-
Question 1
Correct
-
A 72-year-old woman presents with worsening abdominal distension and discomfort. During the examination, she exhibits significant dependent edema and an elevated JVP. Cardiac auscultation reveals a pansystolic murmur. The abdomen is distended and tender, with the presence of shifting dullness.
What is the SINGLE most probable diagnosis?Your Answer: Tricuspid regurgitation
Explanation:Tricuspid regurgitation is commonly caused by right ventricular dilatation, often as a result of heart failure. Other factors that can contribute to this condition include right ventricular infarction and cor pulmonale. The clinical signs of right-sided heart failure are frequently observed, such as an elevated jugular venous pressure, peripheral edema, hepatomegaly, and ascites.
The murmur associated with tricuspid regurgitation is a pansystolic murmur that is most audible at the tricuspid area during inspiration. A thrill may also be felt at the left sternal edge. Reverse splitting of the second heart sound can occur due to the early closure of the pulmonary valve. Additionally, a third heart sound may be present due to rapid filling of the right ventricle.
-
This question is part of the following fields:
- Cardiology
-
-
Question 2
Incorrect
-
A 45-year-old woman presents with recurrent episodes of central chest pain that radiate to her left arm. She has a history of angina and uses a GTN spray for relief. She reports that the pains have been occurring more frequently in the past few days and have been triggered by less exertion. Currently, she is not experiencing any pain, and her ECG shows normal sinus rhythm with no abnormalities in T wave or ST-segment.
What is the SINGLE most probable diagnosis?Your Answer: Stable angina
Correct Answer: Unstable angina
Explanation:Unstable angina is characterized by the presence of one or more of the following symptoms: angina of effort occurring over a few days with increasing frequency, episodes of angina occurring recurrently and predictably without specific provocation, or an unprovoked and prolonged episode of cardiac chest pain. The electrocardiogram (ECG) may appear normal or show T-wave/ST-segment changes, and cardiac enzymes are typically within normal range.
On the other hand, stable angina is defined by central chest pain that is triggered by activities such as exercise and emotional stress. This pain may radiate to the jaw or left arm and is relieved by resting for a few minutes. It is usually brought on by a predictable amount of exertion.
Prinzmetal angina, although rare, is a variant of angina that primarily occurs at rest between midnight and early morning. The attacks can be severe and tend to happen in clusters. This type of angina is caused by coronary artery spasm, and patients may have normal coronary arteries.
Decubitus angina, on the other hand, is angina that occurs when lying down. It often develops as a result of cardiac failure due to an increased volume of blood within the blood vessels, which places additional strain on the heart.
Lastly, Ludwig’s angina is an extremely serious and potentially life-threatening cellulitis that affects the submandibular area. It most commonly arises from an infection in the floor of the mouth, which then spreads to the submandibular space.
-
This question is part of the following fields:
- Cardiology
-
-
Question 3
Correct
-
A 32-year-old man presents with an episode of atrial fibrillation (AF) that began a few hours ago. This is his first-ever episode, and he has no significant medical history.
Which of the following accurately characterizes the type of AF he has experienced?Your Answer: Acute
Explanation:In order to gain a comprehensive understanding of AF management, it is crucial to familiarize oneself with the terminology used to describe its various subtypes. These terms help categorize different episodes of AF based on their characteristics and outcomes.
Acute AF refers to any episode that occurs within the previous 48 hours. It can manifest with or without symptoms and may or may not recur. On the other hand, paroxysmal AF describes episodes that spontaneously end within 7 days, typically within 48 hours. While these episodes are often recurrent, they can progress into a sustained form of AF.
Recurrent AF is defined as experiencing two or more episodes of AF. If the episodes self-terminate, they are classified as paroxysmal AF. However, if the episodes do not self-terminate, they are categorized as persistent AF. Persistent AF lasts longer than 7 days or has occurred after a previous cardioversion. To terminate persistent AF, electrical or pharmacological intervention is required. In some cases, persistent AF can progress into permanent AF.
Permanent AF, also known as Accepted AF, refers to episodes that cannot be successfully terminated, have relapsed after termination, or where cardioversion is not pursued. This subtype signifies a more chronic and ongoing form of AF.
By understanding and utilizing these terms, healthcare professionals can effectively communicate and manage the different subtypes of AF.
-
This question is part of the following fields:
- Cardiology
-
-
Question 4
Incorrect
-
You are managing a 72 year old female who has presented to the emergency department with sudden onset of dizziness and difficulty breathing. The patient's pulse rate is recorded as 44 beats per minute. Your assessment focuses on identifying reversible causes of bradycardia. Which of the following metabolic conditions is commonly associated with reversible bradycardia?
Your Answer: Hypocarbia
Correct Answer: Hypermagnesemia
Explanation:Some reversible metabolic causes of bradycardia include hypothyroidism, hyperkalaemia, hypermagnesemia, and hypothermia. These conditions can lead to a slow heart rate and can be treated or reversed.
