00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A 54-year-old man is admitted to the coronary care unit after being hospitalized...

    Incorrect

    • A 54-year-old man is admitted to the coronary care unit after being hospitalized three weeks ago for an ST-elevation myocardial infarction. He reports chest pain again and is concerned it may be another infarction. The pain is described as sharp and worsens with breathing. The cardiology resident notes a fever and hears a rubbing sound and pansystolic murmur on auscultation, which were previously present. A 12-lead ECG shows no new ischemic changes. The patient has a history of diabetes, hypertension, and heavy smoking since his teenage years. What is the most likely cause of his current condition?

      Your Answer: Myocardial necrosis

      Correct Answer: Autoimmune-mediated

      Explanation:

      Dressler’s syndrome is an autoimmune-mediated pericarditis that occurs 2-6 weeks after a myocardial infarction (MI). This patient, who has been admitted to the coronary care unit following an MI, is experiencing chest pain that is pleuritic in nature, along with fever and a friction rub sound upon examination. Given the timing of the symptoms at three weeks post-MI, Dressler’s syndrome is the most likely diagnosis. This condition results from an autoimmune-mediated inflammatory reaction to antigens following an MI, leading to inflammation of the pericardial sac and pericardial effusion. If left untreated, it can increase the risk of ventricular rupture. Treatment typically involves high-dose aspirin and corticosteroids if necessary.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      30.2
      Seconds
  • Question 2 - A 28-year-old pregnant woman discusses her varicose veins with her midwife. She has...

    Correct

    • A 28-year-old pregnant woman discusses her varicose veins with her midwife. She has noticed these veins for a couple of weeks now, and they appeared during her pregnancy. Lately, she has observed red-brown discoloration around the veins on the back of her calf. What could be the probable root cause of this?

      Your Answer: Haemosiderin deposition

      Explanation:

      The hyperpigmentation observed in patients with varicose eczema/venous ulcers is likely caused by haemosiderin deposition. This occurs when red blood cells burst due to venous stasis, leading to the release of haemoglobin which is stored as haemosiderin. The excess haemosiderin causes a local red-brown discolouration around areas of varicose veins.

      Acanthosis nigricans is an unlikely cause as it is associated with metabolic disorders and not varicose veins. Atrophie blanche describes hypopigmentation seen in venous ulcers, while lipodermatosclerosis causes thickening of the skin in varicose veins without changing the skin color. Melanoma, a skin cancer that causes dark discolouration, is unlikely to be associated with varicose veins and is an unlikely explanation for the observed discolouration on the back of the calf.

      Understanding Varicose Veins

      Varicose veins are enlarged and twisted veins that occur when the valves in the veins become weak or damaged, causing blood to flow backward and pool in the veins. They are most commonly found in the legs and can be caused by various factors such as age, gender, pregnancy, obesity, and genetics. While many people seek treatment for cosmetic reasons, others may experience symptoms such as aching, throbbing, and itching. In severe cases, varicose veins can lead to skin changes, bleeding, superficial thrombophlebitis, and venous ulceration.

      To diagnose varicose veins, a venous duplex ultrasound is typically performed to detect retrograde venous flow. Treatment options vary depending on the severity of the condition. Conservative treatments such as leg elevation, weight loss, regular exercise, and compression stockings may be recommended for mild cases. However, patients with significant or troublesome symptoms, skin changes, or a history of bleeding or ulcers may require referral to a specialist for further evaluation and treatment. Possible treatments include endothermal ablation, foam sclerotherapy, or surgery.

      In summary, varicose veins are a common condition that can cause discomfort and cosmetic concerns. While many cases do not require intervention, it is important to seek medical attention if symptoms or complications arise. With proper diagnosis and treatment, patients can manage their condition and improve their quality of life.

    • This question is part of the following fields:

      • Cardiovascular System
      31.6
      Seconds
  • Question 3 - A 63-year-old man visits his physician complaining of exertional dyspnea. To assess his...

    Incorrect

    • A 63-year-old man visits his physician complaining of exertional dyspnea. To assess his heart function, he undergoes a transthoracic echocardiogram.

      What is the method used to determine his cardiac output from the echocardiogram?

      Your Answer: (end systolic LV volume - end diastolic LV volume) x heart rate

      Correct Answer: (end diastolic LV volume - end systolic LV volume) x heart rate

      Explanation:

      Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.

      Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.

      Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      182
      Seconds
  • Question 4 - Which nerve is most vulnerable to damage when there is a cut on...

    Incorrect

    • Which nerve is most vulnerable to damage when there is a cut on the upper lateral margin of the popliteal fossa in older adults?

      Your Answer: Tibial nerve

      Correct Answer: Common peroneal nerve

      Explanation:

      The lower infero-lateral aspect of the fossa is where the sural nerve exits, and it is at a higher risk during short saphenous vein surgery. On the other hand, the tibial nerve is located more medially and is less susceptible to injury in this area.

      Anatomy of the Popliteal Fossa

      The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.

      The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.

      Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.

    • This question is part of the following fields:

      • Cardiovascular System
      26.3
      Seconds
  • Question 5 - In phase 0 of the atrial cardiomyocyte action potential, the cell is rapidly...

