-
Question 1
Correct
-
A 78-year-old man is admitted to the care of the elderly ward with urosepsis and an acute kidney injury stage 2. His medical history includes type 2 diabetes, ischaemic heart disease and prostate cancer.
Assessing his risk of venous thromboembolism (VTE), you determine that he is at high risk. To prevent VTE, you initiate subcutaneous enoxaparin, a low molecular weight heparin. What is the mechanism of action of this medication?Your Answer: Activates antithrombin III and forms a complex that inhibits factor Xa
Explanation:The activation of antithrombin III (ATIII) is the mechanism by which low-molecular weight heparins (LMWH) produce an anti-coagulant effect. ATIII is a glycoprotein that inhibits several enzymes involved in the clotting cascade, including thrombin, factor Xa, and factor IXa. All heparins work to enhance the effect of ATIII, but LMWH specifically binds to ATIII and produces a conformational change that accelerates its inhibition of factor Xa.
In contrast, unfractionated heparin also produces a conformational change in ATIII, but due to its larger size, it can also inhibit other clotting factors such as thrombin, factors IXa, XIa, and XIIa.
Direct oral anticoagulants such as apixaban and rivaroxaban directly inhibit factor Xa, while dabigatran is a direct thrombin inhibitor. Aspirin, on the other hand, inhibits the production of thromboxane A2 by inhibiting COX-1 and COX-2, resulting in reduced platelet aggregation.
Heparin is a type of anticoagulant medication that comes in two main forms: unfractionated heparin and low molecular weight heparin (LMWH). Both types work by activating antithrombin III, but unfractionated heparin forms a complex that inhibits thrombin, factors Xa, IXa, XIa, and XIIa, while LMWH only increases the action of antithrombin III on factor Xa. Adverse effects of heparins include bleeding, thrombocytopenia, osteoporosis, and hyperkalemia. LMWH has a lower risk of causing heparin-induced thrombocytopenia (HIT) and osteoporosis compared to unfractionated heparin. HIT is an immune-mediated condition where antibodies form against complexes of platelet factor 4 (PF4) and heparin, leading to platelet activation and a prothrombotic state. Treatment for HIT includes direct thrombin inhibitors or danaparoid. Heparin overdose can be partially reversed by protamine sulfate.
-
This question is part of the following fields:
- General Principles
-
-
Question 2
Incorrect
-
A 25-year-old female comes to the emergency department with complaints of severe pain and tingling sensation in the lower part of her left leg and dorsum of her left foot after twisting her ankle during a football match. The possibility of entrapment of the superficial peroneal nerve is suspected. Which muscle is supplied by this nerve?
Your Answer: Tibialis anterior
Correct Answer: Peroneus longus
Explanation:The superficial peroneal nerve is responsible for supplying the peroneus longus and peroneus brevis muscles in the lateral compartment of the leg. These muscles are involved in eversion of the foot and plantar flexion. The peroneus tertius muscle in the anterior compartment of the lower limb is innervated by the deep peroneal nerve and is responsible for dorsiflexion of the ankle and eversion of the foot. The tibialis posterior muscle in the deep posterior compartment of the lower limb is innervated by the tibial nerve and is responsible for plantar flexion and inversion of the foot. The soleus muscle in the superficial posterior compartment of the lower limb is also innervated by the tibial nerve and is responsible for plantar flexion.
Anatomy of the Superficial Peroneal Nerve
The superficial peroneal nerve is responsible for supplying the lateral compartment of the leg, specifically the peroneus longus and peroneus brevis muscles which aid in eversion and plantar flexion. It also provides sensation over the dorsum of the foot, excluding the first web space which is innervated by the deep peroneal nerve.
The nerve passes between the peroneus longus and peroneus brevis muscles along the proximal one-third of the fibula. Approximately 10-12 cm above the tip of the lateral malleolus, the nerve pierces the fascia. It then bifurcates into intermediate and medial dorsal cutaneous nerves about 6-7 cm distal to the fibula.
Understanding the anatomy of the superficial peroneal nerve is important in diagnosing and treating conditions that affect the lateral compartment of the leg and dorsum of the foot. Injuries or compression of the nerve can result in weakness or numbness in the affected areas.
-
This question is part of the following fields:
- Neurological System
-
-
Question 3
Correct
-
What is the anatomical distribution of ulcerative colitis?
Your Answer: Starts at rectum + rarely spreads beyond ileocaecal valve + continuous
Explanation:Understanding Ulcerative Colitis
Ulcerative colitis is a type of inflammatory bowel disease that causes inflammation in the rectum and spreads continuously without going beyond the ileocaecal valve. It is most commonly seen in people aged 15-25 years and 55-65 years. The symptoms of ulcerative colitis are insidious and intermittent, including bloody diarrhea, urgency, tenesmus, abdominal pain, and extra-intestinal features. Diagnosis is done through colonoscopy and biopsy, but in severe cases, a flexible sigmoidoscopy is preferred to avoid the risk of perforation. The typical findings include red, raw mucosa that bleeds easily, widespread ulceration with preservation of adjacent mucosa, and inflammatory cell infiltrate in lamina propria. Extra-intestinal features of inflammatory bowel disease include arthritis, erythema nodosum, episcleritis, osteoporosis, uveitis, pyoderma gangrenosum, clubbing, and primary sclerosing cholangitis. Ulcerative colitis is linked with sacroiliitis, and a barium enema can show the whole colon affected by an irregular mucosa with loss of normal haustral markings.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 4
Incorrect
-
A 25-year-old man was discovered collapsed outside a club on Saturday evening. According to his companion, he had consumed 10 pints of beer and began to retch. After an hour, he began to vomit blood. What is the medical diagnosis?
Your Answer: Acute pancreatitis
Correct Answer: Mallory-Weiss tear
Explanation:Mallory-Weiss tears can be caused by repeated vomiting and are diagnosed through endoscopy.
Acute pancreatitis presents with severe upper abdominal pain and elevated serum amylase levels.
Coeliac disease causes diarrhoea, fatigue, and weight loss and is diagnosed through various tests.
Gastric carcinoma can cause non-specific symptoms in early stages and more severe symptoms in later stages.
