-
Question 1
Incorrect
-
A 75-year-old male presents to the GP clinic complaining of increased shortness of breath during physical activity and swelling in both ankles. The GP schedules an echocardiogram for him as an outpatient. During the echocardiogram, the patient's heart rate was 72 bpm and blood pressure was 136/88 mmHg. The results of the echocardiogram show an end-diastolic volume of 105ml and an end-systolic volume of 65ml. What is the left ventricular ejection fraction (LVEF) of this patient?
Your Answer: 60%
Correct Answer: 40%
Explanation:Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.
Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.
Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Correct
-
A 67-year-old male presents with sudden onset of abdominal pain on the left side that radiates to his back. He also reports vomiting. The patient has no significant medical history.
Upon examination, the patient has a temperature of 37.5°C, a respiratory rate of 28/min, a pulse of 110/min, and a blood pressure of 160/82 mmHg. The abdomen is tender to touch, especially over the hypochondrium, and bowel sounds are present. Urinalysis reveals amylase 3+ with glucose 2+.
What is the most likely diagnosis?Your Answer: Acute pancreatitis
Explanation:Possible Causes of Acute Abdominal Pain with Radiation to the Back
The occurrence of acute abdominal pain with radiation to the back can be indicative of two possible conditions: a dissection or rupture of an aortic aneurysm or pancreatitis. However, the presence of amylase in the urine suggests that the latter is more likely. Pancreatitis is a condition characterized by inflammation of the pancreas, which can cause severe abdominal pain that radiates to the back. The presence of amylase in the urine is a common diagnostic marker for pancreatitis.
In addition, acute illness associated with pancreatitis can lead to impaired insulin release and increased gluconeogenesis, which can cause elevated glucose levels. Therefore, glucose levels may also be monitored in patients with suspected pancreatitis. It is important to promptly diagnose and treat pancreatitis as it can lead to serious complications such as pancreatic necrosis, sepsis, and organ failure.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Correct
-
A 40-year-old man is stabbed in the abdomen and the inferior vena cava is injured. What is the typical number of functional valves found in this vessel?
Your Answer: 0
Explanation:Anatomy of the Inferior Vena Cava
The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.
The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.
The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Correct
-
A woman with suspected heart failure has a transthoracic echocardiogram (TTE) to investigate the function of her heart. The goal is to measure her ejection fraction, however, to do this first her stroke volume must be measured.
What is the formula for stroke volume?Your Answer: End diastolic volume - end systolic volume
Explanation:Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.
Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.
Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Correct
-
A 63-year-old man arrives at the emergency department complaining of severe chest pain that feels like crushing. He is sweating heavily and feels nauseous. Upon conducting an ECG, you observe ST-segment elevation in multiple chest leads and sinus bradycardia. It is known that myocardial infarction can cause sinus bradycardia. Can you identify the arterial vessel that typically supplies blood to both the sinoatrial (SA) node and the atrioventricular (AV) node?
Your Answer: Right coronary artery
Explanation:The heart is supplied with blood by the coronary arteries, which branch off from the aorta. The right coronary artery supplies blood to the right side of the heart, while the left coronary artery supplies blood to the left side of the heart.
Occlusion, or blockage, of the right coronary artery can cause inferior myocardial infarction (MI), which is indicated on an electrocardiogram (ECG) by changes in leads II, III, and aVF. This type of MI is particularly associated with arrhythmias because the right coronary artery usually supplies the sinoatrial (SA) and atrioventricular (AV) nodes.
The left anterior descending artery (LAD) is one of the two branches of the left coronary artery. It runs along the front of the heart’s interventricular septum to reach the apex of the heart. One or more diagonal branches may arise from the LAD. Occlusion of the LAD can cause anteroseptal MI, which is evident on an ECG with changes in leads V1-V4.
The right marginal artery branches off from the right coronary artery near the bottom of the heart and continues along the heart’s bottom edge towards the apex.
The left circumflex artery is the other branch of the left coronary artery. It runs in the coronary sulcus around the base of the heart and gives rise to the left marginal artery. Occlusion of the left circumflex artery is typically associated with lateral MI.