Further Reading:
Causes of Bradycardia:
– Physiological: Athletes, sleeping
– Cardiac conduction dysfunction: Atrioventricular block, sinus node disease
– Vasovagal & autonomic mediated: Vasovagal episodes, carotid sinus hypersensitivity
– Hypothermia
– Metabolic & electrolyte disturbances: Hypothyroidism, hyperkalaemia, hypermagnesemia
– Drugs: Beta-blockers, calcium channel blockers, digoxin, amiodarone
– Head injury: Cushing’s response
– Infections: Endocarditis
– Other: Sarcoidosis, amyloidosisPresenting symptoms of Bradycardia:
– Presyncope (dizziness, lightheadedness)
– Syncope
– Breathlessness
– Weakness
– Chest pain
– NauseaManagement of Bradycardia:
– Assess and monitor for adverse features (shock, syncope, myocardial ischaemia, heart failure)
– Treat reversible causes of bradycardia
– Pharmacological treatment: Atropine is first-line, adrenaline and isoprenaline are second-line
– Transcutaneous pacing if atropine is ineffective
– Other drugs that may be used: Aminophylline, dopamine, glucagon, glycopyrrolateBradycardia Algorithm:
– Follow the algorithm for management of bradycardia, which includes assessing and monitoring for adverse features, treating reversible causes, and using appropriate medications or pacing as needed.
https://acls-algorithms.com/wp-content/uploads/2020/12/Website-Bradycardia-Algorithm-Diagram.pdf -
This question is part of the following fields:
- Cardiology
-
-
Question 5
Incorrect
-
Your hospital’s neurology department is currently evaluating the utility of a triple marker test for use in diagnosing patients with suspected stroke. The test will use brain natriuretic peptide (BNP), neuron-specific enolase (NSE), and S100B protein.
How long after a stroke do levels of glial fibrillary acidic protein (GFAP) start to increase?Your Answer: 1-3 hours
Correct Answer: 4-8 hours
Explanation:The timing of the initial rise, peak, and return to normality of various cardiac enzymes can serve as a helpful guide. Creatine kinase, the main cardiac isoenzyme, typically experiences an initial rise within 4-8 hours, reaches its peak at 18 hours, and returns to normal within 2-3 days. Myoglobin, which lacks specificity due to its association with skeletal muscle damage, shows an initial rise within 1-4 hours, peaks at 6-7 hours, and returns to normal within 24 hours. Troponin I, known for its sensitivity and specificity, exhibits an initial rise within 3-12 hours, reaches its peak at 24 hours, and returns to normal within 3-10 days. HFABP, or heart fatty acid binding protein, experiences an initial rise within 1.5 hours, peaks at 5-10 hours, and returns to normal within 24 hours. Lastly, LDH, predominantly found in cardiac muscle, shows an initial rise at 10 hours, peaks at 24-48 hours, and returns to normal within 14 days.
-
This question is part of the following fields:
- Cardiology
-
-
Question 6
Correct
-
A 67 year old male presents to the emergency department with complaints of dizziness, difficulty breathing, and heart palpitations. The patient reports that these symptoms began six hours ago. Upon examination, the patient's vital signs are as follows:
- Blood pressure: 118/76 mmHg
- Pulse rate: 86 bpm
- Respiration rate: 15 bpm
- Oxygen saturation: 97% on room air
An electrocardiogram (ECG) is performed, confirming the presence of atrial fibrillation. As part of the treatment plan, you need to calculate the patient's CHA2DS2-VASc score.
According to NICE guidelines, what is the usual threshold score for initiating anticoagulation in this case?Your Answer: 2
Explanation:According to NICE guidelines, the usual threshold score for initiating anticoagulation in this case is 2.
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, affecting around 5% of patients over the age of 70-75 years and 10% of patients aged 80-85 years. While AF can cause palpitations and inefficient cardiac function, the most important aspect of managing patients with AF is reducing the increased risk of stroke.
AF can be classified as first detected episode, paroxysmal, persistent, or permanent. First detected episode refers to the initial occurrence of AF, regardless of symptoms or duration. Paroxysmal AF occurs when a patient has 2 or more self-terminating episodes lasting less than 7 days. Persistent AF refers to episodes lasting more than 7 days that do not self-terminate. Permanent AF is continuous atrial fibrillation that cannot be cardioverted or if attempts to do so are deemed inappropriate. The treatment goals for permanent AF are rate control and anticoagulation if appropriate.
Symptoms of AF include palpitations, dyspnea, and chest pain. The most common sign is an irregularly irregular pulse. An electrocardiogram (ECG) is essential for diagnosing AF, as other conditions can also cause an irregular pulse.
Managing patients with AF involves two key parts: rate/rhythm control and reducing stroke risk. Rate control involves slowing down the irregular pulse to avoid negative effects on cardiac function. This is typically achieved using beta-blockers or rate-limiting calcium channel blockers. If one drug is not effective, combination therapy may be used. Rhythm control aims to restore and maintain normal sinus rhythm through pharmacological or electrical cardioversion. However, the majority of patients are managed with a rate control strategy.
