpha receptors, which increase LPL activity and reduce triglyceride levels. These drugs are effective in lowering cholesterol.

      Statins work by inhibiting HMG-CoA reductase, which reduces the mevalonate pathway and lowers cholesterol levels.

      Niacin, also known as vitamin B3, inhibits hepatic diacylglycerol acyltransferase-2, which is necessary for triglyceride synthesis.

      Bile acid sequestrants bind to bile salts, reducing the reabsorption of bile acids and lowering cholesterol levels.

      Apolipoprotein E is a protein that plays a role in fat metabolism, specifically in removing chylomicron remnants.

      Understanding Fibrates and Their Role in Managing Hyperlipidaemia

      Fibrates are a class of drugs commonly used to manage hyperlipidaemia, a condition characterized by high levels of lipids in the blood. Specifically, fibrates are effective in reducing elevated triglyceride levels. This is achieved through the activation of PPAR alpha receptors, which in turn increases the activity of LPL, an enzyme responsible for breaking down triglycerides.

      Despite their effectiveness, fibrates are not without side effects. Gastrointestinal side effects are common, and patients may experience symptoms such as nausea, vomiting, and diarrhea. Additionally, there is an increased risk of thromboembolism, a condition where a blood clot forms and blocks a blood vessel.

      In summary, fibrates are a useful tool in managing hyperlipidaemia, particularly in cases where triglyceride levels are elevated. However, patients should be aware of the potential side effects and discuss any concerns with their healthcare provider.

    • This question is part of the following fields:

      • Renal System
      56.5
      Seconds
  • Question 44 - Which one of the following statements are not typically true in hypokalaemia? ...

    Correct

    • Which one of the following statements are not typically true in hypokalaemia?

      Your Answer: It often accompanies acidosis

      Explanation:

      Potassium depletion can occur through the gastrointestinal tract or the kidneys. Chronic vomiting is less likely to cause potassium loss than diarrhea because gastric secretions contain less potassium than lower GI secretions. However, if vomiting leads to metabolic alkalosis, renal potassium wasting may occur as the body excretes potassium instead of hydrogen ions. Conversely, potassium depletion can result in acidic urine.

      Hypokalemia is often associated with metabolic alkalosis due to two factors. Firstly, common causes of metabolic alkalosis, such as vomiting and diuretics, directly cause loss of H+ and K+ (via aldosterone), leading to hypokalemia. Secondly, hypokalemia can cause metabolic alkalosis through three mechanisms. Firstly, it causes a transcellular shift where K+ leaves and H+ enters cells, raising extracellular pH. Secondly, it causes an intracellular acidosis in the proximal tubules, promoting ammonium production and excretion. Thirdly, in the presence of hypokalemia, hydrogen secretion in the proximal and distal tubules increases, leading to further reabsorption of HCO3-. Overall, this results in an increase in net acid excretion.

      Understanding Hypokalaemia and its Causes

      Hypokalaemia is a condition characterized by low levels of potassium in the blood. Potassium and hydrogen ions are competitors, and as potassium levels decrease, more hydrogen ions enter the cells. Hypokalaemia can occur with either alkalosis or acidosis. In cases of alkalosis, hypokalaemia may be caused by vomiting, thiazide and loop diuretics, Cushing’s syndrome, or Conn’s syndrome. On the other hand, hypokalaemia with acidosis may be caused by diarrhoea, renal tubular acidosis, acetazolamide, or partially treated diabetic ketoacidosis.

      It is important to note that magnesium deficiency may also cause hypokalaemia. In such cases, normalizing potassium levels may be difficult until the magnesium deficiency has been corrected. Understanding the causes of hypokalaemia can help in its diagnosis and treatment.

    • This question is part of the following fields:

      • Renal System
      28.2
      Seconds
  • Question 45 - A 67-year-old man is attending the urology clinic and receiving goserelin for his...

    Incorrect

    • A 67-year-old man is attending the urology clinic and receiving goserelin for his metastatic prostate cancer. Can you explain the drug's mechanism of action?

      Your Answer: Inhibits 5 alpha reductase enzyme

      Correct Answer: Overstimulation of GnRH receptors

      Explanation:

      GnRH agonists used in the treatment of prostate cancer can paradoxically lead to lower LH levels in the long term. This is because chronic use of these agonists can result in overstimulation of GnRH receptors, which in turn disrupts endogenous hormonal feedback systems. While initially stimulating the production of LH/FSH and subsequent androgen production, chronic use of GnRH agonists can cause negative feedback to suppress the release of gonadotropins, resulting in a significant decrease in serum testosterone levels. This mechanism can be thought of as switching on to switch off. It is important to note that inhibiting the 5 alpha-reductase enzyme and relaxing prostatic smooth muscle are not mechanisms of action for GnRH agonists, but rather for other medications used in the treatment of prostate conditions.