The left marginal artery arises from the left circumflex artery and runs along the heart’s obtuse margin.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
Which one of the following is a recognised tributary of the retromandibular vein?
Your Answer: External jugular vein
Correct Answer: Maxillary vein
Explanation:The retromandibular vein is created by the merging of the maxillary and superficial temporal veins.
The Retromandibular Vein: Anatomy and Function
The retromandibular vein is a blood vessel that is formed by the union of the maxillary vein and the superficial temporal vein. It descends through the parotid gland, which is a salivary gland located in front of the ear, and then bifurcates, or splits into two branches, within the gland. The anterior division of the retromandibular vein passes forward to join the facial vein, which drains blood from the face and scalp, while the posterior division is one of the tributaries, or smaller branches, of the external jugular vein, which is a major vein in the neck.
The retromandibular vein plays an important role in the circulation of blood in the head and neck. It receives blood from the maxillary and superficial temporal veins, which drain the teeth, gums, and other structures in the face and scalp. The retromandibular vein then carries this blood through the parotid gland and into the larger veins of the neck, where it eventually returns to the heart. Understanding the anatomy and function of the retromandibular vein is important for healthcare professionals who work with patients who have conditions affecting the head and neck, such as dental infections, facial trauma, or head and neck cancer.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Incorrect
-
A 65-year-old man arrives at the emergency department with a sudden onset of numbness in his right arm and leg. Upon examination, he displays reduced sensation and 3 out of 5 power in his right arm and leg. A head CT scan reveals ischaemia in the region of the left middle cerebral artery. Following initial treatment, he is considered unsuitable for clopidogrel and is instead given aspirin and other antiplatelet drug that functions by inhibiting phosphodiesterase.
What is the name of the additional antiplatelet medication that this patient is likely to have been prescribed alongside aspirin?Your Answer: Ticagrelor
Correct Answer: Dipyridamole
Explanation:Dipyridamole is a medication that inhibits phosphodiesterase non-specifically and reduces the uptake of adenosine by cells. The symptoms and CT scan results of this patient suggest that they have experienced a stroke on the left side due to ischemia. According to the NICE 2010 guidelines, after confirming that the stroke is not hemorrhagic and providing initial treatment, patients are advised to take either clopidogrel or a combination of aspirin and dipyridamole, which acts as a phosphodiesterase inhibitor.
Heparins function by activating antithrombin III.
Ticagrelor and prasugrel act as antagonists of the P2Y12 adenosine diphosphate (ADP) receptor.
Understanding the Mechanism of Action of Dipyridamole
Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.
Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.
Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.
In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Correct
-
A 16-year-old competitive swimmer visits the paediatric clinic after experiencing palpitations during races or intense training. She has never had shortness of breath or chest pain, but one persistent episode led her to the emergency department where an ECG was taken. Based on the shortening of one of the ECG intervals, a provisional diagnosis of Wolff-Parkinson-White syndrome was made. What does this abnormal section of the ECG represent in terms of electrical activity?
Your Answer: The time between atrial depolarisation and ventricular depolarisation
Explanation:The PR interval on an ECG represents the duration between atrial depolarisation and ventricular depolarisation. In Wolff-Parkinson-White syndrome, an accessory pathway called the Bundle of Kent exists between the atrium and ventricle, allowing electrical signals to bypass the atrioventricular node and potentially leading to tachyarrhythmias. This results in a shorter PR interval on the ECG. Atrial repolarisation is not visible on the ECG, while the depolarisation of the sinoatrial node is represented by the p wave. The QT interval on the ECG represents the time between ventricular depolarisation and repolarisation, while the QRS complex represents ventricular depolarisation, not the PR interval.
Understanding the Normal ECG
The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.
The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.
Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
As a doctor on the cardiology ward, I am currently treating a 50-year-old patient who was admitted due to syncope and dyspnoea. The patient has just returned from an echocardiography which revealed a pedunculated mass. What is the most probable primary tumor that this patient is suffering from?
Your Answer: Angioma
Correct Answer: Myxoma
Explanation:Atrial myxoma is the most frequently occurring primary cardiac tumor.
Primary cardiac tumors are uncommon, and among them, myxomas are the most prevalent. Most of these tumors are benign and are found in the atria. Imaging typically reveals a pedunculated mass.