    Incorrect

    • In phase 0 of the atrial cardiomyocyte action potential, the cell is rapidly depolarised.

      What ion influx causes this rapid depolarisation?

      Your Answer: Ca+

      Correct Answer: Na+

      Explanation:

      Rapid depolarisation is caused by a rapid influx of sodium. This is due to the opening of fast Na+ channels during phase 0 of the cardiomyocyte action potential. Calcium influx during phase 2 causes a plateau, while chloride is not involved in the ventricular cardiomyocyte action potential. Potassium efflux occurs during repolarisation.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      168
      Seconds
  • Question 6 - These thyroid function tests were obtained on a 55-year-old female who has recently...

    Incorrect

    • These thyroid function tests were obtained on a 55-year-old female who has recently been treated for hypertension:
      Free T4 28.5 pmol/L (9.8-23.1)
      TSH <0.02 mU/L (0.35-5.5)
      Free T3 10.8 pmol/L (3.5-6.5)
      She now presents with typical symptoms of hyperthyroidism.
      Which medication is likely to have caused this?

      Your Answer: Disopyramide

      Correct Answer: Amiodarone

      Explanation:

      Amiodarone and its Effects on Thyroid Function

      Amiodarone is a medication that can have an impact on thyroid function, resulting in both hypo- and hyperthyroidism. This is due to the high iodine content in the drug, which contributes to its antiarrhythmic effects. Atenolol, on the other hand, is a beta blocker that is commonly used to treat thyrotoxicosis. Warfarin is another medication that is used to treat atrial fibrillation.

      There are two types of thyrotoxicosis that can be caused by amiodarone. Type 1 results in excess thyroxine synthesis, while type 2 leads to the release of excess thyroxine but normal levels of synthesis. It is important for healthcare professionals to monitor thyroid function in patients taking amiodarone and adjust treatment as necessary to prevent complications.

    • This question is part of the following fields:

      • Cardiovascular System
      173.1
      Seconds
  • Question 7 - An 80-year-old man is seen in the stroke clinic for a history of...

    Incorrect

    • An 80-year-old man is seen in the stroke clinic for a history of transient paralysis and paresthesia in his left arm that resolved after 2 hours. The stroke clinicians suspect a transient ischaemic attack and plan to initiate secondary prevention treatment as per national guidelines.

      What is the mode of action of the prescribed medication?

      Your Answer: Vitamin K antagonist

      Correct Answer: ADP receptor inhibitor

      Explanation:

      Clopidogrel works by inhibiting the P2Y12 adenosine diphosphate (ADP) receptor, which prevents platelet activation and is therefore classified as an ADP receptor inhibitor. This drug is recommended as secondary prevention for patients who have experienced symptoms of a transient ischaemic attack (TIA). Other examples of ADP receptor inhibitors include ticagrelor and prasugrel. Aspirin, on the other hand, is a cyclooxygenase (COX) inhibitor that is used for pain control and management of ischaemic heart disease. Glycoprotein IIB/IIA inhibitors such as tirofiban and abciximab prevent platelet aggregation and thrombus formation by inhibiting the glycoprotein IIB/IIIA receptors. Picotamide is a thromboxane synthase inhibitor that is indicated for the management of acute coronary syndrome, as it inhibits the synthesis of thromboxane, a potent vasoconstrictor and facilitator of platelet aggregation.

      Clopidogrel: An Antiplatelet Agent for Cardiovascular Disease

      Clopidogrel is a medication used to manage cardiovascular disease by preventing platelets from sticking together and forming clots. It is commonly used in patients with acute coronary syndrome and is now also recommended as a first-line treatment for patients following an ischaemic stroke or with peripheral arterial disease. Clopidogrel belongs to a class of drugs called thienopyridines, which work in a similar way. Other examples of thienopyridines include prasugrel, ticagrelor, and ticlopidine.

      Clopidogrel works by blocking the P2Y12 adenosine diphosphate (ADP) receptor, which prevents platelets from becoming activated. However, concurrent use of proton pump inhibitors (PPIs) may make clopidogrel less effective. The Medicines and Healthcare products Regulatory Agency (MHRA) issued a warning in July 2009 about this interaction, and although evidence is inconsistent, omeprazole and esomeprazole are still cause for concern. Other PPIs, such as lansoprazole, are generally considered safe to use with clopidogrel. It is important to consult with a healthcare provider before taking any new medications or supplements.

    • This question is part of the following fields:

      • Cardiovascular System
      76.9
      Seconds
  • Question 8 - A 51-year-old woman has just had a right hemiarthroplasty and is now experiencing...

    Correct

    • A 51-year-old woman has just had a right hemiarthroplasty and is now experiencing sudden onset of shortness of breath and sharp pleuritic pain on the right side of her chest. A chest x-ray is done as part of the initial evaluation, revealing a wedge-shaped opacification. What is the probable diagnosis?

      Your Answer: Pulmonary embolism

      Explanation:

      Symptoms and Signs of Pulmonary Embolism

      Pulmonary embolism is a medical condition that can be difficult to diagnose due to its varied symptoms and signs. While chest pain, dyspnoea, and haemoptysis are commonly associated with pulmonary embolism, only a small percentage of patients present with this textbook triad. The symptoms and signs of pulmonary embolism can vary depending on the location and size of the embolism.