Reducing stroke risk in patients with AF is crucial. Risk stratifying tools, such as the CHA2DS2-VASc score, are used to determine the most appropriate anticoagulation strategy. Anticoagulation is recommended for patients with a score of 2 or more. Clinicians can choose between warfarin and novel oral anticoagulants (NOACs) for anticoagulation.
Before starting anticoagulation, the patient’s bleeding risk should be assessed using tools like the HAS-BLED score or the ORBIT tool. These tools evaluate factors such as hypertension, abnormal renal or liver function, history of bleeding, age, and use of drugs that predispose to bleeding.
-
This question is part of the following fields:
- Cardiology
-
-
Question 7
Correct
-
A 45-year-old man presents with palpitations and is found to have atrial fibrillation. You are requested to evaluate his ECG.
Which of the following statements is correct regarding the ECG findings in atrial fibrillation?Your Answer: Some impulses are filtered out by the AV node
Explanation:The classic ECG features of atrial fibrillation include an irregularly irregular rhythm, the absence of p-waves, an irregular ventricular rate, and the presence of fibrillation waves. This irregular rhythm occurs because the atrial impulses are filtered out by the AV node.
In addition, Ashman beats may be observed in atrial fibrillation. These beats are characterized by wide complex QRS complexes, often with a morphology resembling right bundle branch block. They occur after a short R-R interval that is preceded by a prolonged R-R interval. Fortunately, Ashman beats are generally considered harmless.
The disorganized electrical activity in atrial fibrillation typically originates at the root of the pulmonary veins.
-
This question is part of the following fields:
- Cardiology
-
-
Question 8
Incorrect
-
A 45-year-old man presents with palpitations and is found to have atrial fibrillation. You are requested to evaluate his ECG.
Which of the following statements is NOT true regarding the ECG in atrial fibrillation?Your Answer: The disorganized electrical activity usually originates at the root of the pulmonary veins
Correct Answer: Ashman beats have a poor prognosis
Explanation:The classic ECG features of atrial fibrillation include an irregularly irregular rhythm, the absence of p-waves, an irregular ventricular rate, and the presence of fibrillation waves. This irregular rhythm occurs because the atrial impulses are filtered out by the AV node.
In addition, Ashman beats may be observed in atrial fibrillation. These beats are characterized by wide complex QRS complexes, often with a morphology resembling right bundle branch block. They occur after a short R-R interval that is preceded by a prolonged R-R interval. Fortunately, Ashman beats are generally considered harmless.
The disorganized electrical activity in atrial fibrillation typically originates at the root of the pulmonary veins.
-
This question is part of the following fields:
- Cardiology
-
-
Question 9
Correct
-
A 70-year-old male smoker presents with intense chest discomfort. His electrocardiogram (ECG) indicates an acute myocardial infarction, and he is immediately taken to the catheterization laboratory. Angiography reveals a blockage in the left anterior descending artery.
Which area of the heart is most likely affected in this scenario?Your Answer: Anteroseptal
Explanation:A summary of the vessels involved in different types of myocardial infarction, along with the corresponding ECG leads and the location of the infarction.
For instance, an anteroseptal infarction involving the left anterior descending artery is indicated by ECG leads V1-V3. Similarly, an anterior infarction involving the left anterior descending artery is indicated by leads V3-V4.
In cases of anterolateral infarctions, both the left anterior descending artery and the left circumflex artery are involved, and this is reflected in ECG leads V5-V6. An extensive anterior infarction involving the left anterior descending artery is indicated by leads V1-V6.
Lateral infarcts involving the left circumflex artery are indicated by leads I, II, aVL, and V6. Inferior infarctions, on the other hand, involve either the right coronary artery (in 80% of cases) or the left circumflex artery (in 20% of cases), and this is shown by leads II, III, and aVF.
In the case of a right ventricular infarction, the right coronary artery is involved, and this is indicated by leads V1 and V4R. Lastly, a posterior infarction involving the right coronary artery is shown by leads V7-V9.
-
This question is part of the following fields:
- Cardiology
-
-
Question 10
Incorrect
-
A 37 year old female presents to the emergency department complaining of shortness of breath and chest pain in the center of her chest. Upon further questioning, the patient reveals that she experienced muscle pain, gastrointestinal issues, a mild fever, and fatigue for approximately three days about a week ago. She informs you that she is typically in good health and regularly runs 5-10km two to three times per week. The patient has no significant medical history, does not take any medications on a regular basis, has never smoked, and does not consume alcohol. Given the patient's symptoms, you suspect the possibility of myocarditis. Which of the following sets of blood test results would be expected in a patient with myocarditis?
Your Answer: creatine kinase: elevated, troponin I: elevated, BNP: normal
Correct Answer: creatine kinase: elevated, troponin I: elevated, BNP: elevated
Explanation:In cases of myocarditis, levels of cardiac muscle enzymes (CK-MB, Troponin I, and Troponin T) and B-type natriuretic peptide (BNP) are usually elevated. It is important to note that CK-MB is a subtype of CK, so an increase in CK-MB will also result in an increase in total CK levels. This poses a challenge in differentiating myocarditis from coronary artery disease in the emergency department. Typically, a definitive diagnosis is not made until the patient undergoes additional tests such as angiography and possibly endomyocardial biopsy (EMB).
