00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - Samantha is a 67-year-old woman who visits her doctor complaining of muscle weakness...

    Correct

    • Samantha is a 67-year-old woman who visits her doctor complaining of muscle weakness and blurred vision. She works as a librarian, drinks about 15 units of alcohol per week, and has smoked about 25 cigarettes a day for 35 years.

      During the examination, her blood pressure is found to be elevated at 152/98 mmHg. There are reduced breath sounds over the area of the right lower lobe. Some of her blood test results are as follows:

      - Hb 120 g/L (Female: 115-160)
      - Platelets 420 * 109/L (150-400)
      - WBC 9.1 * 109/L (4.0-11.0)
      - Na+ 148 mmol/L (135-145)
      - K+ 3.2 mmol/L (3.5-5.0)
      - Urea 8.5 mmol/L (2.0-7.0)
      - Creatinine 150 µmol/L (55-120)
      - 24-hour urine free cortisol 260 ug/l (10-100)
      - Glucose 17.8 mmol/l (4.0-7.0)

      She mentions that, aside from a persistent cough due to smoking, which occasionally produces blood, she feels fine.

      What is the most probable diagnosis?

      Your Answer: Small cell lung carcinoma

      Explanation:

      A small cell lung carcinoma that secretes ACTH can lead to Cushing’s syndrome, as seen in this patient. The history and examination findings suggest lung cancer, and the raised cortisol level can be explained by the paraneoplastic syndrome caused by ACTH release. Muscle weakness and blurred vision are typical symptoms of Cushing’s syndrome. Squamous cell lung carcinoma and adrenal adenoma are less likely causes, while Cushing’s disease is not applicable in this case.

      Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.

    • This question is part of the following fields:

      • Respiratory System
      55.1
      Seconds
  • Question 2 - A 55-year-old man presents to his doctor with complaints of vertigo, which worsens...

    Incorrect

    • A 55-year-old man presents to his doctor with complaints of vertigo, which worsens when he rolls over in bed. The doctor diagnoses him with benign paroxysmal positional vertigo.

      What treatment options are available to alleviate the symptoms of this condition?

      Your Answer: Dix-Hallpike manoeuvre

      Correct Answer: Epley manoeuvre

      Explanation:

      The Epley manoeuvre is a treatment for BPPV, while the Dix-Hallpike manoeuvre is used for diagnosis. The Epley manoeuvre aims to move fluid in the inner ear to dislodge otoliths, while the Dix-Hallpike manoeuvre involves observing the patient for nystagmus when swiftly lowered from a sitting to supine position. Tinel’s sign is positive in those with carpal tunnel syndrome, where tapping the median nerve over the flexor retinaculum causes paraesthesia. The Trendelenburg test is used to assess venous valve competency in patients with varicose veins.

      Benign paroxysmal positional vertigo (BPPV) is a common cause of vertigo that occurs suddenly when there is a change in head position. It is more prevalent in individuals over the age of 55 and is less common in younger patients. Symptoms of BPPV include dizziness and vertigo, which can be accompanied by nausea. Each episode typically lasts for 10-20 seconds and can be triggered by rolling over in bed or looking upwards. A positive Dix-Hallpike manoeuvre, which is indicated by vertigo and rotatory nystagmus, can confirm the diagnosis of BPPV.

      Fortunately, BPPV has a good prognosis and usually resolves on its own within a few weeks to months. Treatment options include the Epley manoeuvre, which is successful in around 80% of cases, and vestibular rehabilitation exercises such as the Brandt-Daroff exercises. While medication such as Betahistine may be prescribed, it tends to have limited effectiveness. However, it is important to note that around half of individuals with BPPV may experience a recurrence of symptoms 3-5 years after their initial diagnosis.

    • This question is part of the following fields:

      • Respiratory System
      20.2
      Seconds
  • Question 3 - Control of ventilation. Which statement is false? ...

    Correct

    • Control of ventilation. Which statement is false?

      Your Answer: Central chemoreceptors respond to changes in O2

      Explanation:

      The central chemoreceptors increase ventilation in response to an increase in H+ in the brain interstitial fluid.

      The Control of Ventilation in the Human Body

      The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.

      The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.

      Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.

      Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.

    • This question is part of the following fields:

      • Respiratory System
      13.9
      Seconds
  • Question 4 - Which of the structures listed below are not located within the mediastinum? ...

    Correct

    • Which of the structures listed below are not located within the mediastinum?

      Your Answer: Vertebral bodies

      Explanation:

      Both the lungs and vertebral bodies are located outside of the mediastinum.

