00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - What factors affect the statistical power of a study? ...

    Correct

    • What factors affect the statistical power of a study?

      Your Answer: Sample size

      Explanation:

      A study that has a greater sample size is considered to have higher power, meaning it is capable of detecting a significant difference of effect that is clinically relevant.

      The Importance of Power in Statistical Analysis

      Power is a crucial concept in statistical analysis as it helps researchers determine the number of participants needed in a study to detect a clinically significant difference of effect. It represents the probability of correctly rejecting the null hypothesis when it is false, which means avoiding a Type II error. Power values range from 0 to 1, with 0 indicating 0% and 1 indicating 100%. A power of 0.80 is generally considered the minimum acceptable level.

      Several factors influence the power of a study, including sample size, effect size, and significance level. Larger sample sizes lead to more precise parameter estimations and increase the study’s ability to detect a significant effect. Effect size, which is determined at the beginning of a study, refers to the size of the difference between two means that leads to rejecting the null hypothesis. Finally, the significance level, also known as the alpha level, represents the probability of a Type I error. By considering these factors, researchers can optimize the power of their studies and increase the likelihood of detecting meaningful effects.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      12.1
      Seconds
  • Question 2 - What is the optimal number needed to treat (NNT)? ...

    Correct

    • What is the optimal number needed to treat (NNT)?

      Your Answer: 1

      Explanation:

      The effectiveness of a healthcare intervention, usually a medication, is measured by the number needed to treat (NNT). This represents the average number of patients who must receive treatment to prevent one additional negative outcome. An NNT of 1 would indicate that all treated patients improved while none of the control patients did, which is the ideal scenario. The NNT can be calculated by taking the inverse of the absolute risk reduction. A higher NNT indicates a less effective treatment, with the range of NNT being from 1 to infinity.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      3.2
      Seconds
  • Question 3 - What does a smaller p-value indicate in terms of the strength of evidence?...

    Incorrect

    • What does a smaller p-value indicate in terms of the strength of evidence?

      Your Answer: The null hypothesis

      Correct Answer: The alternative hypothesis

      Explanation:

      A p-value represents the likelihood of rejecting a null hypothesis that is actually true. A smaller p-value indicates a lower chance of mistakenly rejecting the null hypothesis, providing evidence in favor of the alternative hypothesis.

      Understanding Hypothesis Testing in Statistics

      In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.

      The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.

      Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

      P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      35.5
      Seconds
  • Question 4 - It has been proposed that individuals who develop schizophrenia may have subtle brain...

    Correct

    • It has been proposed that individuals who develop schizophrenia may have subtle brain abnormalities present in utero, which predispose them to experiencing obstetric complications during birth. What term best describes this proposed explanation for the association between schizophrenia and birth complications?

      Your Answer: Reverse causality

      Explanation:

      Common Biases and Errors in Research

      Reverse causality occurs when a risk factor appears to cause an illness, but in reality, it is a consequence of the illness. Information bias is a type of error that can occur in research. Two examples of information bias are observer bias and recall bias. Observer bias happens when the experimenter’s biases affect the study’s findings. Recall bias occurs when participants in the case and control groups have different levels of accuracy in their recollections.

      There are two types of errors in research: Type I and Type II. A Type I error is when a true null hypothesis is incorrectly rejected, resulting in a false positive. A Type II error is when a false null hypothesis is not rejected, resulting in a false negative. It is essential to be aware of these biases and errors to ensure accurate and reliable research findings.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      56.4
      Seconds
  • Question 5 - A team of investigators aimed to explore the perspectives of experienced psychologists on...

    Correct

    • A team of investigators aimed to explore the perspectives of experienced psychologists on the use of cognitive-behavioral therapy in treating anxiety disorders. They randomly selected a group of psychologists to participate in the study.
      To enhance the credibility of their results, they opted to employ two researchers with different expertise (a clinical psychologist and a social worker) to conduct interviews with the selected psychologists. Furthermore, they collected data from the psychologists not only through interviews but also by organizing focus groups.
      What is the approach used in this qualitative study to improve the credibility of the findings?