Further Reading:
Myocarditis is inflammation of the myocardium, the middle layer of the heart wall, that is not caused by a blockage in the coronary arteries. It can be caused by various factors, including infections (such as viruses, bacteria, parasites, and fungi), immune reactions, toxins, physical injury, and certain medications or vaccines. Coxsackie virus is the most common cause of myocarditis in Europe and the USA, while globally, Trypanosoma cruzi, which causes Chagas disease, is the most common cause.
The symptoms of myocarditis can vary widely and often resemble those of heart failure or coronary heart disease. Common symptoms include chest pain, palpitations, breathlessness, fatigue, and swelling. The clinical presentation can also be influenced by the underlying cause of the inflammation. Diagnosis of myocarditis is challenging as there is no specific clinical presentation, and the gold standard test, endomyocardial biopsy, is not readily available in emergency departments.
Various tests can be performed to aid in the diagnosis of myocarditis, including electrocardiogram (ECG), chest X-ray, cardiac enzymes (such as troponin or CK-MB), brain natriuretic peptide (BNP) levels, and echocardiogram. These tests may show non-specific abnormalities, such as ST-segment and T-wave abnormalities on ECG, bilateral pulmonary infiltrates on chest X-ray, elevated cardiac enzymes and BNP levels, and left ventricular motion abnormalities on echocardiogram.
Management of myocarditis is primarily supportive, focusing on treating cardiac failure and addressing the underlying cause. Supportive care and conventional heart failure therapy, such as ACE inhibitors or angiotensin II receptor blockers, vasodilators, beta-blockers, and diuretics, may be used to improve cardiac function and reduce symptoms. Treatment of the underlying cause, such as antiparasitic agents for Chagas disease or antibiotics for bacterial infections, may also be necessary. In severe cases leading to cardiogenic shock, more aggressive treatment with invasive monitoring, inotropes, vasopressors, and potentially heart transplantation may be required.
In summary, myocarditis is inflammation of the myocardium that can be caused by various factors. It presents with a wide range of symptoms and can be challenging to diagnose. Management involves supportive care, treatment of cardiac failure, and addressing the underlying cause. Severe cases may require more aggressive treatment and potentially heart transplantation.
-
This question is part of the following fields:
- Cardiology
-
-
Question 11
Incorrect
-
You are summoned to the resuscitation bay to provide assistance with a 72-year-old patient who is undergoing treatment for cardiac arrest. After three shocks, the patient experiences a return of spontaneous circulation.
What are the recommended blood pressure goals following a return of spontaneous circulation (ROSC) after cardiac arrest?Your Answer: Systolic blood pressure 85-95 mmHg
Correct Answer: Mean arterial pressure 65-100 mmHg
Explanation:After the return of spontaneous circulation (ROSC), there are two specific blood pressure targets that need to be achieved. The first target is to maintain a systolic blood pressure above 100 mmHg. The second target is to maintain the mean arterial pressure (MAP) within the range of 65 to 100 mmHg.
Further Reading:
Cardiopulmonary arrest is a serious event with low survival rates. In non-traumatic cardiac arrest, only about 20% of patients who arrest as an in-patient survive to hospital discharge, while the survival rate for out-of-hospital cardiac arrest is approximately 8%. The Resus Council BLS/AED Algorithm for 2015 recommends chest compressions at a rate of 100-120 per minute with a compression depth of 5-6 cm. The ratio of chest compressions to rescue breaths is 30:2.
After a cardiac arrest, the goal of patient care is to minimize the impact of post cardiac arrest syndrome, which includes brain injury, myocardial dysfunction, the ischaemic/reperfusion response, and the underlying pathology that caused the arrest. The ABCDE approach is used for clinical assessment and general management. Intubation may be necessary if the airway cannot be maintained by simple measures or if it is immediately threatened. Controlled ventilation is aimed at maintaining oxygen saturation levels between 94-98% and normocarbia. Fluid status may be difficult to judge, but a target mean arterial pressure (MAP) between 65 and 100 mmHg is recommended. Inotropes may be administered to maintain blood pressure. Sedation should be adequate to gain control of ventilation, and short-acting sedating agents like propofol are preferred. Blood glucose levels should be maintained below 8 mmol/l. Pyrexia should be avoided, and there is some evidence for controlled mild hypothermia but no consensus on this.
Post ROSC investigations may include a chest X-ray, ECG monitoring, serial potassium and lactate measurements, and other imaging modalities like ultrasonography, echocardiography, CTPA, and CT head, depending on availability and skills in the local department. Treatment should be directed towards the underlying cause, and PCI or thrombolysis may be considered for acute coronary syndrome or suspected pulmonary embolism, respectively.
Patients who are comatose after ROSC without significant pre-arrest comorbidities should be transferred to the ICU for supportive care. Neurological outcome at 72 hours is the best prognostic indicator of outcome.