The remaining options are also primary cardiac tumors.
Atrial Myxoma: Overview and Features
Atrial myxoma is a primary cardiac tumor that is commonly found in the left atrium, with 75% of cases occurring in this area. It is more prevalent in females and is often attached to the fossa ovalis. Symptoms of atrial myxoma include dyspnea, fatigue, weight loss, pyrexia of unknown origin, and clubbing. Emboli and atrial fibrillation may also occur. A mid-diastolic murmur, known as a tumor plop, may be present. Diagnosis is typically made through echocardiography, which shows a pedunculated heterogeneous mass attached to the fossa ovalis region of the interatrial septum.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
Which one of the following statements relating to the basilar artery and its branches is false?
Your Answer:
Correct Answer: The posterior inferior cerebellar artery is the largest of the cerebellar arteries arising from the basilar artery
Explanation:The largest of the cerebellar arteries that originates from the vertebral artery is the posterior inferior cerebellar artery. The labyrinthine artery, which is thin and lengthy, may emerge from the lower section of the basilar artery. It travels alongside the facial and vestibulocochlear nerves into the internal auditory meatus. The posterior cerebral artery is frequently bigger than the superior cerebellar artery and is separated from the vessel, close to its source, by the oculomotor nerve. Arterial decompression is a widely accepted treatment for trigeminal neuralgia.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
A 45-year-old woman has varicose veins originating from the short saphenous vein. During mobilization of the vein near its origin, which structure is at the highest risk of injury?
Your Answer:
Correct Answer: Sural nerve
Explanation:Litigation often arises from damage to the sural nerve, which is closely associated with this structure. While the other structures may also sustain injuries, the likelihood of such occurrences is comparatively lower.
Anatomy of the Popliteal Fossa
The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.
The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.
Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Incorrect
-
A 65-year-old man visits the clinic for his regular blood work. The GP requests the medical student to perform venepuncture and obtain blood samples. The student seizes this chance to brush up on their knowledge of vascular anatomy. They plan to draw blood from the median cubital vein located in the antecubital fossa. While aware that the median cubital vein is linked to the cephalic vein, they cannot recall the name of the other vein it connects to. Can you identify the other vein?
Your Answer:
Correct Answer: Basilic vein
Explanation:The upper limb has both superficial and deep veins. Among the superficial veins are the cephalic, basilic, and median cubital veins. The median cubital vein, which connects the cephalic and basilic veins, is situated in the antecubital fossa and is the preferred site for venepuncture because it is easy to locate and access. However, deep veins like the brachial, ulnar, and radial veins are not suitable for venepuncture as they are located beneath the deep fascia.
The Cephalic Vein: Path and Connections
The cephalic vein is a major blood vessel that runs along the lateral side of the arm. It begins at the dorsal venous arch, which drains blood from the hand and wrist, and travels up the arm, crossing the anatomical snuffbox. At the antecubital fossa, the cephalic vein is connected to the basilic vein by the median cubital vein. This connection is commonly used for blood draws and IV insertions.
After passing through the antecubital fossa, the cephalic vein continues up the arm and pierces the deep fascia of the deltopectoral groove to join the axillary vein. This junction is located near the shoulder and marks the end of the cephalic vein’s path.
Overall, the cephalic vein plays an important role in the circulation of blood in the upper limb. Its connections to other major veins in the arm make it a valuable site for medical procedures, while its path through the deltopectoral groove allows it to contribute to the larger network of veins that drain blood from the upper body.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
A 78-year-old woman has presented with dyspnea. During cardiovascular examination, a faint murmur is detected in the mitral area. If the diagnosis is mitral stenosis, what is the most probable factor that would increase the loudness and clarity of the murmur during auscultation?
Your Answer:
Correct Answer: Ask the patient to breathe out
Explanation:To accentuate the sound of a left-sided murmur consistent with mitral stenosis during a cardiovascular examination, the patient should be asked to exhale. Conversely, a right-sided murmur is louder during inspiration. Listening in the left lateral position while the patient is lying down can also emphasize a mitral stenosis. To identify a mitral regurgitation murmur, listening in the axilla is helpful as it radiates. Diastolic murmurs can be heard better with a position change, while systolic murmurs tend to radiate and can be distinguished by listening in different anatomical landmarks. For example, an aortic stenosis may radiate to the carotids, while an aortic regurgitation may be heard better with the patient leaning forward.