Ulcerative colitis presents with bloody diarrhoea, weight loss, and rectal bleeding. -
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 5
Correct
-
A 12-year-old girl is admitted with arthralgia. On examination she has purpura of her lower limbs. Urinalysis reveals haematuria.
Blood results are as follows:
Na+ 133 mmol/l
K+ 3.8 mmol/l
Urea 10.2 mmol/l
Creatinine 114 µmol/l
What is the underlying mechanism causing the renal dysfunction in this case?Your Answer: Classical complement pathway
Explanation:The activation of the classical complement pathway is triggered by the presence of antigen-antibody complexes, specifically IgM/IgG. However, in cases of systemic diseases like systemic lupus erythematosus, anti-GBM disease, and ANCA-associated glomerulonephritis, the involvement of autoantibodies in the classical pathway can lead to glomerulonephritis.
The cell-mediated response involves Th1 lymphocytes, while the humoral (antibody) response involves Th2 lymphocytes. Antigen presenting cells, such as macrophages and dendritic cells, play a crucial role in processing antigenic material and presenting it to lymphocytes.
Overview of Complement Pathways
Complement pathways are a group of proteins that play a crucial role in the body’s immune and inflammatory response. These proteins are involved in various processes such as chemotaxis, cell lysis, and opsonisation. There are two main complement pathways: classical and alternative.
The classical pathway is initiated by antigen-antibody complexes, specifically IgM and IgG. The proteins involved in this pathway include C1qrs, C2, and C4. On the other hand, the alternative pathway is initiated by polysaccharides found in Gram-negative bacteria and IgA. The proteins involved in this pathway are C3, factor B, and properdin.
Understanding the complement pathways is important in the diagnosis and treatment of various diseases. Dysregulation of these pathways can lead to autoimmune disorders, infections, and other inflammatory conditions. By identifying the specific complement pathway involved in a disease, targeted therapies can be developed to effectively treat the condition.
-
This question is part of the following fields:
- General Principles
-
-
Question 6
Incorrect
-
You are designing a research project looking at the complement system, in-particular the alternative complement pathway. As your dependent variable you choose the time taken to reduce levels of different strains of Salmonella bacteria to undetectable levels in vitro.
What will you choose as your independent variable?Your Answer: Antigen-antibody complexes (IgM/IgG)
Correct Answer: Polysaccharides
Explanation:The activation of the alternative complement pathway is triggered by polysaccharides found on pathogens, such as gram negative bacteria. The research study is focused on evaluating the effectiveness of this pathway, making polysaccharides the suitable dependent variable to measure. On the other hand, the classical complement pathway is activated by the formation of antigen-antibody complexes, specifically IgM/IgG. Th1 lymphocytes play a role in the cell-mediated response, while Th2 lymphocytes are involved in the humoral or antibody response.
Overview of Complement Pathways
Complement pathways are a group of proteins that play a crucial role in the body’s immune and inflammatory response. These proteins are involved in various processes such as chemotaxis, cell lysis, and opsonisation. There are two main complement pathways: classical and alternative.
The classical pathway is initiated by antigen-antibody complexes, specifically IgM and IgG. The proteins involved in this pathway include C1qrs, C2, and C4. On the other hand, the alternative pathway is initiated by polysaccharides found in Gram-negative bacteria and IgA. The proteins involved in this pathway are C3, factor B, and properdin.
Understanding the complement pathways is important in the diagnosis and treatment of various diseases. Dysregulation of these pathways can lead to autoimmune disorders, infections, and other inflammatory conditions. By identifying the specific complement pathway involved in a disease, targeted therapies can be developed to effectively treat the condition.
-
This question is part of the following fields:
- General Principles
-
-
Question 7
Correct
-
What type of molecule does haemoglobin belong to?
Your Answer: Quaternary protein structure
Explanation:The Structure and Functions of Proteins
Proteins are complex molecules that can vary in structure from single amino acids to large, folded molecules. Amino acids are joined together by peptide bonds to form dipeptides and polypeptides. More complex molecules can also have disulphide bonds and ionic bonds. The primary structure of a protein is a simple amino acid chain, while the secondary structure is a specific shape such as a helix or pleated sheet. The tertiary structure is a more globular shape, arranged by ionic, hydrogen, and disulphide bonds, and hydrophobic interactions. The quaternary structure is a complex protein containing several polypeptide chains held together by interactions.
Proteins have multiple roles within the human body, including as hormones, food substrates, enzymes, receptor molecules, muscles, cell membrane constituents, carrier molecules in blood, and determinants of oncotic/osmotic pressures. However, proteins can be easily damaged by denaturation, which is the loss of the specific three-dimensional shape of a molecule. Denaturation can be caused by heat, salts, heavy metals, solvents, detergents, and extremes of pH.
In summary, proteins are essential molecules with a diverse range of structures and functions within the human body. their structure and potential for denaturation is crucial for maintaining their proper function.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 8
Incorrect
-
A 25-year-old G1P0 woman, who missed all previous antenatal appointments, presents to the obstetrics clinic at 34 weeks' gestation for her first antenatal visit. The mother has no significant medical history and is in good health. She is up to date with all her immunisations.
During the examination, the symphyseal-fundal height measures 30cm. An ultrasound scan is conducted, which reveals that the fetus has an abdominal circumference below the 3rd percentile for age, femur length below the 3rd percentile, and head circumference along the 90th percentile. The estimated weight of the baby is below the 10th percentile.
What is the most probable cause of the abnormality observed in this fetus?Your Answer: Singleton gestation
Correct Answer: Maternal smoking
Explanation:Smoking while pregnant has been linked to the birth of a Small for Gestational Age baby. This is indicated by the baby’s birth weight being below the 10th percentile and fetal measurements suggesting asymmetrical intrauterine growth restriction (IUGR), with the head circumference being significantly higher than the abdominal circumference and femur length. Maternal smoking is a possible cause of the baby’s small size, as it has been associated with reduced birth weight and asymmetrical IUGR. Multiple gestation is a known risk factor for fetal growth restriction, but singleton gestation is not. Maternal rubella infection and advanced maternal age may also cause small for gestational age babies, but these are less likely causes in this case as the mother’s immunisations are up to date and she is only 23 years old.