-
This question is part of the following fields:
- Cardiology
-
-
Question 12
Incorrect
-
Your hospital’s pediatrics department is currently evaluating the utility of a triple marker test for use in risk stratification of patients with a suspected heart condition. The test will use troponin I, myoglobin, and heart-type fatty acid-binding protein (HFABP).
How long after a heart event do troponin I levels reach their highest point?Your Answer: 12 hours
Correct Answer: 24 hours
Explanation:The timing of the initial rise, peak, and return to normality of various cardiac enzymes can serve as a helpful guide. Creatine kinase, the main cardiac isoenzyme, typically experiences an initial rise within 4-8 hours, reaches its peak at 18 hours, and returns to normal within 2-3 days. Myoglobin, which lacks specificity due to its association with skeletal muscle damage, shows an initial rise within 1-4 hours, peaks at 6-7 hours, and returns to normal within 24 hours. Troponin I, known for its sensitivity and specificity, exhibits an initial rise within 3-12 hours, reaches its peak at 24 hours, and returns to normal within 3-10 days. HFABP, or heart fatty acid binding protein, experiences an initial rise within 1.5 hours, peaks at 5-10 hours, and returns to normal within 24 hours. Lastly, LDH, predominantly found in cardiac muscle, shows an initial rise at 10 hours, peaks at 24-48 hours, and returns to normal within 14 days.
-
This question is part of the following fields:
- Cardiology
-
-
Question 13
Incorrect
-
You are asked to assess a 68-year-old male in the resuscitation room due to bradycardia. The patient complained of increased shortness of breath, dizziness, and chest discomfort. The recorded vital signs are as follows:
Parameter Result
Blood pressure 80/52 mmHg
Pulse rate 40 bpm
Respiration rate 18 rpm
SpO2 98% on 12 liters Oxygen
You are concerned about the possibility of this patient progressing to asystole. Which of the following indicators would suggest that this patient is at a high risk of developing asystole?Your Answer:
Correct Answer: Ventricular pause of 3.5 seconds
Explanation:Patients who have bradycardia and show ventricular pauses longer than 3 seconds on an electrocardiogram (ECG) are at a high risk of developing asystole. The following characteristics are indicators of a high risk for asystole: recent episodes of asystole, Mobitz II AV block, third-degree AV block (also known as complete heart block) with a broad QRS complex, and ventricular pauses longer than 3 seconds.
Further Reading:
Causes of Bradycardia:
– Physiological: Athletes, sleeping
– Cardiac conduction dysfunction: Atrioventricular block, sinus node disease
– Vasovagal & autonomic mediated: Vasovagal episodes, carotid sinus hypersensitivity
– Hypothermia
– Metabolic & electrolyte disturbances: Hypothyroidism, hyperkalaemia, hypermagnesemia
– Drugs: Beta-blockers, calcium channel blockers, digoxin, amiodarone
– Head injury: Cushing’s response
– Infections: Endocarditis
– Other: Sarcoidosis, amyloidosisPresenting symptoms of Bradycardia:
– Presyncope (dizziness, lightheadedness)
– Syncope
– Breathlessness
– Weakness
– Chest pain
– NauseaManagement of Bradycardia:
– Assess and monitor for adverse features (shock, syncope, myocardial ischaemia, heart failure)
– Treat reversible causes of bradycardia
– Pharmacological treatment: Atropine is first-line, adrenaline and isoprenaline are second-line
– Transcutaneous pacing if atropine is ineffective
– Other drugs that may be used: Aminophylline, dopamine, glucagon, glycopyrrolateBradycardia Algorithm:
– Follow the algorithm for management of bradycardia, which includes assessing and monitoring for adverse features, treating reversible causes, and using appropriate medications or pacing as needed.
https://acls-algorithms.com/wp-content/uploads/2020/12/Website-Bradycardia-Algorithm-Diagram.pdf -
This question is part of the following fields:
- Cardiology
-
-
Question 14
Incorrect
-
A 72 year old male attends the emergency department complaining of feeling lightheaded, experiencing shortness of breath, and having irregular heartbeats. He states that these symptoms started six hours ago. Upon listening to his chest, clear lung fields are detected but an irregularly irregular pulse is observed. The patient has type 2 diabetes, which is currently controlled through diet. The only medications he takes are:
- Lisinopril 2.5 mg once daily
- Simvastatin 20 mg once daily
There is no history of heart disease, vascular disease, or stroke. The recorded observations are as follows:
- Blood pressure: 148/92 mmHg
- Pulse rate: 86 bpm
- Respiration rate: 15 bpm
- Oxygen saturation: 97% on room air
An ECG is performed, confirming atrial fibrillation. As part of the management, you need to calculate the patient's CHA2DS2-VASc score.
What is this patient's score?Your Answer:
Correct Answer: 4
Explanation:The patient is currently taking 20 mg of Atorvastatin once daily. They do not have a history of heart disease, vascular disease, or stroke. Their blood pressure is 148/92 mmHg, pulse rate is 86 bpm, and respiration rate is 1.