Understanding Mitral Stenosis
Mitral stenosis is a condition where the mitral valve, which controls blood flow from the left atrium to the left ventricle, becomes obstructed. This leads to an increase in pressure within the left atrium, pulmonary vasculature, and right side of the heart. The most common cause of mitral stenosis is rheumatic fever, but it can also be caused by other rare conditions such as mucopolysaccharidoses, carcinoid, and endocardial fibroelastosis.
Symptoms of mitral stenosis include dyspnea, hemoptysis, a mid-late diastolic murmur, a loud S1, and a low volume pulse. Severe cases may also present with an increased length of murmur and a closer opening snap to S2. Chest x-rays may show left atrial enlargement, while echocardiography can confirm a cross-sectional area of less than 1 sq cm for a tight mitral stenosis.
Management of mitral stenosis depends on the severity of the condition. Asymptomatic patients are monitored with regular echocardiograms, while symptomatic patients may undergo percutaneous mitral balloon valvotomy or mitral valve surgery. Patients with associated atrial fibrillation require anticoagulation, with warfarin currently recommended for moderate/severe cases. However, there is an emerging consensus that direct-acting anticoagulants may be suitable for mild cases with atrial fibrillation.
Overall, understanding mitral stenosis is important for proper diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Incorrect
-
A 67-year-old woman has been prescribed amiodarone. She has been advised to take higher doses initially and then switch to a lower maintenance dose for long-term use.
What is the rationale behind this initial dosing regimen?Your Answer:
Correct Answer: Slow metabolism of amiodarone due to extensive lipid binding
Explanation:A loading dose is necessary for amiodarone to achieve therapeutic levels quickly before transitioning to a maintenance dose. This is because a 50mg once daily maintenance dose would take a long time to reach the required 1000mg for therapeutic effect. The fast metabolism of amiodarone due to extensive protein binding, extensive hepatic P450 breakdown, and slow absorption via the enteral route are not the reasons for a loading regime.
Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
A 50-year-old UK born patient with end-stage kidney failure arrives at the emergency department complaining of sharp chest pain that subsides when sitting forward. The patient has not undergone dialysis yet. Upon conducting an ECG, it is observed that there is a widespread 'saddle-shaped' ST elevation and PR depression, leading to a diagnosis of pericarditis. What could be the probable cause of this pericarditis?
Your Answer:
Correct Answer: Uraemia
Explanation:There is no indication of trauma in patients with advanced renal failure prior to dialysis initiation.
ECG results do not indicate a recent heart attack.
The patient’s age decreases the likelihood of malignancy.
Acute Pericarditis: Causes, Features, Investigations, and Management
Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.
The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.
Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.
Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.
In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Incorrect
-
A 67-year-old woman arrives at the emergency department complaining of palpitations. Upon examination, her ECG reveals tall tented T waves. What causes the distinctive shape of the T wave, which corresponds to phase 3 of the cardiac action potential?
Your Answer:
Correct Answer: Repolarisation due to efflux of potassium
Explanation:Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
Oliver is an 80-year-old man with known left-sided heart failure. He has a left ventricular ejection fraction of 31%. He has recently been admitted to the cardiology ward as the doctors are concerned his condition is worsening. He is short of breath on exertion and has peripheral oedema.
Upon reviewing his ECG, you note a right bundle branch block (RBBB) indicative of right ventricular hypertrophy. You also observe that this was present on an ECG of his on an emergency department admission last month.
What is the most likely cause of the RBBB in Oliver?Your Answer:
Correct Answer: Cor pulmonale
Explanation:A frequent underlying cause of RBBB that persists over time is right ventricular hypertrophy, which may result from the spread of left-sided heart failure to the right side of the heart. Oliver’s shortness of breath is likely due to an accumulation of fluid in the lungs, which can increase pulmonary perfusion pressure and lead to right ventricular strain and hypertrophy. This type of right heart failure that arises from left heart failure is known as cor-pulmonale. While a pulmonary embolism or rheumatic heart disease can also cause right ventricular strain, they are less probable in this case. Myocardial infarction typically presents with chest pain, which is not mentioned in the question stem regarding Oliver’s symptoms.