Small for Gestational Age (SGA) is a statistical definition used to describe babies who are smaller than expected for their gestational age. Although there is no universally agreed percentile, the 10th percentile is often used, meaning that 10% of normal babies will be below this threshold. SGA can be determined either antenatally or postnatally. There are two types of SGA: symmetrical and asymmetrical. Symmetrical SGA occurs when the fetal head circumference and abdominal circumference are equally small, while asymmetrical SGA occurs when the abdominal circumference slows relative to the increase in head circumference.
There are various causes of SGA, including incorrect dating, constitutionally small (normal) babies, and abnormal fetuses. Symmetrical SGA is more common and can be caused by idiopathic factors, race, sex, placental insufficiency, pre-eclampsia, chromosomal and congenital abnormalities, toxins such as smoking and heroin, and infections such as CMV, parvovirus, rubella, syphilis, and toxoplasmosis. Asymmetrical SGA is less common and can be caused by toxins such as alcohol, cigarettes, and heroin, chromosomal and congenital abnormalities, and infections.
The management of SGA depends on the type and cause. For symmetrical SGA, most cases represent the lower limits of the normal range and require fortnightly ultrasound growth assessments to demonstrate normal growth rates. Pathological causes should be ruled out by checking maternal blood for infections and searching the fetus carefully with ultrasound for markers of chromosomal abnormality. Asymmetrical SGA also requires fortnightly ultrasound growth assessments, as well as biophysical profiles and Doppler waveforms from umbilical circulation to look for absent end-diastolic flow. If results are sub-optimal, delivery may be considered.
-
This question is part of the following fields:
- Reproductive System
-
-
Question 9
Incorrect
-
A 67-year-old woman is currently admitted to the female orthopedic ward following a left total hip replacement after a femoral neck fracture. The surgery was uncomplicated, and the patient is expected to be discharged in four days. However, in the evening, the patient complains of feeling unwell and experiencing pain in the left hip area. The nurse records her vital signs, which include a pulse rate of 94 beats per minute, a respiratory rate of 20 breaths per minute, a blood pressure of 105/63 mmHg, and a temperature of 38.1ºC (100.6 degrees Fahrenheit). The ward doctor suspects a bone infection around the hip prosthesis and initiates treatment with clindamycin while awaiting review by the orthopedic surgeon. The patient's pain and suspected bone infection eventually subside, but after two days, the patient develops severe abdominal pain and diarrhea. What is the most likely causative organism responsible for this patient's condition?
Your Answer: Gram-negative, maltose-utilising diplococci
Correct Answer: Gram-positive anaerobic bacilli
Explanation:Pseudomembranous colitis is caused by the gram-positive bacillus Clostridium difficile, which can overgrow in the intestine following broad-spectrum antibiotic use. A patient recovering from a total hip replacement who develops signs of infection and is treated with clindamycin may develop severe abdominal pain and diarrhea, indicating a diagnosis of pseudomembranous colitis. Treatment options include metronidazole or oral vancomycin for more severe cases. Staphylococcus bacteria are gram-positive, catalase-positive cocci that can be differentiated based on coagulase positivity and novobiocin sensitivity. Listeria, Bacillus, and Corynebacterium are gram-positive aerobic bacilli, while Campylobacter jejuni, Vibrio cholerae, and Helicobacter pylori are gram-negative, oxidase-positive comma-shaped rods with specific growth characteristics.
Clostridium difficile is a type of bacteria that is commonly found in hospitals. It produces a toxin that can damage the intestines and cause a condition called pseudomembranous colitis. This bacteria usually develops when the normal gut flora is disrupted by broad-spectrum antibiotics, with second and third generation cephalosporins being the leading cause. Other risk factors include the use of proton pump inhibitors. Symptoms of C. difficile infection include diarrhea, abdominal pain, and a raised white blood cell count. The severity of the infection can be determined using the Public Health England severity scale.
To diagnose C. difficile infection, a stool sample is tested for the presence of the C. difficile toxin. Treatment involves reviewing current antibiotic therapy and stopping antibiotics if possible. For a first episode of infection, oral vancomycin is the first-line therapy for 10 days, followed by oral fidaxomicin as second-line therapy and oral vancomycin with or without IV metronidazole as third-line therapy. Recurrent infections may require different treatment options, such as oral fidaxomicin within 12 weeks of symptom resolution or oral vancomycin or fidaxomicin after 12 weeks of symptom resolution. In life-threatening cases, oral vancomycin and IV metronidazole may be used, and surgery may be considered with specialist advice. Other therapies, such as bezlotoxumab and fecal microbiota transplant, may also be considered for preventing recurrences in certain cases.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 10
Correct
-
What role does the nucleolus play in eukaryotic cells?
Your Answer: To transcribe ribosomal RNA and assemble ribosomes
Explanation:The Nucleolus: Structure and Function
The nucleolus is a non-membrane-bound structure that takes up about a quarter of the nuclear volume. It is composed mainly of proteins and nucleic acids and is responsible for transcribing ribosomal RNA (rRNA) and assembling ribosomes in the cell. Nucleoli are formed in nucleolar organizing regions (NORs), which are also the regions of the genes for three of the four eukaryotic rRNAs.
During ribosome assembly, ribosomal proteins enter the nucleolus from the cytoplasm and begin to assemble on an rRNA precursor. As the pre-rRNA is cleaved to produce 5.8S, 18S, and 28S rRNAs, additional ribosomal proteins and the 5S rRNA (which is synthesized elsewhere in the nucleus) assemble to form preribosomal subunits. These subunits then exit the nucleolus into the cytoplasm and combine to produce the final 40S and 60S ribosomal subunits.
Overall, the nucleolus plays a crucial role in protein synthesis by producing the components necessary for ribosome assembly. Its unique structure and function make it an essential component of the cell’s machinery.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 11
Incorrect
-
A 19-year-old female comes to the clinic complaining of an itchy rash surrounding her belly button. She reports that the rash appeared a few days after getting her navel pierced. Upon examination, there is a vesicular rash with an erythematous base.
What are the primary cells involved in the disease affecting this patient?Your Answer: Classical complement pathway
Correct Answer: Th1 lymphocytes
Explanation:Th1 cells play a role in the cell mediated response, which is seen in contact dermatitis, a type 4 delayed hypersensitivity reaction. This reaction occurs due to the activation of Th1 lymphocyte cells and presents as a delayed reaction after exposure to the allergen.