      Prostate cancer management varies depending on the stage of the disease and the patient’s life expectancy and preferences. For localized prostate cancer (T1/T2), treatment options include active monitoring, watchful waiting, radical prostatectomy, and radiotherapy (external beam and brachytherapy). For localized advanced prostate cancer (T3/T4), options include hormonal therapy, radical prostatectomy, and radiotherapy. Patients may develop proctitis and are at increased risk of bladder, colon, and rectal cancer following radiotherapy for prostate cancer.

      In cases of metastatic prostate cancer, reducing androgen levels is a key aim of treatment. A combination of approaches is often used, including anti-androgen therapy, synthetic GnRH agonist or antagonists, bicalutamide, cyproterone acetate, abiraterone, and bilateral orchidectomy. GnRH agonists, such as Goserelin (Zoladex), initially cause a rise in testosterone levels before falling to castration levels. To prevent a rise in testosterone, anti-androgens are often used to cover the initial therapy. GnRH antagonists, such as degarelix, are being evaluated to suppress testosterone while avoiding the flare phenomenon. Chemotherapy with docetaxel is also an option for the treatment of hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after androgen deprivation therapy has failed, and before chemotherapy is indicated.

    • This question is part of the following fields:

      • Renal System
      30.1
      Seconds
  • Question 46 - A 25-year-old man presents to his GP with a complaint of blood in...

    Incorrect

    • A 25-year-old man presents to his GP with a complaint of blood in his urine. He reports that it began a day ago and is bright red in color. He denies any pain and has not observed any clots in his urine. The patient is generally healthy, but had a recent upper respiratory tract infection 2 days ago.

      Upon urine dipstick examination, +++ blood and + protein are detected. What histological finding would be expected on biopsy, given the likely diagnosis?

      Your Answer: Linear IgG deposits along the basement membrane

      Correct Answer: Mesangial hypercellularity with positive immunofluorescence for IgA & C3

      Explanation:

      The histological examination of IgA nephropathy reveals an increase in mesangial cells, accompanied by positive immunofluorescence for IgA and C3.

      Understanding IgA Nephropathy

      IgA nephropathy, also known as Berger’s disease, is the most common cause of glomerulonephritis worldwide. It typically presents as macroscopic haematuria in young people following an upper respiratory tract infection. The condition is thought to be caused by mesangial deposition of IgA immune complexes, and there is considerable pathological overlap with Henoch-Schonlein purpura (HSP). Histology shows mesangial hypercellularity and positive immunofluorescence for IgA and C3.

      Differentiating between IgA nephropathy and post-streptococcal glomerulonephritis is important. Post-streptococcal glomerulonephritis is associated with low complement levels and the main symptom is proteinuria, although haematuria can occur. There is typically an interval between URTI and the onset of renal problems in post-streptococcal glomerulonephritis.

      Management of IgA nephropathy depends on the severity of the condition. If there is isolated hematuria, no or minimal proteinuria, and a normal glomerular filtration rate (GFR), no treatment is needed other than follow-up to check renal function. If there is persistent proteinuria and a normal or only slightly reduced GFR, initial treatment is with ACE inhibitors. If there is active disease or failure to respond to ACE inhibitors, immunosuppression with corticosteroids may be necessary.

      The prognosis for IgA nephropathy varies. 25% of patients develop ESRF. Markers of good prognosis include frank haematuria, while markers of poor prognosis include male gender, proteinuria (especially > 2 g/day), hypertension, smoking, hyperlipidaemia, and ACE genotype DD.

      Overall, understanding IgA nephropathy is important for proper diagnosis and management of the condition. Proper management can help improve outcomes and prevent progression to ESRF.

    • This question is part of the following fields:

      • Renal System
      46.9
      Seconds
  • Question 47 - A 50-year-old male is brought back to a surgical ward after a renal...

    Correct

    • A 50-year-old male is brought back to a surgical ward after a renal transplant. Diuresis suddenly decreases 2 hours after the transplantation. The patient is quickly transferred back to surgery where the transplanted kidney displays signs of hyperacute rejection and is removed. Histopathological examination confirms hyperacute rejection.

      What type of reaction has this patient undergone?

      Your Answer: Type II hypersensitivity

      Explanation:

      Hyperacute transplant rejection is a type II hypersensitivity reaction, which is characterized by a cytotoxic response caused by pre-existing antibodies to the ABO or HLA antigens. This reaction leads to widespread thrombosis and ischaemia/necrosis within the transplanted organ, necessitating its surgical removal.