Further Reading:
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, affecting around 5% of patients over the age of 70-75 years and 10% of patients aged 80-85 years. While AF can cause palpitations and inefficient cardiac function, the most important aspect of managing patients with AF is reducing the increased risk of stroke.
AF can be classified as first detected episode, paroxysmal, persistent, or permanent. First detected episode refers to the initial occurrence of AF, regardless of symptoms or duration. Paroxysmal AF occurs when a patient has 2 or more self-terminating episodes lasting less than 7 days. Persistent AF refers to episodes lasting more than 7 days that do not self-terminate. Permanent AF is continuous atrial fibrillation that cannot be cardioverted or if attempts to do so are deemed inappropriate. The treatment goals for permanent AF are rate control and anticoagulation if appropriate.
Symptoms of AF include palpitations, dyspnea, and chest pain. The most common sign is an irregularly irregular pulse. An electrocardiogram (ECG) is essential for diagnosing AF, as other conditions can also cause an irregular pulse.
Managing patients with AF involves two key parts: rate/rhythm control and reducing stroke risk. Rate control involves slowing down the irregular pulse to avoid negative effects on cardiac function. This is typically achieved using beta-blockers or rate-limiting calcium channel blockers. If one drug is not effective, combination therapy may be used. Rhythm control aims to restore and maintain normal sinus rhythm through pharmacological or electrical cardioversion. However, the majority of patients are managed with a rate control strategy.
Reducing stroke risk in patients with AF is crucial. Risk stratifying tools, such as the CHA2DS2-VASc score, are used to determine the most appropriate anticoagulation strategy. Anticoagulation is recommended for patients with a score of 2 or more. Clinicians can choose between warfarin and novel oral anticoagulants (NOACs) for anticoagulation.
Before starting anticoagulation, the patient’s bleeding risk should be assessed using tools like the HAS-BLED score or the ORBIT tool. These tools evaluate factors such as hypertension, abnormal renal or liver function, history of bleeding, age, and use of drugs that predispose to bleeding.
-
This question is part of the following fields:
- Cardiology
-
-
Question 15
Incorrect
-
A 72 year old male presents with central chest pain radiating to the jaw and left arm. The patient is sweating profusely and appears pale. The pain began 4 hours ago. ECG reveals 2-3 mm ST elevation in leads II, III and aVF. 300 mg aspirin has been administered. Transporting the patient to the nearest coronary catheter lab for primary PCI will take 2 hours 45 minutes. What is the most suitable course of action for managing this patient?
Your Answer:
Correct Answer: Administer fibrinolysis
Explanation:Fibrinolysis is a treatment option for patients with ST-elevation myocardial infarction (STEMI) if they are unable to receive primary percutaneous coronary intervention (PCI) within 120 minutes, but fibrinolysis can be administered within that time frame. Primary PCI is the preferred treatment for STEMI patients who present within 12 hours of symptom onset. However, if primary PCI cannot be performed within 120 minutes of the time when fibrinolysis could have been given, fibrinolysis should be considered. Along with fibrinolysis, an antithrombin medication such as unfractionated heparin (UFH), low molecular weight heparin (LMWH), fondaparinux, or bivalirudin is typically administered.
Further Reading:
Acute Coronary Syndromes (ACS) is a term used to describe a group of conditions that involve the sudden reduction or blockage of blood flow to the heart. This can lead to a heart attack or unstable angina. ACS includes ST segment elevation myocardial infarction (STEMI), non-ST segment elevation myocardial infarction (NSTEMI), and unstable angina (UA).
The development of ACS is usually seen in patients who already have underlying coronary heart disease. This disease is characterized by the buildup of fatty plaques in the walls of the coronary arteries, which can gradually narrow the arteries and reduce blood flow to the heart. This can cause chest pain, known as angina, during physical exertion. In some cases, the fatty plaques can rupture, leading to a complete blockage of the artery and a heart attack.
There are both non modifiable and modifiable risk factors for ACS. non modifiable risk factors include increasing age, male gender, and family history. Modifiable risk factors include smoking, diabetes mellitus, hypertension, hypercholesterolemia, and obesity.
The symptoms of ACS typically include chest pain, which is often described as a heavy or constricting sensation in the central or left side of the chest. The pain may also radiate to the jaw or left arm. Other symptoms can include shortness of breath, sweating, and nausea/vomiting. However, it’s important to note that some patients, especially diabetics or the elderly, may not experience chest pain.
The diagnosis of ACS is typically made based on the patient’s history, electrocardiogram (ECG), and blood tests for cardiac enzymes, specifically troponin. The ECG can show changes consistent with a heart attack, such as ST segment elevation or depression, T wave inversion, or the presence of a new left bundle branch block. Elevated troponin levels confirm the diagnosis of a heart attack.
The management of ACS depends on the specific condition and the patient’s risk factors. For STEMI, immediate coronary reperfusion therapy, either through primary percutaneous coronary intervention (PCI) or fibrinolysis, is recommended. In addition to aspirin, a second antiplatelet agent is usually given. For NSTEMI or unstable angina, the treatment approach may involve reperfusion therapy or medical management, depending on the patient’s risk of future cardiovascular events.