      Your Answer: Triangulation

      Explanation:

      Triangulation is a technique commonly employed in research to ensure the accuracy and reliability of results. It involves using multiple methods to verify findings, also known as ‘cross examination’. This approach increases confidence in the results by demonstrating consistency across different methods. Investigator triangulation involves using researchers with diverse backgrounds, while method triangulation involves using different techniques such as interviews and focus groups. The goal of triangulation in qualitative research is to enhance the credibility and validity of the findings by addressing potential biases and limitations associated with single-method, single-observer studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      38.8
      Seconds
  • Question 6 - Which of the following statements about calculating the correlation coefficient (r) for the...

    Correct

    • Which of the following statements about calculating the correlation coefficient (r) for the relationship between age and systolic blood pressure is not accurate?

      Your Answer: May be used to predict systolic blood pressure for a given age

      Explanation:

      To make predictions about systolic blood pressure, linear regression is necessary in this situation.

      Stats: Correlation and Regression

      Correlation and regression are related but not interchangeable terms. Correlation is used to test for association between variables, while regression is used to predict values of dependent variables from independent variables. Correlation can be linear, non-linear, of non-existent, and can be strong, moderate, of weak. The strength of a linear relationship is measured by the correlation coefficient, which can be positive of negative and ranges from very weak to very strong. However, the interpretation of a correlation coefficient depends on the context and purposes. Correlation can suggest association but cannot prove of disprove causation. Linear regression, on the other hand, can be used to predict how much one variable changes when a second variable is changed. Scatter graphs are used in correlation and regression analyses to visually determine if variables are associated and to detect outliers. When constructing a scatter graph, the dependent variable is typically placed on the vertical axis and the independent variable on the horizontal axis.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      36.6
      Seconds
  • Question 7 - The researcher conducted a study to test his hypothesis that a new drug...

    Correct

    • The researcher conducted a study to test his hypothesis that a new drug would effectively treat depression. The results of the study indicated that his hypothesis was true, but in reality, it was not. What happened?

      Your Answer: Type I error

      Explanation:

      Type I errors occur when we reject a null hypothesis that is actually true, leading us to believe that there is a significant difference of effect when there is not.

      Understanding Hypothesis Testing in Statistics

      In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.

      The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.

      Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

      P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      98.1
      Seconds
  • Question 8 - One accurate statement about epidemiological measures is: ...

    Correct

    • One accurate statement about epidemiological measures is:

      Your Answer: Cross-sectional surveys can be used to estimate the prevalence of a condition in the population

      Explanation:

      Measures of Disease Frequency: Incidence and Prevalence

      Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.

      Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.

      It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.

      Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      35.5
      Seconds
  • Question 9 - What is the standard deviation of the sample mean height of 100 adults...

    Correct

    • What is the standard deviation of the sample mean height of 100 adults who were administered steroids during childhood, given that the average height of the adults is 169cm and the standard deviation is 16cm?

      Your Answer: 1.6

      Explanation:

      The standard error of the mean is 1.6, calculated by dividing the standard deviation of 16 by the square root of the number of patients, which is 100.

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      45.5
      Seconds
  • Question 10 - A team of scientists conduct a case control study to investigate the association...

    Correct

    • A team of scientists conduct a case control study to investigate the association between birth complications and attempted suicide in individuals aged 18-35 years. They enroll 296 cases of attempted suicide and recruit an equal number of controls who are matched for age, gender, and geographical location. Upon analyzing the birth history, they discover that 67 cases of attempted suicide and 61 controls had experienced birth difficulties. What is the unadjusted odds ratio for attempted suicide in individuals with a history of birth complications?

      Your Answer: 1.13

      Explanation:

      Odds Ratio Calculation for Birth Difficulties in Case and Control Groups

      The odds ratio is a statistical measure that compares the likelihood of an event occurring in one group to that of another group. In this case, we are interested in the odds of birth difficulties in a case group compared to a control group.

      To calculate the odds ratio, we need to determine the number of individuals in each group who had birth difficulties and those who did not. In the case group, 67 individuals had birth difficulties, while 229 did not. In the control group, 61 individuals had birth difficulties, while 235 did not.

