00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A 62-year-old man experiences a stroke caused by a ruptured berry aneurysm in...

    Correct

    • A 62-year-old man experiences a stroke caused by a ruptured berry aneurysm in the middle cerebral artery, resulting in damage to the temporal lobe. What tests would you anticipate to show abnormalities?

      Your Answer: Copying intersecting pentagons

      Explanation:

      When the parietal lobe is not functioning properly, it can cause constructional apraxia. This condition makes it difficult for individuals to replicate the intersecting pentagons, which is a common cognitive test included in Folstein’s mini-mental state examination.

    • This question is part of the following fields:

      • Neurosciences
      5.6
      Seconds
  • Question 2 - An EEG analysis indicates the presence of a mass in the brain. What...

    Incorrect

    • An EEG analysis indicates the presence of a mass in the brain. What were the observed wave patterns?

      Your Answer: Alpha activity (α)

      Correct Answer: Delta activity (δ)

      Explanation:

      While alpha (α) and beta (β) activity are typical in adults who are awake and at rest, delta activity (δ) may suggest the presence of a brain tumor. Mu (μ) activity is linked to movement, and theta activity (θ) is uncommon in the waking adult population, occurring briefly in only 15% of individuals.

    • This question is part of the following fields:

      • Neurosciences
      25.6
      Seconds
  • Question 3 - What is true about the pathology of Alzheimer's disease? ...

    Incorrect

    • What is true about the pathology of Alzheimer's disease?

      Your Answer: Neurofibrillary tangles are pathognomonic of Alzheimer's

      Correct Answer: Enlargement of the inferior horn of the lateral ventricle is seen

      Explanation:

      Normal ageing can exhibit both neurofibrillary tangles and senile plaques, while Alzheimer’s disease typically shows atrophy in the frontal, parietal, and medial temporal lobes.

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      12.6
      Seconds
  • Question 4 - Which process breaks down dopamine? ...

    Correct

    • Which process breaks down dopamine?

      Your Answer: COMT, MAO-B and MAO-A

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      5.4
      Seconds
  • Question 5 - What is the embryonic structure that gives rise to the cerebellum and pons?...

    Incorrect

    • What is the embryonic structure that gives rise to the cerebellum and pons?

      Your Answer: Mesencephalon

      Correct Answer: Metencephalon

      Explanation:

      During fetal development, the neural tube at the cranial end gives rise to three major parts: the prosencephalon, mesencephalon, and rhombencephalon. The prosencephalon further divides into the telencephalon and diencephalon, forming the forebrain. The mesencephalon forms the midbrain, while the rhombencephalon splits into the metencephalon (which gives rise to the cerebellum and pons) and myelencephalon (which forms the medulla oblongata and spinal cord).

    • This question is part of the following fields:

      • Neurosciences
      16.7
      Seconds
  • Question 6 - Which type of apraxia is indicated when a patient is unable to fold...

    Incorrect

    • Which type of apraxia is indicated when a patient is unable to fold a piece of paper with their non-dominant hand and place it on a table during a mini mental state examination?

      Your Answer:

      Correct Answer: Ideational

      Explanation:

      If a patient is unable to complete a task that requires a sequence of steps, they are exhibiting ideational apraxia. On the other hand, if they struggle to perform a task that they have previously learned, such as attempting to brush their teeth with a pencil, this is an example of ideomotor apraxia.

      Apraxia: Understanding the Inability to Carry Out Learned Voluntary Movements

      Apraxia is a neurological condition that affects a person’s ability to carry out learned voluntary movements. It is important to note that this condition assumes that everything works and the person is not paralyzed. There are different types of apraxia, each with its own set of symptoms and characteristics.

      Limb kinetic apraxia is a type of apraxia that affects a person’s ability to make fine of delicate movements. This can include tasks such as buttoning a shirt of tying shoelaces.

      Ideomotor apraxia, on the other hand, is an inability to carry out learned tasks when given the necessary objects. For example, a person with ideomotor apraxia may try to write with a hairbrush instead of using it to brush their hair.

      Constructional apraxia affects a person’s ability to copy a picture of combine parts of something to form a whole. This can include tasks such as building a puzzle of drawing a picture.

      Ideational apraxia is an inability to follow a sequence of actions in the correct order. For example, a person with ideational apraxia may struggle to take a match out of a box and strike it with their left hand.

      Finally, oculomotor apraxia affects a person’s ability to control eye movements. This can make it difficult for them to track moving objects of read smoothly.

      Overall, apraxia can have a significant impact on a person’s ability to carry out everyday tasks. However, with the right support and treatment, many people with apraxia are able to improve their abilities and maintain their independence.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 7 - Which of the following is not an example of glial cells? ...

    Incorrect

    • Which of the following is not an example of glial cells?

      Your Answer:

      Correct Answer: Purkinje cells

      Explanation:

      The initial exam question erroneously included neurons as a potential answer instead of Purkinje cells. However, this was deemed too simplistic and was subsequently revised. It is important to note that glial cells serve as support cells for neurons, whereas Purkinje cells are a specific type of neuron and therefore cannot be classified as glial cells.