Right bundle branch block is a frequently observed abnormality on ECGs. It can be differentiated from left bundle branch block by remembering the phrase WiLLiaM MaRRoW. In RBBB, there is a ‘M’ in V1 and a ‘W’ in V6, while in LBBB, there is a ‘W’ in V1 and a ‘M’ in V6.
There are several potential causes of RBBB, including normal variation which becomes more common with age, right ventricular hypertrophy, chronically increased right ventricular pressure (such as in cor pulmonale), pulmonary embolism, myocardial infarction, atrial septal defect (ostium secundum), and cardiomyopathy or myocarditis.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Incorrect
-
A man in his 50s arrives at the emergency department with bleeding following a car accident. Despite significant blood loss, his blood pressure has remained stable. What can be said about the receptors responsible for regulating his blood pressure?
Your Answer:
Correct Answer: Baroreceptors are stimulated by arterial stretch
Explanation:Arterial stretch stimulates baroreceptors, which are located at the aortic arch and carotid sinus. The baroreceptor reflex acts on the medulla to regulate parasympathetic and sympathetic activity. When baroreceptors are more stimulated, there is an increase in parasympathetic discharge to the SA node and a decrease in sympathetic discharge. Conversely, reduced stimulation of baroreceptors leads to decreased parasympathetic discharge and increased sympathetic discharge. Baroreceptors are always active, and changes in arterial stretch can either increase or decrease their level of stimulation.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
A 57-year-old man needs long term parenteral nutrition and a PICC line is chosen for long term venous access. The insertion site is the elbow region of the basilic vein. During catheter advancement, which venous structure is the catheter tip most likely to pass into from the basilic vein?
Your Answer:
Correct Answer: Axillary vein
Explanation:The most common site for a PICC line to end up in is the axillary vein, which is where the basilic vein drains into. While PICC lines can be placed in various locations, the posterior circumflex humeral vein is typically encountered before the axillary vein. However, due to its angle of entry into the basilic vein, it is unlikely for a PICC line to enter this structure.
The Basilic Vein: A Major Pathway of Venous Drainage for the Arm and Hand
The basilic vein is one of the two main pathways of venous drainage for the arm and hand, alongside the cephalic vein. It begins on the medial side of the dorsal venous network of the hand and travels up the forearm and arm. Most of its course is superficial, but it passes deep under the muscles midway up the humerus. Near the region anterior to the cubital fossa, the basilic vein joins the cephalic vein.
At the lower border of the teres major muscle, the anterior and posterior circumflex humeral veins feed into the basilic vein. It is often joined by the medial brachial vein before draining into the axillary vein. The basilic vein is continuous with the palmar venous arch distally and the axillary vein proximally. Understanding the path and function of the basilic vein is important for medical professionals in diagnosing and treating conditions related to venous drainage in the arm and hand.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
A 65-year-old man with a history of hypertension, diabetes and high cholesterol arrives at the hospital complaining of severe chest pain that spreads to his jaw. He has vomited twice and feels lightheaded.
An electrocardiogram (ECG) reveals widespread ST elevation with reciprocal ST-segment depression. A troponin T serum level is obtained and confirms an elevated reading.
What is the target of this cardiac biomarker?Your Answer:
Correct Answer: Tropomyosin
Explanation:The troponin-tropomyosin complex is formed when troponin T binds to tropomyosin. In cases of ST-elevation myocardial infarction (STEMI), elevated levels of troponin T in the bloodstream can confirm the presence of cardiac tissue damage. This biomarker plays a role in regulating muscle contraction by binding to tropomyosin. However, troponin I, not troponin T, binds to actin to hold the troponin-tropomyosin complex in place. While troponin T is released in cases of cardiac cell damage, it is considered less sensitive and specific than troponin I in diagnosing myocardial infarction.
Understanding Troponin: The Proteins Involved in Muscle Contraction
Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.
Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.
Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 21
Incorrect
-
A 49-year-old man arrived at the emergency department with chest discomfort persisting for 2 hours and flu-like symptoms for the past 4 days. His ECG revealed widespread ST-segment alterations. The cTnI test showed elevated values for this particular troponin subunit. What is the most precise explanation of the role of this subunit?
Your Answer:
Correct Answer: Binding to actin to hold the troponin-tropomyosin complex in place
Explanation:The function of troponin I is to bind to actin and hold the troponin-tropomyosin complex in place.
Understanding Troponin: The Proteins Involved in Muscle Contraction
Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.
Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.
Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Incorrect
-
An 80-year-old man is seen in the stroke clinic for a history of transient paralysis and paresthesia in his left arm that resolved after 2 hours. The stroke clinicians suspect a transient ischaemic attack and plan to initiate secondary prevention treatment as per national guidelines.
What is the mode of action of the prescribed medication?Your Answer:
Correct Answer: ADP receptor inhibitor
Explanation:Clopidogrel works by inhibiting the P2Y12 adenosine diphosphate (ADP) receptor, which prevents platelet activation and is therefore classified as an ADP receptor inhibitor. This drug is recommended as secondary prevention for patients who have experienced symptoms of a transient ischaemic attack (TIA). Other examples of ADP receptor inhibitors include ticagrelor and prasugrel. Aspirin, on the other hand, is a cyclooxygenase (COX) inhibitor that is used for pain control and management of ischaemic heart disease. Glycoprotein IIB/IIA inhibitors such as tirofiban and abciximab prevent platelet aggregation and thrombus formation by inhibiting the glycoprotein IIB/IIIA receptors. Picotamide is a thromboxane synthase inhibitor that is indicated for the management of acute coronary syndrome, as it inhibits the synthesis of thromboxane, a potent vasoconstrictor and facilitator of platelet aggregation.
Clopidogrel: An Antiplatelet Agent for Cardiovascular Disease
Clopidogrel is a medication used to manage cardiovascular disease by preventing platelets from sticking together and forming clots. It is commonly used in patients with acute coronary syndrome and is now also recommended as a first-line treatment for patients following an ischaemic stroke or with peripheral arterial disease. Clopidogrel belongs to a class of drugs called thienopyridines, which work in a similar way. Other examples of thienopyridines include prasugrel, ticagrelor, and ticlopidine.
Clopidogrel works by blocking the P2Y12 adenosine diphosphate (ADP) receptor, which prevents platelets from becoming activated. However, concurrent use of proton pump inhibitors (PPIs) may make clopidogrel less effective. The Medicines and Healthcare products Regulatory Agency (MHRA) issued a warning in July 2009 about this interaction, and although evidence is inconsistent, omeprazole and esomeprazole are still cause for concern. Other PPIs, such as lansoprazole, are generally considered safe to use with clopidogrel. It is important to consult with a healthcare provider before taking any new medications or supplements.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 23
Incorrect
-
During the repair of an atrial septal defect, the surgeons notice blood leakage from the coronary sinus. What is the largest tributary of the coronary sinus?
Your Answer:
Correct Answer: Great cardiac vein
Explanation:The largest tributary of the coronary sinus is the great cardiac vein, which runs in the anterior interventricular groove. The heart is drained directly by the Thebesian veins.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
A man in his 50s arrives at the emergency department exhibiting signs of a stroke. After undergoing a CT angiogram, it is revealed that there is a constriction in the artery that provides blood to the right common carotid.
What is the name of the affected artery?Your Answer:
Correct Answer: Brachiocephalic artery
Explanation:The largest branch from the aortic arch is the brachiocephalic artery, which originates from it. This artery gives rise to both the right subclavian artery and the right common carotid arteries. The brachiocephalic artery is supplied by the aortic arch, while the coronary arteries are supplied by the ascending aorta. Additionally, the coeliac trunk is a branch that stems from the abdominal aorta.
The Brachiocephalic Artery: Anatomy and Relations
The brachiocephalic artery is the largest branch of the aortic arch, originating at the apex of the midline. It ascends superiorly and posteriorly to the right, lying initially anterior to the trachea and then on its right-hand side. At the level of the sternoclavicular joint, it divides into the right subclavian and right common carotid arteries.