-
This question is part of the following fields:
- Cardiology
-
-
Question 16
Incorrect
-
A 68 year old male presents to the emergency department complaining of dizziness and palpitations that have been occurring for the past 2 hours. An ECG confirms the presence of atrial fibrillation. The patient has no previous history of atrial fibrillation but was diagnosed with mild aortic valve stenosis 8 months ago during an echocardiogram ordered by his primary care physician. The patient reports that the echocardiogram was done because he was experiencing shortness of breath, which resolved after 2-3 months and was attributed to a recent bout of pneumonia. The decision is made to attempt pharmacological cardioversion. What is the most appropriate medication to use for this purpose in this patient?
Your Answer:
Correct Answer: Amiodarone
Explanation:According to NICE guidelines, amiodarone is recommended as the initial choice for pharmacological cardioversion of atrial fibrillation (AF) in individuals who have evidence of structural heart disease.
Further Reading:
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, affecting around 5% of patients over the age of 70-75 years and 10% of patients aged 80-85 years. While AF can cause palpitations and inefficient cardiac function, the most important aspect of managing patients with AF is reducing the increased risk of stroke.
AF can be classified as first detected episode, paroxysmal, persistent, or permanent. First detected episode refers to the initial occurrence of AF, regardless of symptoms or duration. Paroxysmal AF occurs when a patient has 2 or more self-terminating episodes lasting less than 7 days. Persistent AF refers to episodes lasting more than 7 days that do not self-terminate. Permanent AF is continuous atrial fibrillation that cannot be cardioverted or if attempts to do so are deemed inappropriate. The treatment goals for permanent AF are rate control and anticoagulation if appropriate.
Symptoms of AF include palpitations, dyspnea, and chest pain. The most common sign is an irregularly irregular pulse. An electrocardiogram (ECG) is essential for diagnosing AF, as other conditions can also cause an irregular pulse.
Managing patients with AF involves two key parts: rate/rhythm control and reducing stroke risk. Rate control involves slowing down the irregular pulse to avoid negative effects on cardiac function. This is typically achieved using beta-blockers or rate-limiting calcium channel blockers. If one drug is not effective, combination therapy may be used. Rhythm control aims to restore and maintain normal sinus rhythm through pharmacological or electrical cardioversion. However, the majority of patients are managed with a rate control strategy.
Reducing stroke risk in patients with AF is crucial. Risk stratifying tools, such as the CHA2DS2-VASc score, are used to determine the most appropriate anticoagulation strategy. Anticoagulation is recommended for patients with a score of 2 or more. Clinicians can choose between warfarin and novel oral anticoagulants (NOACs) for anticoagulation.
Before starting anticoagulation, the patient’s bleeding risk should be assessed using tools like the HAS-BLED score or the ORBIT tool. These tools evaluate factors such as hypertension, abnormal renal or liver function, history of bleeding, age, and use of drugs that predispose to bleeding.
-
This question is part of the following fields:
- Cardiology
-
-
Question 17
Incorrect
-
You evaluate a 55-year-old woman with chest discomfort and suspect a diagnosis of an acute coronary syndrome (ACS).
Which ONE statement about ACS is NOT TRUE?Your Answer:
Correct Answer: Cardiac enzymes are usually elevated in unstable angina
Explanation:Cardiac enzymes do not increase in unstable angina. However, if cardiac markers do rise, it is classified as a non-ST elevation myocardial infarction (NSTEMI). Both unstable angina and NSTEMI can have a normal ECG. An extended ventricular activation time indicates damage to the heart muscle. This occurs because infarcting myocardium conducts electrical impulses at a slower pace, resulting in a prolonged interval between the start of the QRS complex and the apex of the R wave. A positive troponin test indicates the presence of necrosis in cardiac myocytes.
Summary:
Marker | Initial Rise | Peak | Normal at
Creatine kinase | 4-8 hours | 18 hours 2-3 days | CK-MB = main cardiac isoenzyme
Myoglobin | 1-4 hours | 6-7 hours | 24 hours | Low specificity due to skeletal muscle damage
Troponin I | 3-12 hours | 24 hours | 3-10 days | Appears to be the most sensitive and specific
HFABP | 1-2 hours | 5-10 hours | 24 hours | HFABP = heart fatty acid binding protein
LDH | 10 hours | 24-48 hours | 14 days | Cardiac muscle mainly contains LDH -
This question is part of the following fields:
- Cardiology
-
-
Question 18
Incorrect
-
A 68 year old man is brought to the emergency department due to sudden difficulty breathing. Bedside echocardiography reveals significant mitral regurgitation. What is a common clinical characteristic of mitral regurgitation?
Your Answer:
Correct Answer: A 3rd heart sound
Explanation:Mitral regurgitation is characterized by several clinical features. One of the main signs is a pansystolic murmur that can be heard throughout the entire systolic phase of the cardiac cycle. This murmur often radiates to the left axilla. Another notable feature is a soft S1 heart sound, which is the first heart sound heard during the cardiac cycle. Additionally, a 3rd heart sound, also known as an added sound, can be detected in patients with mitral regurgitation. As the condition progresses to moderate to severe levels, signs such as a laterally displaced apex beat with a heave may become apparent.