      The PIOPED study conducted in 2007 found that tachypnea, or a respiratory rate greater than 16/min, was the most common clinical sign in patients diagnosed with pulmonary embolism, occurring in 96% of cases. Other common signs included crackles in the chest (58%), tachycardia (44%), and fever (43%). Interestingly, the Well’s criteria for diagnosing a PE uses tachycardia rather than tachypnea. It is important for healthcare professionals to be aware of the varied symptoms and signs of pulmonary embolism to ensure prompt diagnosis and treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      164.8
      Seconds
  • Question 9 - A 2-year-old child presents with cyanosis shortly after birth. The child has no...

    Incorrect

    • A 2-year-old child presents with cyanosis shortly after birth. The child has no family history of paediatric problems and the pregnancy was uneventful. Upon examination, the child is cyanotic, has a respiratory rate of 60 breaths per minute, and nasal flaring. An urgent echocardiogram reveals Ebstein's anomaly. Which valvular defect is commonly associated with this condition?

      Your Answer: Pulmonary stenosis

      Correct Answer: Tricuspid regurgitation

      Explanation:

      Ebstein’s anomaly is a congenital heart defect that results in the right ventricle being smaller than normal and the right atrium being larger than normal, a condition known as ‘atrialisation’. Tricuspid regurgitation is often present as well.

      While aortic regurgitation is commonly associated with infective endocarditis, ascending aortic dissection, or connective tissue disorders like Marfan’s or Ehlers-Danlos, it is not typically seen in Ebstein’s anomaly. Similarly, aortic stenosis is usually caused by senile calcification rather than congenital heart disease.

      The mitral valve is located on the left side of the heart and is not affected by Ebstein’s anomaly. Mitral regurgitation, on the other hand, can be caused by conditions such as rheumatic heart disease or left ventricular dilatation.

      Pulmonary stenosis is typically associated with other congenital heart defects like Turner’s syndrome or Noonan’s syndrome, rather than Ebstein’s anomaly.

      Understanding Ebstein’s Anomaly

      Ebstein’s anomaly is a type of congenital heart defect that is characterized by the tricuspid valve being inserted too low, resulting in a large atrium and a small ventricle. This condition is also known as the atrialization of the right ventricle. It is believed that exposure to lithium during pregnancy may cause this condition.

      Ebstein’s anomaly is often associated with other heart defects such as patent foramen ovale (PFO) or atrial septal defect (ASD), which can cause a shunt between the right and left atria. Additionally, patients with this condition may also have Wolff-Parkinson White syndrome.

      Clinical features of Ebstein’s anomaly include cyanosis, a prominent a wave in the distended jugular venous pulse, hepatomegaly, tricuspid regurgitation, and a pansystolic murmur that worsens during inspiration. Patients may also exhibit right bundle branch block, which can lead to widely split S1 and S2 heart sounds.

      In summary, Ebstein’s anomaly is a congenital heart defect that affects the tricuspid valve and can cause a range of symptoms and complications. Early diagnosis and treatment are essential for managing this condition and improving patient outcomes.

    • This question is part of the following fields:

      • Cardiovascular System
      125.5
      Seconds
  • Question 10 - A 67-year-old man presents to the emergency department with chest pain. He describes...

    Correct

    • A 67-year-old man presents to the emergency department with chest pain. He describes this as crushing central chest pain which is associated with nausea and sweating.

      Blood results are as follows:

      Hb 148 g/L Male: (135-180)
      Female: (115 - 160)
      Platelets 268 * 109/L (150 - 400)
      WBC 14.6 * 109/L (4.0 - 11.0)
      Na+ 136 mmol/L (135 - 145)
      K+ 4.7 mmol/L (3.5 - 5.0)
      Urea 6.2 mmol/L (2.0 - 7.0)
      Creatinine 95 ”mol/L (55 - 120)
      Troponin 4058 ng/L (< 14 ng/L)

      An ECG is performed which demonstrates:

      Current ECG Sinus rhythm, QRS 168ms, dominant S wave in V1
      Previous ECG 12 months ago No abnormality

      Which part of the heart's conduction system is likely to be affected?

      Your Answer: Purkinje fibres

      Explanation:

      The Purkinje fibres have the highest conduction velocities in the heart, and a prolonged QRS (>120ms) with a dominant S wave in V1 may indicate left bundle branch block (LBBB). If a patient presents with chest pain, a raised troponin, and a previously normal ECG, LBBB should be considered as a possible cause and managed as an acute STEMI. LBBB is caused by damage to the left bundle branch and its associated Purkinje fibres.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      73.9
      Seconds
  • Question 11 - Where are the red hat pins most likely located based on the highest...

    Correct

    • Where are the red hat pins most likely located based on the highest velocity measurements in different parts of a bovine heart during experimental research for a new drug for heart conduction disorders?

      Your Answer: Purkinje fibres

      Explanation:

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      45
      Seconds
  • Question 12 - A 59-year-old man with a history of hypertension presents to the ED with...