In terms of its relations, the brachiocephalic artery is anterior to the sternohyoid, sterno-thyroid, thymic remnants, left brachiocephalic vein, and right inferior thyroid veins. Posteriorly, it is related to the trachea, right pleura, right lateral, right brachiocephalic vein, superior part of the SVC, left lateral, thymic remnants, origin of left common carotid, inferior thyroid veins, and trachea at a higher level.
The brachiocephalic artery typically has no branches, but it may have the thyroidea ima artery. Understanding the anatomy and relations of the brachiocephalic artery is important for medical professionals, as it is a crucial vessel in the human body.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 25
Incorrect
-
A 25-year-old woman is having a trendelenberg procedure to treat her varicose veins. While dissecting the saphenofemoral junction, which structure is most susceptible to injury?
Your Answer:
Correct Answer: Deep external pudendal artery
Explanation:The deep external pudendal artery is situated near the origin of the long saphenous vein and can be damaged. The highest risk of injury occurs during the flush ligation of the saphenofemoral junction. However, if an injury is detected and the vessel is tied off, it is rare for any significant negative consequences to occur.
The Anatomy of Saphenous Veins
The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.
On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.
Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 26
Incorrect
-
A 50-year-old Afro-Caribbean woman comes to your clinic with symptoms of a malar rash, joint pain, and oral ulcers. Her blood test results reveal low hemoglobin levels, decreased platelets count, and a low white blood cell count. Additionally, she tests positive for anti-dsDNA antibodies. You inform her about her diagnosis and ask your medical trainee to educate her about medications that she should avoid.
Which of the following drugs is contraindicated for her?Your Answer:
Correct Answer: Hydralazine
Explanation:SLE patients should avoid taking hydralazine as it is known to cause drug-induced SLE, along with other medications such as isoniazid and procainamide.
Hydralazine: An Antihypertensive with Limited Use
Hydralazine is an antihypertensive medication that is not commonly used nowadays. It is still prescribed for severe hypertension and hypertension in pregnancy. The drug works by increasing cGMP, which leads to smooth muscle relaxation. However, there are certain contraindications to its use, such as systemic lupus erythematous and ischaemic heart disease/cerebrovascular disease.
Despite its potential benefits, hydralazine can cause adverse effects such as tachycardia, palpitations, flushing, fluid retention, headache, and drug-induced lupus. Therefore, it is not the first choice for treating hypertension in most cases. Overall, hydralazine is an older medication that has limited use due to its potential side effects and newer, more effective antihypertensive options available.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 27
Incorrect
-
A 28-year-old male with ankylosing spondylitis presents to his GP for examination. During palpation of the carotid pulse, the GP observes a pulse that quickly rises and falls. Upon auscultation of the heart, the GP detects a high-pitched early diastolic murmur that is decrescendo in nature. What cardiac abnormality is indicated by these examination findings?
Your Answer:
Correct Answer: Aortic regurgitation
Explanation:Aortic regurgitation results in an early diastolic murmur, which is caused by the backflow of blood from the aorta into the left ventricle through an incompetent aortic valve. This condition also leads to a rapid rise in the carotid pulse due to the forceful ejection of blood from an overloaded left ventricle, followed by a rapid fall due to the backflow of blood into the left ventricle. Patients with aortic regurgitation may also experience an ejection murmur, which is caused by the turbulent ejection of blood from the overloaded left ventricle. Aortic regurgitation can be caused by various factors, including aortic root dilation associated with ankylosing spondylitis, Marfan syndrome, or aortic dissection, as well as aortic valve leaflet disease resulting from calcific degeneration, congenital bicuspid aortic valve, rheumatic heart disease, or infective endocarditis.
Aortic regurgitation is a condition where the aortic valve of the heart leaks, causing blood to flow in the opposite direction during ventricular diastole. This can be caused by disease of the aortic valve or by distortion or dilation of the aortic root and ascending aorta. The most common causes of AR due to valve disease include rheumatic fever, calcific valve disease, and infective endocarditis. On the other hand, AR due to aortic root disease can be caused by conditions such as aortic dissection, hypertension, and connective tissue diseases like Marfan and Ehler-Danlos syndrome.