Th2 lymphocytes, on the other hand, are involved in the humoral (antibody) process and activate B-cells.
Antigen presenting cells, such as macrophages and dendritic cells, process antigenic material and present them to lymphocytes.
The classical complement pathway is activated by antigen-antibody complexes (IgM/IgG). In systemic diseases like systemic lupus erythematosus, anti-glomerular basement membrane (anti-GBM) disease, and anti-neutrophil cytoplasmic autoantibody (ANCA)-associated glomerulonephritis, the presence of autoantibodies and the autoantibody-mediated involvement of the classical pathway of the complement cascade is the cause of glomerulonephritis.
T-Helper Cells: Two Major Subsets and Their Functions
T-Helper cells are a type of white blood cell that play a crucial role in the immune system. There are two major subsets of T-Helper cells, each with their own specific functions. The first subset is Th1, which is involved in the cell-mediated response and delayed (type IV) hypersensitivity. Th1 cells secrete cytokines such as IFN-gamma, IL-2, and IL-3, which help activate other immune cells and promote inflammation.
The second subset is Th2, which is involved in mediating humoral (antibody) immunity. Th2 cells are responsible for stimulating the production of antibodies, such as IgE in asthma. They secrete cytokines such as IL-4, IL-5, IL-6, IL-10, and IL-13, which help activate B cells and promote the production of antibodies.
Understanding the functions of these two subsets of T-Helper cells is important for developing treatments for various immune-related disorders. For example, drugs that target Th1 cells may be useful in treating autoimmune diseases, while drugs that target Th2 cells may be useful in treating allergies and asthma.
-
This question is part of the following fields:
- General Principles
-
-
Question 12
Incorrect
-
A 27-year-old female patient is being treated by a haematologist after experiencing a venous thromboembolism. Her mother has a history of multiple venous thromboembolic events. The patient has no significant medical history, no comorbidities, and is a non-smoker with a body mass index of 20 kg/m2. Her blood clotting tests show normal APTT and PT. The haematologist suspects an inherited thrombophilia. What is the most common diagnosis in a patient with this clinical presentation?
Your Answer: Antithrombin III deficiency
Correct Answer: Activated protein C resistance (Factor V Leiden)
Explanation:Factor V Leiden is the most prevalent inherited thrombophilia, causing activated protein C resistance. This mutation leads to increased clotting as Factor V is less susceptible to degradation by protein C. The APTT and PT typically remain normal. Protein S deficiency is a rare thrombophilia, where the lack of protein S results in the inability to activate protein C and degrade factor V and factor VIII. Antithrombin III deficiency is another rare disorder where the absence of antithrombin III leads to unregulated thrombin. The prothrombin gene mutation is the second most common inherited thrombophilia.
Thrombophilia is a condition that causes an increased risk of blood clots. It can be inherited or acquired. Inherited thrombophilia is caused by genetic mutations that affect the body’s natural ability to prevent blood clots. The most common cause of inherited thrombophilia is a gain of function polymorphism called factor V Leiden, which affects the protein that helps regulate blood clotting. Other genetic mutations that can cause thrombophilia include deficiencies of naturally occurring anticoagulants such as antithrombin III, protein C, and protein S. The prevalence and relative risk of venous thromboembolism (VTE) vary depending on the specific genetic mutation.
Acquired thrombophilia can be caused by conditions such as antiphospholipid syndrome or the use of certain medications, such as the combined oral contraceptive pill. These conditions can affect the body’s natural ability to prevent blood clots and increase the risk of VTE. It is important to identify and manage thrombophilia to prevent serious complications such as deep vein thrombosis and pulmonary embolism.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 13
Correct
-
A 36-year-old patient is admitted to the ICU with septic shock. The patient presents with a temperature of 39ºC, pulse rate of 120/min, respiratory rate of 28/min, and blood pressure of 60/30 mmHg. The administration of intravenous phenylephrine is initiated. What is the mechanism of action of this drug and how can it benefit the patient?
Your Answer: Smooth muscle contraction
Explanation:Alpha-1 receptors cause smooth muscle contraction, while beta-1 receptors cause increased heart rate and cardiac muscle contraction, and beta-2 receptors cause smooth muscle relaxation. Phenylephrine selectively binds to alpha-1 receptors, causing blood vessels to constrict and is used as a decongestant or to increase blood pressure. It also causes pupillary dilatation.
Adrenergic receptors are a type of G protein-coupled receptors that respond to the catecholamines epinephrine and norepinephrine. These receptors are primarily involved in the sympathetic nervous system. There are four types of adrenergic receptors: α1, α2, β1, and β2. Each receptor has a different potency order and primary action. The α1 receptor responds equally to norepinephrine and epinephrine, causing smooth muscle contraction. The α2 receptor has mixed effects and responds equally to both catecholamines. The β1 receptor responds equally to epinephrine and norepinephrine, causing cardiac muscle contraction. The β2 receptor responds much more strongly to epinephrine than norepinephrine, causing smooth muscle relaxation.
-
This question is part of the following fields:
- General Principles
-
-
Question 14
Incorrect
-
A 48-year-old man visits his local doctor complaining of chest pain that occurs during physical activity and subsides with rest. He first noticed it 10 months ago and feels that it has gradually worsened. He now experiences this pain while climbing a few stairs. Previously, he could walk down to the newsagent and back, a distance of 200 yards, without any discomfort. He has a medical history of hypertension and appendectomy.
His close friend had similar symptoms that were relieved by sublingual glyceryl nitrates. He asks the doctor to prescribe something similar.
What is the mechanism by which nitrates work?Your Answer: Nitrates deactivate myosin light chain phosphatase resulting in smooth muscle relaxation
Correct Answer: Nitrates cause a decrease in intracellular calcium which results in smooth muscle relaxation
Explanation:The reason why nitrates cause a decrease in intracellular calcium is because nitric oxide triggers the activation of smooth muscle soluble guanylyl cyclase (GC) to produce cGMP. This increase in intracellular cGMP inhibits calcium entry into the cell, resulting in a reduction in intracellular calcium levels and inducing smooth muscle relaxation. Additionally, nitric oxide activates K+ channels, leading to hyperpolarization and relaxation. Furthermore, nitric oxide stimulates a cGMP-dependent protein kinase that activates myosin light chain phosphatase, which dephosphorylates myosin light chains, ultimately leading to relaxation. Therefore, the correct answer is the second option.