    Incorrect

    • A 59-year-old man with a history of hypertension presents to the ED with sudden palpitations that started six hours ago. He denies chest pain, dizziness, or shortness of breath.

      His vital signs are heart rate 163/min, blood pressure 155/92 mmHg, respiratory rate 17/min, oxygen saturations 98% on air, and temperature 36.2ÂșC. On examination, his pulse is irregularly irregular, and there is no evidence of pulmonary edema. His Glasgow Coma Scale is 15.

      An ECG shows atrial fibrillation with a rapid ventricular response. Despite treatment with IV fluids, IV metoprolol, and IV digoxin, his heart rate remains elevated at 162 beats per minute.

      As the onset of symptoms was less than 48 hours ago, the decision is made to attempt chemical cardioversion with amiodarone. Why is a loading dose necessary for amiodarone?

      Your Answer: Class Ia, II and IV anti-arrhythmic activity

      Correct Answer: Long half-life

      Explanation:

      Amiodarone requires a prolonged loading regime to achieve stable therapeutic levels due to its highly lipophilic nature and wide absorption by tissue, which reduces its bioavailability in serum. While it is predominantly a class III anti-arrhythmic, it also has numerous effects similar to class Ia, II, and IV. Amiodarone is primarily eliminated through hepatic excretion and has a long half-life, meaning it is eliminated slowly and only requires a low maintenance dose to maintain appropriate therapeutic concentrations. The inhibition of cytochrome P450 by amiodarone is not the reason for administering a loading dose.

      Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.

    • This question is part of the following fields:

      • Cardiovascular System
      64.8
      Seconds
  • Question 13 - One of the elderly patients at your general practice was recently hospitalized and...

    Incorrect

    • One of the elderly patients at your general practice was recently hospitalized and diagnosed with myeloma. It was discovered that they have severe chronic kidney disease. The patient comes in for an update on their condition. After reviewing their medications, you realize they are taking ramipril for hypertension, which is contraindicated in renal failure. What is the most accurate description of the effect of ACE inhibitors on glomerular filtration pressure?

      Your Answer: Vasoconstriction of the afferent arteriole

      Correct Answer: Vasodilation of the efferent arteriole

      Explanation:

      The efferent arteriole experiences vasodilation as a result of ACE inhibitors and ARBs, which inhibit the production of angiotensin II and block its receptors. This leads to a decrease in glomerular filtration pressure and rate, particularly in individuals with renal artery stenosis. On the other hand, the afferent arteriole remains dilated due to the presence of prostaglandins. NSAIDs, which inhibit COX-1 and COX-2, can cause vasoconstriction of the afferent arteriole and a subsequent decrease in glomerular filtration pressure. In healthy individuals, the afferent arteriole remains dilated while the efferent arteriole remains constricted to maintain a balanced glomerular pressure. The patient in the scenario has been diagnosed with myeloma, a disease that arises from the malignant transformation of B-cells and is characterized by bone infiltration, hypercalcaemia, anaemia, and renal impairment.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      225.1
      Seconds
  • Question 14 - You are asked to evaluate a 5-day old cyanotic infant named Benjamin. Benjamin...

    Correct

    • You are asked to evaluate a 5-day old cyanotic infant named Benjamin. Benjamin has had a chest x-ray which shows a heart appearance described as 'egg-on-side'. What is the probable underlying diagnosis?

      Your Answer: Transposition of the great arteries

      Explanation:

      The ‘egg-on-side’ appearance on x-rays is a characteristic finding of transposition of the great arteries, which is one of the causes of cyanotic heart disease along with tetralogy of Fallot. While the age of the patient can help distinguish between the two conditions, the x-ray provides a clue for diagnosis. Patent ductus arteriosus, coarctation of the aorta, and ventricular septal defect do not typically present with cyanosis.

      Understanding Transposition of the Great Arteries

      Transposition of the great arteries (TGA) is a type of congenital heart disease that results in cyanosis. This condition occurs when the aorticopulmonary septum fails to spiral during septation, causing the aorta to leave the right ventricle and the pulmonary trunk to leave the left ventricle. Infants born to diabetic mothers are at a higher risk of developing TGA.

      The clinical features of TGA include cyanosis, tachypnea, a loud single S2, and a prominent right ventricular impulse. Chest x-rays may show an egg-on-side appearance. To manage TGA, prostaglandins can be used to maintain the ductus arteriosus. However, surgical correction is the definitive treatment for this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      12.9
      Seconds
  • Question 15 - A 78-year-old man with an ST-elevation myocardial infarction receives bivalirudin, aspirin, and clopidogrel...

    Incorrect

    • A 78-year-old man with an ST-elevation myocardial infarction receives bivalirudin, aspirin, and clopidogrel before undergoing percutaneous coronary intervention. What is the mode of action of bivalirudin?

      Your Answer: Activation of antithrombin III

      Correct Answer: Reversible direct thrombin inhibitor

      Explanation:

      Bivalirudin inhibits thrombin directly in a reversible manner.

      Warfarin prevents the conversion of vitamin K to its active hydroquinone form by acting as an antagonist.

      Heparins activate antithrombin II and also form inactive complexes with other clotting factors.

      Aspirin inhibits COX.