      In contrast, type I hypersensitivity is an immediate IgE-mediated reaction that occurs within minutes, while type III hypersensitivity is an IgM-mediated reaction that involves the formation of circulating immune complexes. Type IV hypersensitivity is a cell-mediated response that takes weeks to develop and is seen in chronic graft rejections. Finally, type V hypersensitivity is an autoimmune reaction that involves the binding of auto-antibodies to cell surface receptors, either preventing the intended ligand binding or mimicking its effects.

      The HLA system, also known as the major histocompatibility complex (MHC), is located on chromosome 6 and is responsible for human leucocyte antigens. Class 1 antigens include A, B, and C, while class 2 antigens include DP, DQ, and DR. When matching for a renal transplant, the importance of HLA antigens is ranked as DR > B > A.

      Graft survival rates for renal transplants are high, with a 90% survival rate at one year and a 60% survival rate at ten years for cadaveric transplants. Living-donor transplants have even higher survival rates, with a 95% survival rate at one year and a 70% survival rate at ten years. However, postoperative problems can occur, such as acute tubular necrosis of the graft, vascular thrombosis, urine leakage, and urinary tract infections.

      Hyperacute rejection can occur within minutes to hours after a transplant and is caused by pre-existing antibodies against ABO or HLA antigens. This type of rejection is an example of a type II hypersensitivity reaction and leads to widespread thrombosis of graft vessels, resulting in ischemia and necrosis of the transplanted organ. Unfortunately, there is no treatment available for hyperacute rejection, and the graft must be removed.

      Acute graft failure, which occurs within six months of a transplant, is usually due to mismatched HLA and is caused by cell-mediated cytotoxic T cells. This type of failure is usually asymptomatic and is detected by a rising creatinine, pyuria, and proteinuria. Other causes of acute graft failure include cytomegalovirus infection, but it may be reversible with steroids and immunosuppressants.

      Chronic graft failure, which occurs after six months of a transplant, is caused by both antibody and cell-mediated mechanisms that lead to fibrosis of the transplanted kidney, known as chronic allograft nephropathy. The recurrence of the original renal disease, such as MCGN, IgA, or FSGS, can also cause chronic graft failure.

    • This question is part of the following fields:

      • Renal System
      18.3
      Seconds
  • Question 48 - A 9-year-old boy comes to the GP after experiencing bloody diarrhoea for the...

    Incorrect

    • A 9-year-old boy comes to the GP after experiencing bloody diarrhoea for the past 6 days. He complains of abdominal pain and has been urinating very little. His mother has also noticed multiple bruises on his body without any known cause. What is the most probable organism responsible for his symptoms?

      Your Answer: Norovirus

      Correct Answer: E. coli

      Explanation:

      The patient’s symptoms suggest that they may be suffering from haemolytic uraemic syndrome (HUS), which is often caused by an infection with E.coli 0157:H7.

      HUS is characterized by a combination of haemolytic anaemia, thrombocytopaenia, and acute kidney injury, which can ultimately lead to renal failure.

      The presence of bloody diarrhoea in the patient’s medical history is a significant indicator of HUS. Additionally, the reduced urine output is likely due to the acute kidney injury, while the bruising may be a result of the thrombocytopaenia associated with HUS.

      Understanding Haemolytic Uraemic Syndrome

      Haemolytic uraemic syndrome (HUS) is a condition that primarily affects young children and is characterized by a triad of symptoms, including acute kidney injury, microangiopathic haemolytic anaemia, and thrombocytopenia. The most common cause of HUS in children is Shiga toxin-producing Escherichia coli (STEC) 0157:H7, which accounts for over 90% of cases. Other causes of HUS include pneumococcal infection, HIV, systemic lupus erythematosus, drugs, and cancer.

      To diagnose HUS, doctors may perform a full blood count, check for evidence of STEC infection in stool culture, and conduct PCR for Shiga toxins. Treatment for HUS is supportive and may include fluids, blood transfusion, and dialysis if required. Antibiotics are not recommended, despite the preceding diarrhoeal illness in many patients. The indications for plasma exchange in HUS are complicated, and as a general rule, plasma exchange is reserved for severe cases of HUS not associated with diarrhoea. Eculizumab, a C5 inhibitor monoclonal antibody, has shown greater efficiency than plasma exchange alone in the treatment of adult atypical HUS.

      In summary, HUS is a serious condition that primarily affects young children and is characterized by a triad of symptoms. The most common cause of HUS in children is STEC 0157:H7, and diagnosis may involve various tests. Treatment is supportive, and antibiotics are not recommended. The indications for plasma exchange are complicated, and eculizumab may be more effective in treating adult atypical HUS.