      Glial Cells: The Support System of the Central Nervous System

      The central nervous system is composed of two basic cell types: neurons and glial cells. Glial cells, also known as support cells, play a crucial role in maintaining the health and function of neurons. There are several types of glial cells, including macroglia (astrocytes and oligodendrocytes), ependymal cells, and microglia.

      Astrocytes are the most abundant type of glial cell and have numerous functions, such as providing structural support, repairing nervous tissue, nourishing neurons, contributing to the blood-brain barrier, and regulating neurotransmission and blood flow. There are two main types of astrocytes: protoplasmic and fibrous.

      Oligodendrocytes are responsible for the formation of myelin sheaths, which insulate and protect axons, allowing for faster and more efficient transmission of nerve impulses.

      Ependymal cells line the ventricular system and are involved in the circulation of cerebrospinal fluid (CSF) and fluid homeostasis in the brain. Specialized ependymal cells called choroid plexus cells produce CSF.

      Microglia are the immune cells of the CNS and play a crucial role in protecting the brain from infection and injury. They also contribute to the maintenance of neuronal health and function.

      In summary, glial cells are essential for the proper functioning of the central nervous system. They provide structural support, nourishment, insulation, and immune defense to neurons, ensuring the health and well-being of the brain and spinal cord.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 8 - In which part of the body is the nucleus of Meynert situated? ...

    Incorrect

    • In which part of the body is the nucleus of Meynert situated?

      Your Answer:

      Correct Answer: Substantia innominata

      Explanation:

      The nucleus of Meynert, located in the substantia innominata of the basal forebrain beneath the thalamus and lentiform nucleus, is a cluster of neurons that serves as the primary source of acetylcholine in the brain. In Alzheimer’s disease, the nucleus of Meynert undergoes atrophy, resulting in a decrease in acetylcholine levels. This explains why cholinesterase inhibitors, which increase acetylcholine levels, are effective in treating Alzheimer’s.

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 9 - In which type of condition of disease are Hirano bodies commonly observed? ...

    Incorrect

    • In which type of condition of disease are Hirano bodies commonly observed?

      Your Answer:

      Correct Answer: Hippocampus

      Explanation:

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 10 - What is a true statement about the cingulate gyrus? ...

    Incorrect

    • What is a true statement about the cingulate gyrus?

      Your Answer:

      Correct Answer: It is involved in reward-based decision making

      Explanation:

      The fusiform gyrus is essential for recognizing faces and bodies, while damage to the angular gyrus can result in Gerstmann syndrome.

      The Cingulate Gyrus: A Hub for Emotions and Decision Making

      The cingulate gyrus is a cortical fold located on the medial aspect of the cerebral hemisphere, adjacent to the corpus callosum. As part of the limbic system, it plays a crucial role in processing emotions and regulating the body’s endocrine and autonomic responses to emotional stimuli. Additionally, it is involved in reward-based decision making. Essentially, the cingulate gyrus acts as a hub that connects emotions, sensations, and actions. The term cingulate comes from the Latin word for belt of girdle, which reflects the way in which it wraps around the corpus callosum.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 11 - Which of the options below is not classified as a type of motor...

    Incorrect

    • Which of the options below is not classified as a type of motor neuron disease?

      Your Answer:

      Correct Answer: Multisystem atrophy

      Explanation:

      Motor neuron Disease: A Progressive Neurodegenerative Condition

      Motor neuron Disease (MND) is a condition that progressively damages the upper and lower motor neurons. This damage leads to muscle weakness and wasting, resulting in a loss of mobility in the limbs, as well as difficulties with speech, swallowing, and breathing. MND can be classified into four main types, including Amyotrophic lateral sclerosis, Progressive bulbar palsy, Progressive muscular atrophy, and Primary lateral sclerosis.

      Macroscopic pathological features of MND include atrophy of the precentral gyrus and frontotemporal regions, thinning of the spinal cord, and atrophic anterior nerve roots. Microscopic changes involve the loss of motor neurons from the ventral horn of the spinal cord and lower brainstem. MND is a devastating condition that currently has no cure, and treatment is focused on managing symptoms and improving quality of life for those affected.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 12 - Which receptor is most likely to cause a feeling of nausea when stimulated?...

    Incorrect

    • Which receptor is most likely to cause a feeling of nausea when stimulated?

      Your Answer:

      Correct Answer: 5HT-3

      Explanation:

      Serotonin (5-hydroxytryptamine, 5-HT) receptors are primarily G protein receptors, except for 5-HT3, which is a ligand-gated receptor. It is important to remember that 5-HT3 is most commonly associated with nausea. Additionally, 5-HT7 is linked to circadian rhythms. The stimulation of 5-HT2 receptors is believed to be responsible for the side effects of insomnia, agitation, and sexual dysfunction that are associated with the use of selective serotonin reuptake inhibitors (SSRIs).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 13 - What is a true statement about neurofibrillary tangles? ...

    Incorrect

    • What is a true statement about neurofibrillary tangles?