      Clopidogrel functions as a/an.

      Bivalirudin: An Anticoagulant for Acute Coronary Syndrome

      Bivalirudin is a medication that acts as a direct thrombin inhibitor, meaning it prevents the formation of blood clots. It is commonly used as an anticoagulant in the treatment of acute coronary syndrome, a condition where blood flow to the heart is blocked or reduced. Bivalirudin is a reversible inhibitor, meaning its effects can be reversed if necessary.

      Acute coronary syndrome is a serious condition that can lead to heart attack or other complications if left untreated. Bivalirudin is an effective treatment option for preventing blood clots and reducing the risk of further complications. Its reversible nature also makes it a safer option for patients who may need to undergo surgery or other procedures while on anticoagulant therapy. Overall, bivalirudin is an important medication in the management of acute coronary syndrome and plays a crucial role in improving patient outcomes.

    • This question is part of the following fields:

      • Cardiovascular System
      20.2
      Seconds
  • Question 16 - A patient suffering from primary pulmonary hypertension at the age of 50 is...

    Incorrect

    • A patient suffering from primary pulmonary hypertension at the age of 50 is prescribed bosentan, an endothelin receptor antagonist. What is the role of endothelin in the body?

      Your Answer: Vasoconstriction and bronchodilation

      Correct Answer: Vasoconstriction and bronchoconstriction

      Explanation:

      Endothelin, which is produced by the vascular endothelium, is a potent vasoconstrictor and bronchoconstrictor with long-lasting effects. It is believed to play a role in the development of primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.

      Understanding Endothelin and Its Role in Various Diseases

      Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.

      Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.

      In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.

    • This question is part of the following fields:

      • Cardiovascular System
      24.5
      Seconds
  • Question 17 - A 36-year-old woman presents to her GP with a history of long-standing fatigue,...

    Correct

    • A 36-year-old woman presents to her GP with a history of long-standing fatigue, dyspnea, and chest discomfort that has recently worsened. Despite being physically active, she has been experiencing these symptoms. She is a social drinker and does not smoke. Her family history is unremarkable except for her mother who died of 'chest disease' at the age of 50. During examination, her observations are as follows:

      Blood pressure: 135/85mmHg
      Pulse: 95 beats/min
      Respiration: 25 breaths/min

      An ECG shows no abnormalities, and cardiac enzymes are within normal ranges. She is referred for echocardiography, which reveals a right pulmonary artery pressure of 35 mmhg.

      What substance is elevated in this patient, underlying the disease process?

      Your Answer: Endothelin

      Explanation:

      Understanding Endothelin and Its Role in Various Diseases

      Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.

      Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.

      In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.

    • This question is part of the following fields:

      • Cardiovascular System
      44.5
      Seconds
  • Question 18 - A 48-year-old man comes to the clinic for a hypertension follow-up. He was...

    Incorrect

    • A 48-year-old man comes to the clinic for a hypertension follow-up. He was diagnosed with high blood pressure two months ago and started on ramipril. However, his blood pressure remained uncontrolled, so amlodipine was added to his treatment four weeks ago. Today, his blood pressure reading is 161/91mmHg. You decide to prescribe indapamide, a thiazide diuretic. Can you identify the primary site of action of thiazides in the nephron?

      Your Answer: Collecting duct

      Correct Answer: Distal convoluted tubule

      Explanation:

      Thiazide diuretics, such as indapamide, work by blocking the Na+-Cl− symporter at the beginning of the distal convoluted tubule, which inhibits sodium reabsorption. Loop diuretics, on the other hand, inhibit Na+/K+ 2Cl- channels in the thick ascending loop of Henle. There are currently no diuretic agents that specifically target the descending limb of the loop of Henle. Carbonic anhydrase inhibitors prevent the exchange of luminal Na+ for cellular H+ in both the proximal and distal tubules. Potassium-sparing diuretics, such as amiloride, inhibit the Na+/K+ ATPase in the cortical collecting ducts either directly or by blocking aldosterone receptors, as seen in spironolactone.

      Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.

      Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.

      It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.

    • This question is part of the following fields:

      • Cardiovascular System
      28.1
      Seconds
  • Question 19 - You are attending a cardiology clinic one morning. A 54-year-old man presents for...

    Correct

    • You are attending a cardiology clinic one morning. A 54-year-old man presents for a medication review. He is currently taking a beta-blocker but is still frequently symptomatic. From his medication history, it is evident that he does not tolerate calcium channel blockers.

      The consultant considers the option of starting him on a new drug called nicorandil. The patient is hesitant to try it out as he believes it is a calcium channel blocker. You have been asked to explain the mechanism of action of nicorandil to this patient.

      What is the way in which the new drug exerts its effect?

      Your Answer: Causes vasodilation by activating guanylyl cyclase which causes an increase in cGMP

      Explanation:

      Nicorandil induces vasodilation by activating guanylyl cyclase, leading to an increase in cyclic GMP. This results in the relaxation of vascular smooth muscles through the prevention of calcium ion influx and dephosphorylation of myosin light chains. Additionally, nicorandil activates ATP-sensitive potassium channels, causing hyperpolarization and preventing intracellular calcium overload, which plays a cardioprotective role.