Understanding Nitrates and Their Effects on the Body
Nitrates are a type of medication that can cause blood vessels to widen, which is known as vasodilation. They are commonly used to manage angina and treat heart failure. One of the most frequently prescribed nitrates is sublingual glyceryl trinitrate, which is used to relieve angina attacks in patients with ischaemic heart disease.
The mechanism of action for nitrates involves the release of nitric oxide in smooth muscle, which activates guanylate cyclase. This enzyme then converts GTP to cGMP, leading to a decrease in intracellular calcium levels. In the case of angina, nitrates dilate the coronary arteries and reduce venous return, which decreases left ventricular work and reduces myocardial oxygen demand.
However, nitrates can also cause side effects such as hypotension, tachycardia, headaches, and flushing. Additionally, many patients who take nitrates develop tolerance over time, which can reduce their effectiveness. To combat this, the British National Formulary recommends that patients who develop tolerance take the second dose of isosorbide mononitrate after 8 hours instead of 12 hours. This allows blood-nitrate levels to fall for 4 hours and maintains effectiveness. It’s important to note that this effect is not seen in patients who take modified release isosorbide mononitrate.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Correct
-
A 12-year-old boy has been experiencing recurrent and prolonged episodes of sinusitis and bronchitis, as well as more frequent gastrointestinal infections compared to his peers. These symptoms have been ongoing for the past two years. Upon screening his immune system, a type of primary immunodeficiency is detected.
What is the probable diagnosis?Your Answer: Selective immunoglobulin A deficiency
Explanation:There are several types of primary immunodeficiency disorders that can affect individuals. Common variable immunodeficiency (CVID) is a disorder that affects the production of immunoglobulins, which can lead to recurrent infections of the respiratory and gastrointestinal tracts. Symptoms can occur at any age.
Bruton’s X-linked agammaglobulinaemia is a disorder that results in the complete absence or very low levels of all types of immunoglobulins. It typically presents in infants between 6-9 months of age with recurrent severe episodes of pneumonia, upper respiratory tract infections, gastrointestinal infections, and skin and joint infections.
Severe combined immunodeficiency (SCID) is a disorder that impairs B and T cell function. It usually presents in infants at 6 months of age with recurrent severe bacterial, fungal, and viral infections. Common presenting conditions include ear infections, sinusitis, oral candidiasis, and Pneumocystis jirovecii pneumonia.
Chronic granulomatous disease (CGD) is a neutrophil disorder that is typically diagnosed before the age of 5. It is characterized by recurrent infections by pus-forming (pyogenic) bacteria, especially Staphylococcus aureus. Commonly seen infections include abscesses of skin and organs, septic arthritis, and osteomyelitis.
Immunoglobulins, also known as antibodies, are proteins produced by the immune system to help fight off infections and diseases. There are five types of immunoglobulins found in the body, each with their own unique characteristics.
IgG is the most abundant type of immunoglobulin in blood serum and plays a crucial role in enhancing phagocytosis of bacteria and viruses. It also fixes complement and can be passed to the fetal circulation.
IgA is the most commonly produced immunoglobulin in the body and is found in the secretions of digestive, respiratory, and urogenital tracts and systems. It provides localized protection on mucous membranes and is transported across the interior of the cell via transcytosis.
IgM is the first immunoglobulin to be secreted in response to an infection and fixes complement, but does not pass to the fetal circulation. It is also responsible for producing anti-A, B blood antibodies.
IgD’s role in the immune system is largely unknown, but it is involved in the activation of B cells.
IgE is the least abundant type of immunoglobulin in blood serum and is responsible for mediating type 1 hypersensitivity reactions. It provides immunity to parasites such as helminths and binds to Fc receptors found on the surface of mast cells and basophils.
-
This question is part of the following fields:
- General Principles
-
-
Question 16
Incorrect
-
A 25-year-old man is having an inguinal hernia repair done with local anaesthesia. During the surgery, the surgeon comes across a bleeding site and uses diathermy to manage it. After a minute or so, the patient reports feeling a burning pain from the heat at the surgical site. Which type of nerve fibers are responsible for transmitting this signal?
Your Answer: A α fibres
Correct Answer: C fibres
Explanation:Mechanothermal stimuli are transmitted slowly through C fibres, while A α fibres transmit motor proprioception information, A β fibres transmit touch and pressure information, and B fibres are responsible for autonomic functions.
Neurons and Synaptic Signalling
Neurons are the building blocks of the nervous system and are made up of dendrites, a cell body, and axons. They can be classified by their anatomical structure, axon width, and function. Neurons communicate with each other at synapses, which consist of a presynaptic membrane, synaptic gap, and postsynaptic membrane. Neurotransmitters are small chemical messengers that diffuse across the synaptic gap and activate receptors on the postsynaptic membrane. Different neurotransmitters have different effects, with some causing excitation and others causing inhibition. The deactivation of neurotransmitters varies, with some being degraded by enzymes and others being reuptaken by cells. Understanding the mechanisms of neuronal communication is crucial for understanding the functioning of the nervous system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 17
Correct
-
A 35-year-old woman presents with a 2-month history of headaches and double vision. Her headaches are worse upon waking and when coughing or straining, and she has also experienced nausea and vomiting. She has a medical history of atrial fibrillation and takes apixaban.
During the examination, a right dilated, fixed pupil is observed, but her visual fields are intact. The rest of the examination is unremarkable.
Which cranial nerve is most likely affected in this case?Your Answer: Right CN III palsy
Explanation:The correct answer is right CNIII palsy. The patient is likely experiencing raised intracranial pressure, which commonly affects the parasympathetic fibers of the oculomotor nerve responsible for pupillary constriction. In this case, the right pupil is dilated and fixed, indicating that the right oculomotor nerve is affected. The oculomotor nerve also innervates all eye muscles except the superior oblique and lateral rectus muscles.
Left CNIII palsy is not the correct answer as it would present with different symptoms, including an abducted, laterally rotated, and depressed eye with ptosis of the upper eyelid. This is not observed in this patient’s examination. Additionally, in raised intracranial pressure, the parasympathetic fibers are affected first, so other clinical signs may not be present.