The features of AR include an early diastolic murmur, a collapsing pulse, wide pulse pressure, Quincke’s sign, and De Musset’s sign. In severe cases, a mid-diastolic Austin-Flint murmur may also be present. Suspected AR should be investigated with echocardiography.
Management of AR involves medical management of any associated heart failure and surgery in symptomatic patients with severe AR or asymptomatic patients with severe AR who have LV systolic dysfunction.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 28
Incorrect
-
A 65-year-old man presents to the Emergency Department with a 60-minute history of central chest pain that extends to his jaw. An ECG reveals an inferior ST-segment elevation myocardial infarction (STEMI). The QRS is positive in leads I and aVL but negative in leads II and aVF. What type of axis deviation is indicated by this finding?
Your Answer:
Correct Answer: Left
Explanation:To estimate the heart’s axis, one method is the quadrant method, which involves analyzing leads I and aVF. If lead I is positive and lead aVF is negative, this suggests a possible left axis deviation. To confirm left axis deviation, a second method using lead II can be used. If lead II is also negative, then left axis deviation is confirmed. Other types of axis deviation can be determined by analyzing the polarity of leads I and aVF.
ECG Axis Deviation: Causes of Left and Right Deviation
Electrocardiogram (ECG) axis deviation refers to the direction of the electrical activity of the heart. A normal axis is between -30 and +90 degrees. Deviation from this range can indicate underlying cardiac or pulmonary conditions.
Left axis deviation (LAD) can be caused by left anterior hemiblock, left bundle branch block, inferior myocardial infarction, Wolff-Parkinson-White syndrome with a right-sided accessory pathway, hyperkalaemia, congenital heart defects such as ostium primum atrial septal defect (ASD) and tricuspid atresia, and minor LAD in obese individuals.
On the other hand, right axis deviation (RAD) can be caused by right ventricular hypertrophy, left posterior hemiblock, lateral myocardial infarction, chronic lung disease leading to cor pulmonale, pulmonary embolism, ostium secundum ASD, Wolff-Parkinson-White syndrome with a left-sided accessory pathway, and minor RAD in tall individuals. It is also normal in infants less than one year old.
It is important to note that Wolff-Parkinson-White syndrome is a common cause of both LAD and RAD, depending on the location of the accessory pathway. Understanding the causes of ECG axis deviation can aid in the diagnosis and management of underlying conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 29
Incorrect
-
A 68-year-old woman arrives at the emergency department with complaints of shortness of breath and palpitations. During the examination, you observe an irregularly irregular pulse. To check for signs of atrial fibrillation, you opt to conduct an ECG. In a healthy individual, where is the SA node located in the heart?
Your Answer:
Correct Answer: Right atrium
Explanation:The SA node is situated at the junction of the superior vena cava and the right atrium, and is responsible for initiating cardiac impulses in a healthy heart. The AV node, located in the atrioventricular septum, regulates the spread of excitation from the atria to the ventricles. The patient’s symptoms of palpitations and shortness of breath, along with an irregularly irregular pulse, strongly indicate atrial fibrillation. ECG findings consistent with atrial fibrillation include an irregularly irregular rhythm and the absence of P waves.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 30
Incorrect
-
As a curious fourth-year medical student, you observe the birth of a full-term baby delivered vaginally to a mother who has given birth once before. The infant's Apgar score is 9 at 1 minute and 10 at 10 minutes, and the delivery is uncomplicated. However, a postnatal examination reveals that the ductus arteriosus has not closed properly. Can you explain the process by which this structure normally closes?
Your Answer:
Correct Answer: Decreased prostaglandin concentration
Explanation:The ductus arteriosus, which is a shunt connecting the pulmonary artery with the descending aorta in utero, closes with the first breaths of life. This is due to an increase in pulmonary blood flow, which helps to clear local vasodilating prostaglandins that keep the duct open during fetal development. The opening of the lung alveoli with the first breath of life leads to an increase in oxygen tension in the blood, but this is not the primary mechanism behind the closure of the ductus arteriosus. It is important to note that oxygen tension in the blood increases after birth when the infant breathes in air and no longer receives mixed oxygenated blood via the placenta.
Understanding Patent Ductus Arteriosus
Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.
This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.
The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)