      Using these numbers, we can calculate the odds ratio as follows:

      Odds ratio = (67/229) / (61/235) = 1.13

      This means that the odds of birth difficulties are 1.13 times higher in the case group compared to the control group.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      430.6
      Seconds
  • Question 11 - Can you calculate the specificity of a general practitioner's diagnosis of depression based...

    Correct

    • Can you calculate the specificity of a general practitioner's diagnosis of depression based on the given data from the study assessing their ability to identify cases using GHQ scores?

      Your Answer: 91%

      Explanation:

      The specificity of the GHQ test is 91%, meaning that 91% of individuals who do not have depression are correctly identified as such by the general practitioner using the test.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      99.3
      Seconds
  • Question 12 - Which data type does age in years belong to? ...

    Incorrect

    • Which data type does age in years belong to?

      Your Answer: Ordinal

      Correct Answer: Ratio

      Explanation:

      Age is a type of measurement that follows a ratio scale, which means that the values can be compared as multiples of each other. For instance, if someone is 20 years old, they are twice as old as someone who is 10 years old.

      Scales of Measurement in Statistics

      In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.

      Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.

      Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.

      Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      12.5
      Seconds
  • Question 13 - What percentage of values fall within one standard deviation above and below the...

    Correct

    • What percentage of values fall within one standard deviation above and below the mean?

      Your Answer: 68.20%

      Explanation:

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      21.3
      Seconds
  • Question 14 - What is the meaning of a 95% confidence interval? ...

    Incorrect

    • What is the meaning of a 95% confidence interval?

      Your Answer: 95% of the results lie within this interval

      Correct Answer: If the study was repeated then the mean value would be within this interval 95% of the time

      Explanation:

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      86
      Seconds
  • Question 15 - The prevalence of depressive disease in a village with an adult population of...

    Incorrect

    • The prevalence of depressive disease in a village with an adult population of 1000 was assessed using a new diagnostic score. The results showed that out of 1000 adults, 200 tested positive for the disease and 800 tested negative. What is the prevalence of depressive disease in this population?

      Your Answer: 2%

      Correct Answer: 20%

      Explanation:

      The prevalence of the disease is 20% as there are currently 200 cases out of a total population of 1000.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      24.1
      Seconds
  • Question 16 - What test would be appropriate for comparing the proportion of individuals who experience...

    Incorrect

    • What test would be appropriate for comparing the proportion of individuals who experience agranulocytosis while taking clozapine versus those who experience it while taking olanzapine?

      Your Answer: Paired t-test

      Correct Answer: Chi-squared test

      Explanation:

      The dependent variable in this scenario is categorical, as individuals either experience agranulocytosis of do not. The independent variable is also categorical, with two options: olanzapine of clozapine. While there are various types of chi-squared tests, it is not necessary to focus on the distinctions between them.

      Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      118.8
      Seconds
  • Question 17 - Which of the following statements accurately describes significance tests? ...

    Incorrect

    • Which of the following statements accurately describes significance tests?

      Your Answer: Parametric data is not normally distributed

      Correct Answer: Chi-squared test is used to compare non-parametric data

      Explanation:

      The chi-squared test is a statistical test that does not rely on any assumptions about the underlying distribution of the data, making it a non-parametric test.

      Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      7.4
      Seconds
  • Question 18 - What is the proportion of values that fall within a range of 3...

    Incorrect

    • What is the proportion of values that fall within a range of 3 standard deviations from the mean in a normal distribution?

      Your Answer: 95.40%

      Correct Answer: 99.70%

      Explanation:

      Standard Deviation and Standard Error of the Mean

      Standard deviation (SD) and standard error of the mean (SEM) are two important statistical measures used to describe data. SD is a measure of how much the data varies, while SEM is a measure of how precisely we know the true mean of the population. The normal distribution, also known as the Gaussian distribution, is a symmetrical bell-shaped curve that describes the spread of many biological and clinical measurements.

      68.3% of the data lies within 1 SD of the mean, 95.4% of the data lies within 2 SD of the mean, and 99.7% of the data lies within 3 SD of the mean. The SD is calculated by taking the square root of the variance and is expressed in the same units as the data set. A low SD indicates that data points tend to be very close to the mean.