Left CNVI palsy is also not the correct answer as it would present with horizontal diplopia and defective abduction of the left eye due to the left lateral rectus muscle being affected. This is not observed in this patient’s examination.
Right CNII palsy is not the correct answer as it affects vision and would present with monocular blindness, which is not observed in this patient.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 18
Incorrect
-
What triggers the activation of this complement pathway?
Your Answer: The splitting of C5
Correct Answer: Antigen-antibody complexes
Explanation:The activation of the classical complement pathway occurs through the formation of antigen-antibody complexes, specifically those involving IgM or IgG. It should be noted that the alternative complement pathway can be activated by other means, such as the binding of IgA or polysaccharides, while the MBL pathway is activated by the binding of MBL to mannose residues on the surface of pathogens.
Overview of Complement Pathways
Complement pathways are a group of proteins that play a crucial role in the body’s immune and inflammatory response. These proteins are involved in various processes such as chemotaxis, cell lysis, and opsonisation. There are two main complement pathways: classical and alternative.
The classical pathway is initiated by antigen-antibody complexes, specifically IgM and IgG. The proteins involved in this pathway include C1qrs, C2, and C4. On the other hand, the alternative pathway is initiated by polysaccharides found in Gram-negative bacteria and IgA. The proteins involved in this pathway are C3, factor B, and properdin.
Understanding the complement pathways is important in the diagnosis and treatment of various diseases. Dysregulation of these pathways can lead to autoimmune disorders, infections, and other inflammatory conditions. By identifying the specific complement pathway involved in a disease, targeted therapies can be developed to effectively treat the condition.
-
This question is part of the following fields:
- General Principles
-
-
Question 19
Incorrect
-
A 30-year-old man is brought to the clinic by his wife who complains that her husband engages in public masturbation and manipulates his genitals. He frequently licks objects and attempts to put them in his mouth. The wife also reports a recent significant increase in his appetite followed by purging. She is distressed that her husband seems emotionally unaffected. These symptoms began after he suffered a severe head injury 6 months ago and was found to have bilateral medial temporal lobe damage on imaging. On examination, the patient is unable to recognize familiar objects placed in front of him. Which part of the brain is most likely to have a lesion in this patient?
Your Answer: Frontal lobe
Correct Answer: Amygdala
Explanation:Kluver-Bucy syndrome can be caused by lesions in the amygdala, which is a part of the limbic system located in the medial portion of the temporal lobes on both sides of the brain. This condition may present with symptoms such as hypersexuality, hyperorality, hyperphagia, bulimia, placid response to emotions, and visual agnosia/psychic blindness. The lesions that cause Kluver-Bucy syndrome can be a result of various factors such as infection, trauma, stroke, or organic brain disease.
The cerebellum is an incorrect answer because cerebellar lesions primarily affect gait and cause truncal ataxia, along with other symptoms such as intention tremors and nystagmus.
Frontal lobe lesions can lead to Broca’s aphasia, which affects the fluency of speech, but comprehension of language remains intact.
The occipital lobe is also an incorrect answer because lesions in this area are commonly associated with homonymous hemianopia, a condition where only one side of the visual field remains visible. While visual agnosia can occur with an occipital lobe lesion, it does not account for the other symptoms seen in Kluver-Bucy syndrome such as hypersexuality and hyperorality.
Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.
In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 20
Incorrect
-
A 31-year-old man visits an ophthalmology clinic with a complaint of experiencing double vision while descending stairs. He reports a recent mountain biking accident that required him to seek emergency medical attention. Although he has recuperated, he mentions that he sustained a severe frontal head injury after colliding with a tree.
During the examination, his left eye is raised and deviated medially, and he experiences vertical diplopia when looking up and down.
Which cranial nerve is most likely affected in this individual?Your Answer: Abducens nerve
Correct Answer: Trochlear nerve
Explanation:Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 21
Incorrect
-
A 63-year-old male presents with right sided hemiplegia. An MRI confirms a diagnosis of a left sided partial anterior circulating stroke. He is treated with high dose aspirin for 14 days. He is then started on clopidogrel which he was unfortunately intolerant of. You therefore start him on dual aspirin and dipyridamole.
What is the mechanism of action of dipyridamole?Your Answer: Direct thrombin inhibitors
Correct Answer: Increases the effects of adenosine
Explanation:Dipyridamole is a medication that inhibits phosphodiesterase enzymes and reduces the uptake of adenosine by cells. This leads to an increase in adenosine levels and a decrease in the breakdown of cAMP. Patients taking dipyridamole should not receive exogenous adenosine treatment, such as for supraventricular tachycardia, due to this interaction.
Clopidogrel is a medication that blocks ADP receptors.
Aspirin is a medication that inhibits cyclo-oxygenase.
Dabigatran and bivalirudin are medications that directly inhibit thrombin.
Tirofiban and abciximab are medications that inhibit glycoprotein IIb/IIIa.
Warfarin inhibits the production of factors II, VII, IX, and X.
Understanding the Mechanism of Action of Dipyridamole
Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.
Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.
Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.
In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Incorrect
-
A 10-day-old breastfed boy is discovered to have severe jaundice. The pregnancy and delivery were uneventful, and he is almost back to his birth weight. What is the initial course of action in managing his condition?
Your Answer: Perform a neonatal jaundice screen
Correct Answer: Measure total and conjugated bilirubin
Explanation:Neonatal Jaundice and Bilirubin Levels
Neonatal jaundice is a common condition that affects newborn babies, and it is important to measure bilirubin levels to differentiate between causes and provide appropriate management. Bilirubin levels can be divided into unconjugated and conjugated hyperbilirubinaemias, with the former being the most common cause of jaundice. However, the presence of a raised conjugated bilirubin fraction is always pathological and requires further investigation.
Unconjugated hyperbilirubinaemia is often physiological or caused by breast milk, but it is important to exclude other causes such as haemolysis and Crigler-Najjar if the baby has severe unconjugated hyperbilirubinaemia. The absolute level of unconjugated bilirubin is crucial to measure, as high concentrations can lead to toxic build-up in the brain known as kernicterus. This can cause deafness, movement disorders, and mental impairment. Phototherapy and exchange transfusion may be required in extreme cases.