      Nicorandil is a medication that is commonly used to treat angina. It works by activating potassium channels, which leads to vasodilation. This process is achieved through the activation of guanylyl cyclase, which results in an increase in cGMP. However, there are some adverse effects associated with the use of nicorandil, including headaches, flushing, and the development of ulcers on the skin, mucous membranes, and eyes. Additionally, gastrointestinal ulcers, including anal ulceration, may also occur. It is important to note that nicorandil should not be used in patients with left ventricular failure.

    • This question is part of the following fields:

      • Cardiovascular System
      49.9
      Seconds
  • Question 20 - Which of the following structures is in danger of direct harm after a...

    Correct

    • Which of the following structures is in danger of direct harm after a femoral condyle fracture dislocation in an older adult?

      Your Answer: Popliteal artery

      Explanation:

      The fracture segment can be pulled backwards by the contraction of the gastrocnemius heads, which may result in damage or compression of the popliteal artery that runs adjacent to the bone.

      Anatomy of the Popliteal Fossa

      The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.

      The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.

      Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.

    • This question is part of the following fields:

      • Cardiovascular System
      24.4
      Seconds
  • Question 21 - The vertebral artery passes through which of the following structures, except for what?...

    Incorrect

    • The vertebral artery passes through which of the following structures, except for what?

      Your Answer: Transverse process of C6

      Correct Answer: Intervertebral foramen

      Explanation:

      The vertebral artery does not travel through the intervertebral foramen, but instead passes through the foramina found in the transverse processes of the cervical vertebrae.

      Anatomy of the Vertebral Artery

      The vertebral artery is a branch of the subclavian artery and can be divided into four parts. The first part runs to the foramen in the transverse process of C6 and is located anterior to the vertebral and internal jugular veins. On the left side, the thoracic duct is also an anterior relation. The second part runs through the foramina of the transverse processes of the upper six cervical vertebrae and is accompanied by a venous plexus and the inferior cervical sympathetic ganglion. The third part runs posteromedially on the lateral mass of the atlas and enters the sub occipital triangle. It then passes anterior to the edge of the posterior atlanto-occipital membrane to enter the vertebral canal. The fourth part passes through the spinal dura and arachnoid, running superiorly and anteriorly at the lateral aspect of the medulla oblongata. At the lower border of the pons, it unites to form the basilar artery.

      The anatomy of the vertebral artery is important to understand as it plays a crucial role in supplying blood to the brainstem and cerebellum. Any damage or blockage to this artery can lead to serious neurological complications. Therefore, it is essential for healthcare professionals to have a thorough understanding of the anatomy and function of the vertebral artery.

    • This question is part of the following fields:

      • Cardiovascular System
      19.3
      Seconds
  • Question 22 - A 65-year-old woman experiences chest discomfort during physical activity and is diagnosed with...

    Incorrect

    • A 65-year-old woman experiences chest discomfort during physical activity and is diagnosed with angina.

      What alterations are expected to be observed in her arteries?

      Your Answer: Infiltration of HDLs into the tunica intima

      Correct Answer: Smooth muscle proliferation and migration from the tunica media to the intima

      Explanation:

      The final stage in the development of an atheroma involves the proliferation and migration of smooth muscle from the tunica media into the intima. While monocytes do migrate, they differentiate into macrophages which then phagocytose LDLs and form foam cells. Additionally, there is infiltration of LDLs. The formation of fibrous capsules is a result of the smooth muscle proliferation and migration. Atherosclerosis is also associated with a reduction in nitric oxide availability.

      Understanding Atherosclerosis and its Complications

      Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.

      Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      16.6
      Seconds
  • Question 23 - A 67-year-old man presents with crushing central chest pain and flushing. His ECG...

    Correct

    • A 67-year-old man presents with crushing central chest pain and flushing. His ECG shows T wave inversion in II, III, and AVF, and his troponin T level is 0.9 ng/ml (normal <0.01). What is the substance that troponin T binds to?

      Your Answer: Tropomyosin

      Explanation:

      The binding of troponin T to tropomyosin results in the formation of a troponin-tropomyosin complex. The clinical and electrographic characteristics suggest the presence of an inferior myocardial infarction, which is confirmed by the elevated levels of troponin. Troponin T is highly specific to myocardial damage. On the other hand, troponin C binds to calcium ions and is released by damage to both skeletal and cardiac muscle, making it an insensitive marker for myocardial necrosis. Troponin I binds to actin and helps to maintain the troponin-tropomyosin complex in place. It is also specific to myocardial damage. Myosin is the thick component of muscle fibers, and actin slides along myosin to generate muscle contraction. The sarcoplasmic reticulum plays a crucial role in regulating the concentration of calcium ions in the cytoplasm of striated muscle cells.

      Understanding Troponin: The Proteins Involved in Muscle Contraction

      Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.

      Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.

      Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.

    • This question is part of the following fields:

      • Cardiovascular System
      21.1
      Seconds
  • Question 24 - A 50-year-old male is brought to the trauma unit following a car accident,...

    Correct

    • A 50-year-old male is brought to the trauma unit following a car accident, with an estimated blood loss of 1200ml. His vital signs are as follows: heart rate of 125 beats per minute, blood pressure of 125/100 mmHg, and he feels cold to the touch.