      The mediastinum is the area located between the two pulmonary cavities and is covered by the mediastinal pleura. It extends from the thoracic inlet at the top to the diaphragm at the bottom. The mediastinum is divided into four regions: the superior mediastinum, middle mediastinum, posterior mediastinum, and anterior mediastinum.

      The superior mediastinum is the area between the manubriosternal angle and T4/5. It contains important structures such as the superior vena cava, brachiocephalic veins, arch of aorta, thoracic duct, trachea, oesophagus, thymus, vagus nerve, left recurrent laryngeal nerve, and phrenic nerve. The anterior mediastinum contains thymic remnants, lymph nodes, and fat. The middle mediastinum contains the pericardium, heart, aortic root, arch of azygos vein, and main bronchi. The posterior mediastinum contains the oesophagus, thoracic aorta, azygos vein, thoracic duct, vagus nerve, sympathetic nerve trunks, and splanchnic nerves.

      In summary, the mediastinum is a crucial area in the thorax that contains many important structures and is divided into four regions. Each region contains different structures that are essential for the proper functioning of the body.

    • This question is part of the following fields:

      • Respiratory System
      14.7
      Seconds
  • Question 5 - A 78-year-old man comes to the emergency department complaining of increasing difficulty in...

    Correct

    • A 78-year-old man comes to the emergency department complaining of increasing difficulty in breathing over the past two days. He has a medical history of squamous cell lung cancer.

      Upon examination, the trachea is observed to have shifted towards the left side, with dull percussion and absence of breath sounds throughout the left chest.

      What is the probable diagnosis?

      Your Answer: Left lung collapse

      Explanation:

      When a lung collapses, it can cause the trachea to shift towards the affected side, and there may be dullness on percussion and reduced breath sounds throughout the lung field. This is because the decrease in pressure on the affected side causes the mediastinum and trachea to move towards it.

      A massive pleural effusion, on the other hand, would cause widespread dullness and absent breath sounds, but it would push the trachea away from the affected side due to increased pressure.

      Pneumonia typically only affects one lung zone, so there would not be widespread dullness or absent breath sounds throughout the hemithorax. It also does not usually affect the position of the mediastinum or trachea.

      Pneumothorax would be hyperresonant on percussion, not dull, and it may push the trachea away from the affected side in severe cases, but this is more common in tension pneumothoraces that occur after trauma.

      A lobectomy may cause the trachea to shift towards the same side as the surgery due to decreased pressure, but it would not cause dullness or absent breath sounds throughout the lung fields.

      Understanding White Lung Lesions on Chest X-Rays

      When examining a chest x-ray, white shadowing in the lungs can indicate a variety of conditions. These may include consolidation, pleural effusion, collapse, pneumonectomy, specific lesions such as tumors, or fluid accumulation such as pulmonary edema. In cases where there is a complete white-out of one side of the chest, it is important to assess the position of the trachea. If the trachea is pulled towards the side of the white-out, it may indicate pneumonectomy, lung collapse, or pulmonary hypoplasia. If the trachea is pushed away from the white-out, it may indicate pleural effusion, a large thoracic mass, or a diaphragmatic hernia. Other signs of a positive mass effect may include leftward bowing of the azygo-oesophageal recess and splaying of the ribs on the affected side. Understanding the potential causes of white lung lesions on chest x-rays can aid in accurate diagnosis and treatment.

    • This question is part of the following fields:

      • Respiratory System
      26.1
      Seconds
  • Question 6 - A 60-year-old man visits his GP with worries about his hearing in recent...

    Incorrect

    • A 60-year-old man visits his GP with worries about his hearing in recent months. He has difficulty understanding conversations in noisy environments and his spouse has commented on his need for the television to be turned up to maximum volume.

      During the examination, the GP conducts some basic tests and finds:

      Rinne's Test - Air conduction > bone conduction in both ears
      Weber's Test - Lateralises to the left ear

      What can be inferred from these test results?

      Your Answer: Right conductive hearing loss

      Correct Answer: Left sensorineural hearing loss

      Explanation:

      The patient has left sensorineural hearing loss, as indicated by the normal Rinne result (air conduction > bone conduction bilaterally) and abnormal Weber result (lateralising to the unaffected ear). In contrast, if the patient had conductive hearing loss, Rinne’s test would show bone conduction > air conduction, and Weber’s test would localise to the worse ear in bilateral conductive hearing loss or the affected ear in unilateral conductive hearing loss. For right sensorineural hearing loss, Rinne’s test would be normal, but Weber’s test would localise to the left ear.

      Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness

      Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.

      Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.

      The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.

      Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.

    • This question is part of the following fields:

      • Respiratory System
      39.9
      Seconds
  • Question 7 - A 72-year-old woman is brought to the stroke unit with a suspected stroke....

    Incorrect

    • A 72-year-old woman is brought to the stroke unit with a suspected stroke. She has a medical history of hypertension, type II diabetes, and hypothyroidism. Additionally, she experienced a myocardial infarction 4 years ago. Upon arrival, the patient exhibited a positive FAST result and an irregular breathing pattern. An urgent brain CT scan was performed and is currently under review. What region of the brainstem is responsible for regulating the fundamental breathing rhythm?

      Your Answer: Lower pons

      Correct Answer: Medulla oblongata

      Explanation:

      The medullary rhythmicity area in the medullary oblongata controls the basic rhythm of breathing through its inspiratory and expiratory neurons. During quiet breathing, the inspiratory area is active for approximately 2 seconds, causing the diaphragm and external intercostals to contract, followed by a period of inactivity lasting around 3 seconds as the muscles relax and there is elastic recoil. Additional brainstem regions can be stimulated to regulate various aspects of breathing, such as extending inspiration in the apneustic area (refer to the table below).

      The Control of Ventilation in the Human Body

      The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.

      The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.

      Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.

      Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.

    • This question is part of the following fields:

      • Respiratory System
      20.3
      Seconds
  • Question 8 - A 59-year-old man comes to you with a dry cough that has been...

    Correct

    • A 59-year-old man comes to you with a dry cough that has been going on for three months and recent episodes of haemoptysis. He stopped smoking five years ago and has had two bouts of pneumonia in his left lower lobe in the last year. On examination, he is apyrexial and there are no notable findings.

      What would be your first step in investigating this patient?

      Your Answer: Chest x ray

      Explanation:

      Diagnosis of Bronchial Carcinoma

      The patient’s medical history indicates the possibility of bronchial carcinoma. The most appropriate initial investigation to confirm this diagnosis is a chest x-ray. Other tests such as blood cultures may not be useful for an apyrexial patient. However, additional investigations may be considered after the chest x-ray. It is important to prioritize the chest x-ray as the first line investigation to detect any abnormalities in the lungs. Proper diagnosis is crucial for timely treatment and management of bronchial carcinoma.

    • This question is part of the following fields:

      • Respiratory System
      58.4
      Seconds
  • Question 9 - What is the term used to describe the area between the vocal cords?...

    Correct

    • What is the term used to describe the area between the vocal cords?

      Your Answer: Rima glottidis

      Explanation:

      The narrowest part of the laryngeal cavity is known as the rima glottidis.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      20.7
      Seconds
  • Question 10 - A 29-year-old pregnant woman is admitted to the hospital and delivers a baby...

    Correct

    • A 29-year-old pregnant woman is admitted to the hospital and delivers a baby girl at 32 weeks gestation. The newborn displays signs of distress including tachypnoea, tachycardia, expiratory grunting, nasal flaring, and chest wall recession.

      What is the cell type responsible for producing the substance that the baby is lacking?

      Your Answer: Type 2 pneumocytes

      Explanation:

      Types of Pneumocytes and Their Functions

      Pneumocytes are specialized cells found in the lungs that play a crucial role in gas exchange. There are two main types of pneumocytes: type 1 and type 2. Type 1 pneumocytes are very thin squamous cells that cover around 97% of the alveolar surface. On the other hand, type 2 pneumocytes are cuboidal cells that secrete surfactant, a substance that reduces surface tension in the alveoli and prevents their collapse during expiration.

      Type 2 pneumocytes start to develop around 24 weeks gestation, but adequate surfactant production does not take place until around 35 weeks. This is why premature babies are prone to respiratory distress syndrome. In addition, type 2 pneumocytes can differentiate into type 1 pneumocytes during lung damage, helping to repair and regenerate damaged lung tissue.

      Apart from pneumocytes, there are also club cells (previously termed Clara cells) found in the bronchioles. These non-ciliated dome-shaped cells have a varied role, including protecting against the harmful effects of inhaled toxins and secreting glycosaminoglycans and lysozymes. Understanding the different types of pneumocytes and their functions is essential in comprehending the complex mechanisms involved in respiration.

    • This question is part of the following fields:

      • Respiratory System
      27.1
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Respiratory System (7/10) 70%
Passmed