Admission to the hospital depends on bilirubin levels, and a full neonatal jaundice screen is only necessary if there is suspicion of pathological jaundice. The TORCH infection screen, which includes toxoplasmosis, rubella, cytomegalovirus, herpes, and HIV, is part of a neonatal jaundice screen. It is essential to exclude pathological jaundice before reassuring the mother.
-
This question is part of the following fields:
- Paediatrics
-
-
Question 23
Correct
-
A one-year-old is brought to the paediatric team for assessment. The parents report that the child's right arm hangs loosely and does not move in coordination with the other limbs.
Upon examination, an adducted, internally rotated right upper limb with an extended elbow is observed. However, movement of the right wrist appears normal.
Based on these findings, where is the most likely location of the lesion?Your Answer: C5 and C6
Explanation:The infant’s arm is observed to be hanging loosely after a difficult forceps delivery, with adduction and internal rotation and extension of the elbow, indicating an injury to the upper trunk of the brachial plexus involving nerve roots C5 and C6. This is known as Erb’s palsy, which is commonly associated with difficult forceps deliveries and requires specialized management. Lower brachial plexus injuries affecting nerve roots C7 and C8 are less frequent and would cause wrist and forearm pathology rather than shoulder and elbow weakness. Isolated damage to the C6 nerve root is unlikely, as it is typically affected alongside the C5 nerve root.
Upper limb anatomy is a common topic in examinations, and it is important to know certain facts about the nerves and muscles involved. The musculocutaneous nerve is responsible for elbow flexion and supination, and typically only injured as part of a brachial plexus injury. The axillary nerve controls shoulder abduction and can be damaged in cases of humeral neck fracture or dislocation, resulting in a flattened deltoid. The radial nerve is responsible for extension in the forearm, wrist, fingers, and thumb, and can be damaged in cases of humeral midshaft fracture, resulting in wrist drop. The median nerve controls the LOAF muscles and can be damaged in cases of carpal tunnel syndrome or elbow injury. The ulnar nerve controls wrist flexion and can be damaged in cases of medial epicondyle fracture, resulting in a claw hand. The long thoracic nerve controls the serratus anterior and can be damaged during sports or as a complication of mastectomy, resulting in a winged scapula. The brachial plexus can also be damaged, resulting in Erb-Duchenne palsy or Klumpke injury, which can cause the arm to hang by the side and be internally rotated or associated with Horner’s syndrome, respectively.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 24
Correct
-
A 55-year-old woman arrives at the emergency department after falling from a stepladder onto her left arm. She reports experiencing elbow pain and limited movement in her left hand.
During the examination, the left elbow is tender to the touch, and there is a decrease in wrist flexion and adduction.
Which nerve is affected by this patient's injury?Your Answer: Ulnar nerve
Explanation:The flexor carpi ulnaris muscle, responsible for wrist flexion and adduction, is innervated by the ulnar nerve. This patient’s reduced wrist flexion and adduction, along with elbow pain, suggest ulnar nerve injury. The axillary, median, and musculocutaneous nerves are not responsible for these symptoms, as they innervate different muscles. The radial nerve, which innervates the extensor compartments, would not cause reduced wrist flexion.
Upper limb anatomy is a common topic in examinations, and it is important to know certain facts about the nerves and muscles involved. The musculocutaneous nerve is responsible for elbow flexion and supination, and typically only injured as part of a brachial plexus injury. The axillary nerve controls shoulder abduction and can be damaged in cases of humeral neck fracture or dislocation, resulting in a flattened deltoid. The radial nerve is responsible for extension in the forearm, wrist, fingers, and thumb, and can be damaged in cases of humeral midshaft fracture, resulting in wrist drop. The median nerve controls the LOAF muscles and can be damaged in cases of carpal tunnel syndrome or elbow injury. The ulnar nerve controls wrist flexion and can be damaged in cases of medial epicondyle fracture, resulting in a claw hand. The long thoracic nerve controls the serratus anterior and can be damaged during sports or as a complication of mastectomy, resulting in a winged scapula. The brachial plexus can also be damaged, resulting in Erb-Duchenne palsy or Klumpke injury, which can cause the arm to hang by the side and be internally rotated or associated with Horner’s syndrome, respectively.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 25
Incorrect
-
Which of the following is not a cause of hyperkalemia?
Your Answer: Familial periodic paralysis
Correct Answer: Severe malnutrition
Explanation:There are various factors that can lead to an increase in serum potassium levels, which are abbreviated as MACHINE. These include certain medications such as ACE inhibitors and NSAIDs, acidosis (both metabolic and respiratory), cellular destruction due to burns or traumatic injury, hypoaldosteronism, excessive intake of potassium, nephrons, and renal failure, and impaired excretion of potassium. Additionally, familial periodic paralysis can have subtypes that are associated with either hyperkalemia or hypokalemia.
Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.
There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.
It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.
-
This question is part of the following fields:
- Renal System
-
-
Question 26
Correct
-
An 81-year-old patient has presented to their physician with episodes of syncope and lightheadedness triggered by activities such as shaving or wearing a shirt with a collar. The patient also reports a change in their sense of taste. During the examination, the physician feels the patient's carotid pulse, which triggers another lightheaded episode. The patient's vital signs are taken immediately, revealing a heart rate of 36 bpm, blood pressure of 60/42 mmHg, sats of 96%, and a temperature of 36.7ºC. The physician suspects carotid sinus syndrome and wonders which cranial nerve is responsible for the hypersensitive response in this scenario.
Your Answer: Glossopharyngeal nerve (CN IX)
Explanation:Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 27
Incorrect
-
What is the leading cause of pneumonia affecting both lungs?
Your Answer: Streptococcus pneumoniae
Correct Answer: Adenoviruses
Explanation:Causes of Bilateral Pneumonia
Bilateral pneumonia, which is the inflammation of both lungs, can be caused by various factors. The most common cause of this condition is viral infection, particularly upper respiratory tract viruses such as adenoviruses or rhinoviruses. This type of infection usually results in patchy bilateral central/perihilar shadowing on x-ray, rather than lobar consolidation.
On the other hand, bacterial pneumonia, which is caused by pneumococcus or Streptococcus pneumoniae, typically results in the consolidation of a single lobe. Although bilateral infection can occur, it is less common than unilateral infection.