      Which component of his cardiovascular system has played the biggest role in maintaining his blood pressure stability?

      Your Answer: Arterioles

      Explanation:

      The highest resistance in the cardiovascular system is found in the arterioles, which means they contribute the most to the total peripheral resistance. In cases of compensated hypovolaemic shock, such as in this relatively young patient, the body compensates by increasing heart rate and causing peripheral vasoconstriction to maintain blood pressure.

      Arteriole vasoconstriction in hypovolaemic shock patients leads to an increase in total peripheral resistance, which in turn increases mean arterial blood pressure. This has a greater effect on diastolic blood pressure, resulting in a narrowing of pulse pressure and clinical symptoms such as cold peripheries and delayed capillary refill time.

      Capillaries are microscopic channels that provide blood supply to the tissues and are the primary site for gas and nutrient exchange. Venules, on the other hand, are small veins with diameters ranging from 8-100 micrometers and join multiple capillaries exiting from a capillary bed.

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      24.5
      Seconds
  • Question 25 - A 70-year-old man arrives at the Emergency department displaying indications and symptoms of...

    Incorrect

    • A 70-year-old man arrives at the Emergency department displaying indications and symptoms of acute coronary syndrome. Among the following cardiac enzymes, which is the most probable to increase first after a heart attack?

      Your Answer: Troponin T

      Correct Answer: Myoglobin

      Explanation:

      Enzyme Markers for Myocardial Infarction

      Enzyme markers are used to diagnose myocardial infarction, with troponins being the most sensitive and specific. However, troponins are not the fastest to rise and are only measured 12 hours after the event. Myoglobin, although less sensitive and specific, is the earliest marker to rise. The rise of myoglobin occurs within 2 hours of the event, with a peak at 6-8 hours and a fall within 1-2 days. Creatine kinase rises within 4-6 hours, peaks at 24 hours, and falls within 3-4 days. LDH rises within 6-12 hours, peaks at 72 hours, and falls within 10-14 days. These enzyme markers are important in the diagnosis and management of myocardial infarction.

    • This question is part of the following fields:

      • Cardiovascular System
      10.9
      Seconds
  • Question 26 - A 50-year-old man presents to the emergency department with acute chest pain. His...

    Incorrect

    • A 50-year-old man presents to the emergency department with acute chest pain. His ECG reveals ST depression in leads II, III, & aVF, and his troponin levels are elevated. He is diagnosed with NSTEMI and prescribed ticagrelor as part of his treatment plan.

      What is the mechanism of action of ticagrelor?

      Your Answer: Inhibits vitamin K epoxide reductase complex 1

      Correct Answer: Inhibits ADP binding to platelet receptors

      Explanation:

      Clopidogrel and ticagrelor have a similar mechanism of action in that they both inhibit the binding of ADP to platelet receptors. Heparin activates antithrombin III, which in turn inhibits factor Xa and IIa. DOACs like rivaroxaban directly inhibit factor Xa that is bound to the prothrombinase complex and associated with clots. Aspirin works by inhibiting the production of prostaglandins, while warfarin inhibits VKORC1, which is responsible for the activation of vitamin K.

      ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.

    • This question is part of the following fields:

      • Cardiovascular System
      24.6
      Seconds
  • Question 27 - A 13-year-old boy collapses at home and is taken to the hospital. After...

    Incorrect

    • A 13-year-old boy collapses at home and is taken to the hospital. After all tests come back normal, what is the underlying mechanism behind a vasovagal episode?

      Your Answer: Coronary artery spasm

      Correct Answer: Peripheral vasodilation and venous pooling

      Explanation:

      Vasovagal syncope is a common type of fainting that is often seen in adolescents and older adults. It typically occurs when a person with a predisposition to this condition is exposed to a specific trigger. Before losing consciousness, the individual may experience symptoms such as lightheadedness, nausea, sweating, or ringing in the ears. When they faint, they fall down, which helps restore blood flow to the brain by eliminating the effects of gravity and allowing the person to regain consciousness.

      The mechanism behind a vasovagal episode involves a cardioinhibitory response that causes a decrease in heart rate (negative chronotropic effect) and contractility (negative inotropic effect), leading to a reduction in cardiac output and peripheral vasodilation. These effects result in the pooling of blood in the lower limbs.

      Understanding Syncope: Causes and Evaluation

      Syncope is a temporary loss of consciousness caused by a sudden decrease in blood flow to the brain. It is a common condition that can affect people of all ages. Syncope can be caused by various factors, including reflex syncope, orthostatic syncope, and cardiac syncope. Reflex syncope is the most common cause of syncope in all age groups, while orthostatic and cardiac causes become more common in older patients.

      Reflex syncope is triggered by emotional stress, pain, or other stimuli. Situational syncope can be caused by coughing, urination, or gastrointestinal issues. Carotid sinus syncope is another type of reflex syncope that occurs when pressure is applied to the carotid artery in the neck.

      Orthostatic syncope occurs when a person stands up too quickly, causing a sudden drop in blood pressure. This can be caused by primary or secondary autonomic failure, drug-induced factors, or volume depletion.

