-
Question 1
Correct
-
What percentage of values fall within a range of 3 standard deviations above and below the mean?
Your Answer: 99.70%
Explanation:Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 2
Correct
-
Which statement accurately describes the measurement of serum potassium in 1,000 patients with anorexia nervosa, where the mean potassium is 4.6 mmol/l and the standard deviation is 0.3 mmol/l?
Your Answer: 68.3% of values lie between 4.3 and 4.9 mmol/l
Explanation:Standard Deviation and Standard Error of the Mean
Standard deviation (SD) and standard error of the mean (SEM) are two important statistical measures used to describe data. SD is a measure of how much the data varies, while SEM is a measure of how precisely we know the true mean of the population. The normal distribution, also known as the Gaussian distribution, is a symmetrical bell-shaped curve that describes the spread of many biological and clinical measurements.
68.3% of the data lies within 1 SD of the mean, 95.4% of the data lies within 2 SD of the mean, and 99.7% of the data lies within 3 SD of the mean. The SD is calculated by taking the square root of the variance and is expressed in the same units as the data set. A low SD indicates that data points tend to be very close to the mean.
On the other hand, SEM is an inferential statistic that quantifies the precision of the mean. It is expressed in the same units as the data and is calculated by dividing the SD of the sample mean by the square root of the sample size. The SEM gets smaller as the sample size increases, and it takes into account both the value of the SD and the sample size.
Both SD and SEM are important measures in statistical analysis, and they are used to calculate confidence intervals and test hypotheses. While SD quantifies scatter, SEM quantifies precision, and both are essential in understanding and interpreting data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 3
Correct
-
Out of the 5 trials included in a meta-analysis comparing the effects of depot olanzapine and depot risperidone on psychotic symptoms (measured by PANSS), which trial showed a statistically significant difference between the two treatments at a significance level of 5%?
Your Answer: Trial 2 shows a reduction of 2 on the PANSS (p=0.001)
Explanation:The results of Trial 4 indicate a decrease of 10 points on the PANSS scale, with a p-value of 0.9.
Understanding Hypothesis Testing in Statistics
In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.
The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.
Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 4
Correct
-
What is the appropriate significance test to use when analyzing the data of patients' serum cholesterol levels before and after receiving a new lipid-lowering therapy?
Your Answer: Paired t-test
Explanation:Since the serum cholesterol level is continuous data and assumed to be normally distributed, and the data is paired from the same individuals, the most suitable statistical test is the paired t-test.
Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 5
Incorrect
-
A team of scientists aims to perform a systematic review and meta-analysis of the environmental impacts and benefits of using solar energy in residential homes. They want to investigate how their findings would be affected by potential future changes, such as an increase in the cost of solar panels of a shift in government policies promoting renewable energy. What type of analysis should they undertake to address this inquiry?
Your Answer: Analysis of heterogeneity
Correct Answer: Sensitivity analysis
Explanation:A sensitivity analysis is a tool utilized to evaluate the degree to which the outcomes of a study of systematic review are influenced by modifications in the methodology employed. It is employed to determine the resilience of the findings to uncertain judgments of assumptions regarding the data and techniques employed.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 6
Incorrect
-
A study of 30 patients with hypertension compares the effectiveness of a new blood pressure medication with standard treatment. 80% of the new treatment group achieved target blood pressure levels at 6 weeks, compared with only 40% of the standard treatment group. What is the number needed to treat for the new treatment?
Your Answer: 2
Correct Answer: 3
Explanation:To calculate the Number Needed to Treat (NNT), we first need to find the Absolute Risk Reduction (ARR), which is calculated by subtracting the Control Event Rate (CER) from the Experimental Event Rate (EER).
Given that CER is 0.4 and EER is 0.8, we can calculate ARR as follows:
ARR = CER – EER
= 0.4 – 0.8
= -0.4Since the ARR is negative, this means that the treatment actually increases the risk of the event occurring. Therefore, we cannot calculate the NNT in this case.
Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 7
Correct
-
Which of the following is calculated by dividing the standard deviation by the square root of the sample size?
Your Answer: Standard error
Explanation:The formula for the standard error of the mean is equal to the standard deviation divided by the square root of the number of patients.
Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 8
Incorrect
-
Researchers have conducted a study comparing a new blood pressure medication with a standard blood pressure medication. 200 patients are divided equally between the two groups. Over the course of one year, 20 patients in the treatment group experienced a significant reduction in blood pressure, compared to 35 patients in the control group.
What is the number needed to treat (NNT)?Your Answer:
Correct Answer: 7
Explanation:The Relative Risk Reduction (RRR) is calculated by subtracting the experimental event rate (EER) from the control event rate (CER), dividing the result by the CER, and then multiplying by 100 to get a percentage. In this case, the RRR is (35-20)รท35 = 0.4285 of 42.85%.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 9
Incorrect
-
What is the purpose of using the Kolmogorov-Smirnov and Jarque-Bera tests?
Your Answer:
Correct Answer: Normality
Explanation:Normality Testing in Statistics
In statistics, parametric tests are based on the assumption that the data set follows a normal distribution. On the other hand, non-parametric tests do not require this assumption but are less powerful. To check if a distribution is normally distributed, there are several tests available, including the Kolmogorov-Smirnov (Goodness-of-Fit) Test, Jarque-Bera test, Wilk-Shapiro test, P-plot, and Q-plot. However, it is important to note that if a data set is not normally distributed, it may be possible to transform it to make it follow a normal distribution, such as by taking the logarithm of the values.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 10
Incorrect
-
What topics do the STARD guidelines provide recommendations for?
Your Answer:
Correct Answer: Studies of diagnostic accuracy
Explanation:The aim of the STARD initiative is to enhance the precision and comprehensiveness of reporting diagnostic accuracy studies, enabling readers to evaluate the study’s potential for bias (internal validity) and generalizability (external validity). The STARD statement comprises a checklist of 25 items and suggests utilizing a flow diagram that outlines the study’s design and patient flow.
As an AI language model, I do not have personal opinions of beliefs. However, I can provide information and guidance on the standards of reporting for different types of research studies. The guidelines mentioned above are essential for ensuring that research studies are reported accurately and transparently, which is crucial for the scientific community to evaluate and replicate the findings. It is important for researchers to be familiar with these standards and follow them when reporting their studies to ensure the quality and integrity of their research.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)