The human herpes viruses (HHV) are a group of eight viruses that can cause different conditions, including pneumonia. Varicella zoster virus (VZV) is one of the HHV that can cause severe pneumonia, especially in pregnant women. However, this type of pneumonia is relatively rare.
Primary TB, which initially affects a single lung, can also cause bilateral changes if the disease becomes more disseminated. Lastly, Mycoplasma pneumoniae can cause atypical pneumonia, which often includes bilateral opacification on x-ray. However, this type of pneumonia is less common than viral causes of bilateral pneumonia.
-
This question is part of the following fields:
- Microbiology
-
-
Question 28
Incorrect
-
A mother brings her 6-year-old daughter to the doctor's office. She has been researching online and is worried that her child may have a deficiency in vitamin B2 (riboflavin). What signs or symptoms would indicate a diagnosis of riboflavin deficiency?
Your Answer: Haemarthrosis
Correct Answer: Angular stomatitis and cheilosis
Explanation:Isolated Riboflavin Deficiency
Isolated riboflavin deficiency is a rare occurrence, as it is more common to have a deficiency of multiple B vitamins. Riboflavin plays a crucial role in the normal function of vitamins B3 (niacin) and B6 (pyridoxine), which can cause overlapping clinical features with deficiencies of B3 and B6.
When an individual experiences isolated riboflavin deficiency, they may suffer from various symptoms. These symptoms include itchy, greasy, and inflamed skin, angular stomatitis (cracking at the edge of the mouth), cheilosis (cracked lips), excessive light sensitivity with red and painful eyes, fatigue, and depression.
It is important to note that riboflavin deficiency can be prevented by consuming a balanced diet that includes foods rich in B vitamins, such as whole grains, dairy products, and leafy green vegetables. If an individual suspects they may have a riboflavin deficiency, they should consult with a healthcare professional for proper diagnosis and treatment.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 29
Incorrect
-
A 50-year-old female presents to her GP with complaints of shortness of breath and weakness during mild-moderate exercise. She reports that these episodes have been getting progressively worse and now often result in dizziness. The patient has no significant medical history but was a previous smoker for 15 years, smoking 15 cigarettes per day. Spirometry testing reveals a restrictive lung pattern. What is the most probable diagnosis?
Your Answer: Chronic obstructive pulmonary disease (COPD)
Correct Answer: Myasthenia gravis
Explanation:Myasthenia gravis can result in a restrictive pattern of lung disease due to weakness of the respiratory muscles, which causes difficulty in breathing air in. Asthma and COPD are incorrect as they cause an obstructive pattern on spirometry, with asthma being characterized by small bronchiole obstruction from inflammation and increased mucus production, and COPD causing small airway inflammation and emphysema that restricts outward airflow. Alpha-1 antitrypsin deficiency also leads to an obstructive pattern, as it results in pulmonary tissue degradation and panlobular emphysema.
Understanding the Differences between Obstructive and Restrictive Lung Diseases
Obstructive and restrictive lung diseases are two distinct categories of respiratory conditions that affect the lungs in different ways. Obstructive lung diseases are characterized by a reduction in the flow of air through the airways due to narrowing or blockage, while restrictive lung diseases are characterized by a decrease in lung volume or capacity, making it difficult to breathe in enough air.
Spirometry is a common diagnostic tool used to differentiate between obstructive and restrictive lung diseases. In obstructive lung diseases, the ratio of forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) is less than 80%, indicating a reduced ability to exhale air. In contrast, restrictive lung diseases are characterized by an FEV1/FVC ratio greater than 80%, indicating a reduced ability to inhale air.
Examples of obstructive lung diseases include chronic obstructive pulmonary disease (COPD), chronic bronchitis, and emphysema, while asthma and bronchiectasis are also considered obstructive. Restrictive lung diseases include intrapulmonary conditions such as idiopathic pulmonary fibrosis, extrinsic allergic alveolitis, and drug-induced fibrosis, as well as extrapulmonary conditions such as neuromuscular diseases, obesity, and scoliosis.
Understanding the differences between obstructive and restrictive lung diseases is important for accurate diagnosis and appropriate treatment. While both types of conditions can cause difficulty breathing, the underlying causes and treatment approaches can vary significantly.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 30
Incorrect
-
A 58-year-old man, previously diagnosed with small cell lung cancer, visits his GP complaining of a recent onset headache, nausea, and vomiting that have been worsening over the past week. He reports feeling dizzy when the headache starts and an unusual increase in appetite, resulting in weight gain. Despite his history of little appetite due to his lung cancer, he has been insatiable lately. Which part of the hypothalamus is likely affected by the metastasis of his lung cancer, causing these symptoms?
Your Answer: Paraventricular nucleus
Correct Answer: Ventromedial nucleus
Explanation:The ventromedial nucleus of the hypothalamus is responsible for regulating satiety, and therefore, damage to this area can result in hyperphagia.
The posterior nucleus plays a role in stimulating the sympathetic nervous system and body heat, and lesions in this area can lead to autonomic dysfunction and poikilothermia.
The lateral nucleus is responsible for stimulating appetite, and damage to this area can cause a decrease in appetite and anorexia.
The paraventricular nucleus produces oxytocin and ADH, and lesions in this area can result in diabetes insipidus.
The dorsomedial nucleus is responsible for stimulating aggressive behavior and can lead to savage behavior if damaged.
The hypothalamus is a part of the brain that plays a crucial role in maintaining the body’s internal balance, or homeostasis. It is located in the diencephalon and is responsible for regulating various bodily functions. The hypothalamus is composed of several nuclei, each with its own specific function. The anterior nucleus, for example, is involved in cooling the body by stimulating the parasympathetic nervous system. The lateral nucleus, on the other hand, is responsible for stimulating appetite, while lesions in this area can lead to anorexia. The posterior nucleus is involved in heating the body and stimulating the sympathetic nervous system, and damage to this area can result in poikilothermia. Other nuclei include the septal nucleus, which regulates sexual desire, the suprachiasmatic nucleus, which regulates circadian rhythm, and the ventromedial nucleus, which is responsible for satiety. Lesions in the paraventricular nucleus can lead to diabetes insipidus, while lesions in the dorsomedial nucleus can result in savage behavior.
-
This question is part of the following fields:
- Neurological System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)