      Cardiac syncope is caused by arrhythmias, structural issues, or pulmonary embolism. Bradycardias and tachycardias are common types of arrhythmias that can cause syncope.

      To diagnose syncope, doctors may perform a cardiovascular examination, postural blood pressure readings, an ECG, carotid sinus massage, tilt table test, or a 24-hour ECG. These tests can help determine the underlying cause of syncope and guide treatment options.

    • This question is part of the following fields:

      • Cardiovascular System
      13.6
      Seconds
  • Question 28 - A 42-year-old man presents to the emergency department with gradual-onset central chest pain....

    Incorrect

    • A 42-year-old man presents to the emergency department with gradual-onset central chest pain. The pain is 7/10 in severity and started six hours ago. He reports no shortness of breath or haemoptysis. The pain worsens when taking a deep breath in and improves when leaning forward.

      The patient has no significant medical history and is not taking any regular medications, but he recently completed a course of amoxicillin for an upper respiratory tract infection. His grandfather died of a heart attack at the age of 84. He has a smoking history of 3 pack-years but currently does not smoke or drink alcohol. He has not traveled recently. During a recent well man check at his GP, his 10-year QRISK score was determined to be 3%.

      On examination, the patient appears comfortable at rest. His heart rate is 88/min, blood pressure is 136/78 mmHg, oxygen saturation is 98% on air, respiratory rate is 16 breaths per minute, and temperature is 36.8ÂșC. No additional heart sounds are heard, and lung fields are clear on auscultation. The abdomen is soft and non-tender, with bowel sounds present.

      An ECG taken on admission shows concave ST-segment elevation and PR depression present in all leads.

      What is the most likely diagnosis?

      Your Answer: Dresser's syndrome

      Correct Answer: Pericarditis

      Explanation:

      The most likely diagnosis for a patient with global ST and PR segment changes is pericarditis. This condition is characterized by inflammation of the pericardium, which often occurs after a respiratory illness. Patients with pericarditis typically experience sharp chest pain that worsens with inspiration or lying down and improves when leaning forward.

      While benign early repolarization (BER) can also cause ST elevation, it is less likely in this case as the patient’s symptoms are more consistent with pericarditis. Additionally, BER often presents with a fish hook pattern on the ECG.

      Infective endocarditis, pulmonary embolism (PE), and myocardial infarction (MI) are less likely diagnoses. Infective endocarditis typically presents with fever and a murmur, while PE is associated with tachycardia, haemoptysis, and signs of deep vein thrombosis. MI is usually confined to a specific territory on the ECG and is unlikely in a patient with low cardiac risk factors.

      Acute Pericarditis: Causes, Features, Investigations, and Management

      Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.

      The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.

      Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.

      Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.

      In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      52.5
      Seconds
  • Question 29 - A 20-year-old man undergoes a routine ECG during his employment health check. The...

    Incorrect

    • A 20-year-old man undergoes a routine ECG during his employment health check. The ECG reveals sinus arrhythmia with varying P-P intervals and slight changes in the ventricular rate. The P waves exhibit normal morphology, and the P-R interval remains constant. The patient has a history of asthma and has been using inhalers more frequently due to an increase in running mileage. What is the probable cause of this rhythm, and how would you reassure the patient about the ECG results?

      Your Answer: Use of salbutamol inhaler before appointment

      Correct Answer: Ventricular rate changes with ventilation

      Explanation:

      Sinus arrhythmia is a natural occurrence that is commonly observed in young and healthy individuals. It is characterized by a fluctuation in heart rate during breathing, with an increase in heart rate during inhalation and a decrease during exhalation. This is due to a decrease in vagal tone during inspiration and an increase during expiration. The P-R interval remains constant, indicating no heart block, while the varying P-P intervals reflect changes in the ventricular heart rate.

      While anxiety may cause tachycardia, it cannot explain the fluctuation in P-P intervals. Similarly, salbutamol may cause a brief increase in heart rate, but this would not result in varying P-P and P-R intervals. In healthy and fit individuals, there should be no variation in the firing of the sino-atrial node.

      Understanding the Normal ECG

      The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.

      The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.

      Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      52.7
      Seconds
  • Question 30 - As a medical student observing a parathyroidectomy in the short-stay surgical theatre, you...

    Incorrect

    • As a medical student observing a parathyroidectomy in the short-stay surgical theatre, you witness the ligation of blood vessels supplying the parathyroid glands. The ENT consultant requests you to identify the arteries responsible for supplying oxygenated blood to the parathyroid gland. Can you correctly name these arteries?

      Your Answer: Super and inferior parathyroid arteries

      Correct Answer: Superior and inferior thyroid arteries

      Explanation:

      The superior and inferior thyroid arteries provide oxygenated blood supply to the parathyroid glands. The existence of inferior parathyroid arteries and superior parathyroid arteries is not supported by anatomical evidence. While a middle thyroid artery may exist in some individuals, it is a rare variation that is not relevant to the question at hand.

      Anatomy and Development of the Parathyroid Glands

      The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.

      The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.

    • This question is part of the following fields:

      • Cardiovascular System
      20.3
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (10/30) 33%
Passmed