Further Reading:
Mitral Stenosis:
– Causes: Rheumatic fever, Mucopolysaccharidoses, Carcinoid, Endocardial fibroelastosis
– Features: Mid-late diastolic murmur, loud S1, opening snap, low volume pulse, malar flush, atrial fibrillation, signs of pulmonary edema, tapping apex beat
– Features of severe mitral stenosis: Length of murmur increases, opening snap becomes closer to S2
– Investigation findings: CXR may show left atrial enlargement, echocardiography may show reduced cross-sectional area of the mitral valveMitral Regurgitation:
– Causes: Mitral valve prolapse, Myxomatous degeneration, Ischemic heart disease, Rheumatic fever, Connective tissue disorders, Endocarditis, Dilated cardiomyopathy
– Features: pansystolic murmur radiating to left axilla, soft S1, S3, laterally displaced apex beat with heave
– Signs of acute MR: Decompensated congestive heart failure symptoms
– Signs of chronic MR: Leg edema, fatigue, arrhythmia (atrial fibrillation)
– Investigation findings: Doppler echocardiography to detect regurgitant flow and pulmonary hypertension, ECG may show signs of LA enlargement and LV hypertrophy, CXR may show LA and LV enlargement in chronic MR and pulmonary edema in acute MR. -
This question is part of the following fields:
- Cardiology
-
-
Question 19
Incorrect
-
A 30-year-old woman presents with a severe 'tearing' abdominal pain that radiates to her lower back. A diagnosis of aortic dissection is suspected.
Which of the following would be the LEAST likely risk factor for aortic dissection?Your Answer:
Correct Answer: Cannabis usage
Explanation:There is no known connection between the use of cannabis and aortic dissection. Some factors that are recognized as increasing the risk of aortic dissection include hypertension, atherosclerosis, aortic coarctation, the use of sympathomimetic drugs like cocaine, Marfan syndrome, Ehlers-Danlos syndrome, Turner’s syndrome, tertiary syphilis, and pre-existing aortic aneurysm.
-
This question is part of the following fields:
- Cardiology
-
-
Question 20
Incorrect
-
You are asked to evaluate a 62-year-old patient who has come in with complaints of chest discomfort. The nurse has handed you the ECG report, which states 'unspecified age septal infarction' in the comments section.
Which leads would you anticipate observing ST elevation in an acute septal STEMI?Your Answer:
Correct Answer: V1, V2
Explanation:The septum, which is a part of the heart, can be best identified by examining leads V1 and V2. The septum receives its blood supply from the proximal left anterior descending artery (LAD). The LAD is responsible for supplying blood to the anterior myocardium and also contributes to the blood supply of the lateral myocardium. If the LAD becomes blocked, it can result in ST elevation in all the chest leads.
Further Reading:
Acute Coronary Syndromes (ACS) is a term used to describe a group of conditions that involve the sudden reduction or blockage of blood flow to the heart. This can lead to a heart attack or unstable angina. ACS includes ST segment elevation myocardial infarction (STEMI), non-ST segment elevation myocardial infarction (NSTEMI), and unstable angina (UA).
The development of ACS is usually seen in patients who already have underlying coronary heart disease. This disease is characterized by the buildup of fatty plaques in the walls of the coronary arteries, which can gradually narrow the arteries and reduce blood flow to the heart. This can cause chest pain, known as angina, during physical exertion. In some cases, the fatty plaques can rupture, leading to a complete blockage of the artery and a heart attack.
There are both non modifiable and modifiable risk factors for ACS. non modifiable risk factors include increasing age, male gender, and family history. Modifiable risk factors include smoking, diabetes mellitus, hypertension, hypercholesterolemia, and obesity.
The symptoms of ACS typically include chest pain, which is often described as a heavy or constricting sensation in the central or left side of the chest. The pain may also radiate to the jaw or left arm. Other symptoms can include shortness of breath, sweating, and nausea/vomiting. However, it’s important to note that some patients, especially diabetics or the elderly, may not experience chest pain.
The diagnosis of ACS is typically made based on the patient’s history, electrocardiogram (ECG), and blood tests for cardiac enzymes, specifically troponin. The ECG can show changes consistent with a heart attack, such as ST segment elevation or depression, T wave inversion, or the presence of a new left bundle branch block. Elevated troponin levels confirm the diagnosis of a heart attack.
The management of ACS depends on the specific condition and the patient’s risk factors. For STEMI, immediate coronary reperfusion therapy, either through primary percutaneous coronary intervention (PCI) or fibrinolysis, is recommended. In addition to aspirin, a second antiplatelet agent is usually given. For NSTEMI or unstable angina, the treatment approach may involve reperfusion therapy or medical management, depending on the patient’s risk of future cardiovascular events.
-
This question is part of the following fields:
- Cardiology
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)