    • This question is part of the following fields:

      • Renal System
      33.1
      Seconds
  • Question 49 - A 56-year-old presents to his general physician with painless haematuria and is urgently...

    Correct

    • A 56-year-old presents to his general physician with painless haematuria and is urgently referred to urology due to a certain risk factor in his history. The urologist performs a flexible cystoscopy and discovers bladder cancer, which is later confirmed by a bladder biopsy. What could have prompted the general physician to make an urgent referral?

      Your Answer: Exposure to 2-Naphthylamine

      Explanation:

      The primary intravesical immunotherapy for early-stage bladder cancer is Bacillus Calmette-Guerin (BCG), which does not pose a risk for bladder cancer. There is no evidence to suggest that aspirin has any impact on the risk of bladder cancer. However, exposure to hydrocarbons like 2-Naphthylamine is a known risk factor for bladder cancer.

      Bladder cancer is a common urological cancer that primarily affects males aged 50-80 years old. Smoking and exposure to hydrocarbons increase the risk of developing the disease. Chronic bladder inflammation from Schistosomiasis infection is also a common cause of squamous cell carcinomas in countries where the disease is endemic. Benign tumors of the bladder, such as inverted urothelial papilloma and nephrogenic adenoma, are rare. The most common bladder malignancies are urothelial (transitional cell) carcinoma, squamous cell carcinoma, and adenocarcinoma. Urothelial carcinomas may be solitary or multifocal, with papillary growth patterns having a better prognosis. The remaining tumors may be of higher grade and prone to local invasion, resulting in a worse prognosis.

      The TNM staging system is used to describe the extent of bladder cancer. Most patients present with painless, macroscopic hematuria, and a cystoscopy and biopsies or TURBT are used to provide a histological diagnosis and information on depth of invasion. Pelvic MRI and CT scanning are used to determine locoregional spread, and PET CT may be used to investigate nodes of uncertain significance. Treatment options include TURBT, intravesical chemotherapy, surgery (radical cystectomy and ileal conduit), and radical radiotherapy. The prognosis varies depending on the stage of the cancer, with T1 having a 90% survival rate and any T, N1-N2 having a 30% survival rate.

    • This question is part of the following fields:

      • Renal System
      22.8
      Seconds
  • Question 50 - A 65-year-old male with a 20 pack year smoking history presents to the...

    Incorrect

    • A 65-year-old male with a 20 pack year smoking history presents to the hospital with complaints of haematuria. After undergoing a cystoscopy and biopsy, the results come back as normal. What type of epithelial cells would be observed histologically?

      Your Answer: Simple columnar epithelium

      Correct Answer: Transitional epithelium

      Explanation:

      If an elderly male with a history of smoking experiences haematuria, it is a cause for concern as it could be a sign of bladder cancer. Urgent investigation is necessary, including cystoscopy and biopsy.

      The bladder is lined with transitional epithelia, a type of stratified epithelia that changes in appearance depending on the bladder’s state. When the bladder is empty, these cells are large and round, but when it’s stretched due to distension, they become flatter. This unique property allows them to adapt to varying fluid levels and maintain a barrier between urine and the bloodstream.

      Bladder cancer is a common urological cancer that primarily affects males aged 50-80 years old. Smoking and exposure to hydrocarbons increase the risk of developing the disease. Chronic bladder inflammation from Schistosomiasis infection is also a common cause of squamous cell carcinomas in countries where the disease is endemic. Benign tumors of the bladder, such as inverted urothelial papilloma and nephrogenic adenoma, are rare. The most common bladder malignancies are urothelial (transitional cell) carcinoma, squamous cell carcinoma, and adenocarcinoma. Urothelial carcinomas may be solitary or multifocal, with papillary growth patterns having a better prognosis. The remaining tumors may be of higher grade and prone to local invasion, resulting in a worse prognosis.

      The TNM staging system is used to describe the extent of bladder cancer. Most patients present with painless, macroscopic hematuria, and a cystoscopy and biopsies or TURBT are used to provide a histological diagnosis and information on depth of invasion. Pelvic MRI and CT scanning are used to determine locoregional spread, and PET CT may be used to investigate nodes of uncertain significance. Treatment options include TURBT, intravesical chemotherapy, surgery (radical cystectomy and ileal conduit), and radical radiotherapy. The prognosis varies depending on the stage of the cancer, with T1 having a 90% survival rate and any T, N1-N2 having a 30% survival rate.

    • This question is part of the following fields:

      • Renal System
      27.8
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Renal System (26/50) 52%
Passmed