      On the other hand, SEM is an inferential statistic that quantifies the precision of the mean. It is expressed in the same units as the data and is calculated by dividing the SD of the sample mean by the square root of the sample size. The SEM gets smaller as the sample size increases, and it takes into account both the value of the SD and the sample size.

      Both SD and SEM are important measures in statistical analysis, and they are used to calculate confidence intervals and test hypotheses. While SD quantifies scatter, SEM quantifies precision, and both are essential in understanding and interpreting data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      328.5
      Seconds
  • Question 19 - What is the name of the database that focuses on literature created by...

    Correct

    • What is the name of the database that focuses on literature created by non-traditional commercial of academic publishing and distribution channels?

      Your Answer: OpenGrey

      Explanation:

      SIGLE is a database that specializes in collecting and indexing grey literature.

      Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.

      When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.

      There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      81.9
      Seconds
  • Question 20 - What is the standardized score (z-score) for a woman whose haemoglobin concentration is...

    Correct

    • What is the standardized score (z-score) for a woman whose haemoglobin concentration is 150 g/L, given that the mean haemoglobin concentration for healthy women is 135 g/L and the standard deviation is 15 g/L?

      Your Answer: 1

      Explanation:

      Z Scores: A Special Application of Transformation Rules

      Z scores are a unique way of measuring how much and in which direction an item deviates from the mean of its distribution, expressed in units of its standard deviation. To calculate the z score for an observation x from a population with mean and standard deviation, we use the formula z = (x – mean) / standard deviation. For example, if our observation is 150 and the mean and standard deviation are 135 and 15, respectively, then the z score would be 1.0. Z scores are a useful tool for comparing observations from different distributions and for identifying outliers.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      291.1
      Seconds
  • Question 21 - A study is designed to assess a new proton pump inhibitor (PPI) in...

    Incorrect

    • A study is designed to assess a new proton pump inhibitor (PPI) in middle-aged patients who are taking aspirin. The new PPI is given to 120 patients whilst a control group of 240 is given the standard PPI. Over a five year period 24 of the group receiving the new PPI had an upper GI bleed compared to 60 who received the standard PPI. What is the absolute risk reduction?

      Your Answer: 12

      Correct Answer: 5%

      Explanation:

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      43.1
      Seconds
  • Question 22 - A pediatrician becomes interested in a newly identified and rare pediatric syndrome. They...

    Incorrect

    • A pediatrician becomes interested in a newly identified and rare pediatric syndrome. They are interested to investigate if previous exposure to herpes viruses may put children at increased risk. Which of the following study designs would be most appropriate?

      Your Answer: Cross-over trial

      Correct Answer: Case-control study

      Explanation:

      Case-control studies are useful in studying rare diseases as it would be impractical to follow a large group of people for a long period of time to accrue enough incident cases. For instance, if a disease occurs very infrequently, say 1 in 1,000,000 per year, it would require following 1,000,000 people for ten years of 1000 people for 1000 years to accrue ten total cases. However, this is not feasible. Therefore, a case-control study provides a more practical approach to studying rare diseases.

      Types of Primary Research Studies and Their Advantages and Disadvantages

      Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.

      Type of Question Best Type of Study

      Therapy Randomized controlled trial (RCT), cohort, case control, case series
      Diagnosis Cohort studies with comparison to gold standard test
      Prognosis Cohort studies, case control, case series
      Etiology/Harm RCT, cohort studies, case control, case series
      Prevention RCT, cohort studies, case control, case series
      Cost Economic analysis

      Study Type Advantages Disadvantages

      Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
      Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
      Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
      Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
      Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)

      In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      30.6
      Seconds
  • Question 23 - What is the meaning of the P in the PICO model used for...

    Incorrect

    • What is the meaning of the P in the PICO model used for creating a research question?

      Your Answer: Prevalence

      Correct Answer: Population

      Explanation:

      Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.

      When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.

      There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      56.5
      Seconds
  • Question 24 - What is a true statement about searching in PubMed? ...

    Incorrect

    • What is a true statement about searching in PubMed?

      Your Answer: PubMed processes Boolean connectors from right to left

      Correct Answer: Truncation is generally not a recommended search technique for PubMed

      Explanation:

      Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.

      When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.

      There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      108.8
      Seconds
  • Question 25 - What type of bias is present in a study evaluating the accuracy of...

    Incorrect

    • What type of bias is present in a study evaluating the accuracy of a new diagnostic test for epilepsy if not all patients undergo the established gold-standard test?

      Your Answer: Selection bias

      Correct Answer: Work-up bias

      Explanation:

      When comparing new diagnostic tests with gold standard tests, work-up bias can be a concern. Clinicians may be hesitant to order the gold standard test unless the new test yields a positive result, as the gold standard test may involve invasive procedures like tissue biopsy. This can significantly skew the study’s findings and affect metrics such as sensitivity and specificity. While it may not always be possible to eliminate work-up bias, researchers must account for it in their analysis.

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      22.4
      Seconds
  • Question 26 - What is another name for the incidence rate? ...

    Incorrect

    • What is another name for the incidence rate?

      Your Answer: Incidence proportion

      Correct Answer: Incidence density

      Explanation:

      Measures of Disease Frequency: Incidence and Prevalence

      Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.

      Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.

      It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.

      Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      9.5
      Seconds
  • Question 27 - What is the term used to describe a graph that can be utilized...

    Incorrect

    • What is the term used to describe a graph that can be utilized to identify publication bias?

      Your Answer: Galbraith plot

      Correct Answer: Funnel plot

      Explanation:

      Stats Publication Bias

      Publication bias refers to the tendency for studies with positive findings to be published more than studies with negative findings, leading to incomplete data sets in meta-analyses and erroneous conclusions. Graphical methods such as funnel plots, Galbraith plots, ordered forest plots, and normal quantile plots can be used to detect publication bias. Funnel plots are the most commonly used and offer an easy visual way to ensure that published literature is evenly weighted. The x-axis represents the effect size, and the y-axis represents the study size. A symmetrical, inverted funnel shape indicates that publication bias is unlikely, while an asymmetrical funnel indicates a relationship between treatment effect and study size, indicating either publication bias of small study effects.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      51.5
      Seconds
  • Question 28 - Which statistical test is best suited for analyzing the difference in blood pressure...

    Incorrect

    • Which statistical test is best suited for analyzing the difference in blood pressure between the two groups of patients who were given either the established of new anti-hypertensive medication in a randomized controlled trial with a crossover design?

      Your Answer: Pearson's test

      Correct Answer: Paired t-test

      Explanation:

      The appropriate statistical test to analyze the research question of the difference between two related groups with a dependent variable of change in BP (ratio) and parametric data is a paired t-test.

      Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      222.2
      Seconds
  • Question 29 - A team of investigators aims to explore the perspectives of middle-aged physicians regarding...

    Correct

    • A team of investigators aims to explore the perspectives of middle-aged physicians regarding individuals with chronic fatigue syndrome. They will conduct interviews with a random selection of physicians until no additional insights are gained of existing ones are substantially altered. What is their objective before concluding further interviews?

      Your Answer: Data saturation

      Explanation:

      In qualitative research, data saturation refers to the point where additional data collection becomes unnecessary as the responses obtained are repetitive and do not provide any new insights. This is when the researcher has heard the same information repeatedly and there is no need to continue recruiting participants. Understanding data saturation is crucial in qualitative research.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      70.4
      Seconds
  • Question 30 - What study design would be most suitable for investigating the potential correlation between...

    Incorrect

    • What study design would be most suitable for investigating the potential correlation between the use of pacifiers in infants and sudden infant death syndrome?

      Your Answer:

      Correct Answer: Case-control study

      Explanation:

      A case-control design is more suitable than a cohort study for studying sudden infant death syndrome due to its low incidence.

      Types of Primary Research Studies and Their Advantages and Disadvantages

      Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.

      Type of Question Best Type of Study

      Therapy Randomized controlled trial (RCT), cohort, case control, case series
      Diagnosis Cohort studies with comparison to gold standard test
      Prognosis Cohort studies, case control, case series
      Etiology/Harm RCT, cohort studies, case control, case series
      Prevention RCT, cohort studies, case control, case series
      Cost Economic analysis

      Study Type Advantages Disadvantages

      Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
      Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
      Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
      Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
      Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)

      In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Research Methods, Statistics, Critical Review And Evidence-Based Practice (22/29) 76%
Passmed