      Your Answer:

      Correct Answer: They are composed of Tau protein

      Explanation:

      Neurofibrillary tangles consist of insoluble clumps of Tau protein, which are made up of multiple strands. Since Tau is a microtubule-associated protein that plays a role in the structural processes of neurons, these tangles are always found within the cell.

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 14 - What is the condition that occurs when there is a loss of dopaminergic...

    Incorrect

    • What is the condition that occurs when there is a loss of dopaminergic cells in the substantia nigra?

      Your Answer:

      Correct Answer: Parkinson's disease

      Explanation:

      The Basal Ganglia: Functions and Disorders

      The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.

      The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.

      However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.

      In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 15 - What is a substance that activates GABA-B receptors called? ...

    Incorrect

    • What is a substance that activates GABA-B receptors called?

      Your Answer:

      Correct Answer: Baclofen

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 16 - Which condition is most commonly associated with Klüver-Bucy syndrome? ...

    Incorrect

    • Which condition is most commonly associated with Klüver-Bucy syndrome?

      Your Answer:

      Correct Answer: Alzheimer's disease

      Explanation:

      Kluver-Bucy Syndrome: Causes and Symptoms

      Kluver-Bucy syndrome is a neurological disorder that results from bilateral medial temporal lobe dysfunction, particularly in the amygdala. This condition is characterized by a range of symptoms, including hyperorality (a tendency to explore objects with the mouth), hypersexuality, docility, visual agnosia, and dietary changes.

      The most common causes of Kluver-Bucy syndrome include herpes, late-stage Alzheimer’s disease, frontotemporal dementia, trauma, and bilateral temporal lobe infarction. In some cases, the condition may be reversible with treatment, but in others, it may be permanent and require ongoing management. If you of someone you know is experiencing symptoms of Kluver-Bucy syndrome, it is important to seek medical attention promptly to determine the underlying cause and develop an appropriate treatment plan.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 17 - Which lobe of the brain is responsible for causing Gerstmann's syndrome when it...

    Incorrect

    • Which lobe of the brain is responsible for causing Gerstmann's syndrome when it malfunctions?

      Your Answer:

      Correct Answer: Dominant parietal

      Explanation:

      Parietal Lobe Dysfunction: Types and Symptoms

      The parietal lobe is a part of the brain that plays a crucial role in processing sensory information and integrating it with other cognitive functions. Dysfunction in this area can lead to various symptoms, depending on the location and extent of the damage.

      Dominant parietal lobe dysfunction, often caused by a stroke, can result in Gerstmann’s syndrome, which includes finger agnosia, dyscalculia, dysgraphia, and right-left disorientation. Non-dominant parietal lobe dysfunction, on the other hand, can cause anosognosia, dressing apraxia, spatial neglect, and constructional apraxia.

      Bilateral damage to the parieto-occipital lobes, a rare condition, can lead to Balint’s syndrome, which is characterized by oculomotor apraxia, optic ataxia, and simultanagnosia. These symptoms can affect a person’s ability to shift gaze, interact with objects, and perceive multiple objects at once.

      In summary, parietal lobe dysfunction can manifest in various ways, and understanding the specific symptoms can help diagnose and treat the underlying condition.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 18 - What substance belongs to the category of catecholamines? ...

    Incorrect

    • What substance belongs to the category of catecholamines?

      Your Answer:

      Correct Answer: Dopamine

      Explanation:

      Catecholamines are a group of chemical compounds that have a distinct structure consisting of a benzene ring with two hydroxyl groups, an intermediate ethyl chain, and a terminal amine group. These compounds play an important role in the body and are involved in various physiological processes. The three main catecholamines found in the body are dopamine, adrenaline, and noradrenaline. All of these compounds are derived from the amino acid tyrosine. Overall, catecholamines are essential for maintaining proper bodily functions and are involved in a wide range of physiological processes.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 19 - What substance precedes the production of serotonin? ...

    Incorrect

    • What substance precedes the production of serotonin?

      Your Answer:

      Correct Answer: 5-hydroxytryptophan

      Explanation:

      Serotonin: Synthesis and Breakdown

      Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.

      The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.

      Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 20 - A 70-year-old patient presents with gait instability, urinary incontinence, and memory impairment. What...

    Incorrect

    • A 70-year-old patient presents with gait instability, urinary incontinence, and memory impairment. What is the most likely diagnosis?

      Your Answer:

      Correct Answer: Normal pressure hydrocephalus

      Explanation:

      Normal Pressure Hydrocephalus

      Normal pressure hydrocephalus is a type of chronic communicating hydrocephalus, which occurs due to the impaired reabsorption of cerebrospinal fluid (CSF) by the arachnoid villi. Although the CSF pressure is typically high, it remains within the normal range, and therefore, it does not cause symptoms of high intracranial pressure (ICP) such as headache and nausea. Instead, patients with normal pressure hydrocephalus usually present with a classic triad of symptoms, including incontinence, gait ataxia, and dementia, which is often referred to as wet, wobbly, and wacky. Unfortunately, this condition is often misdiagnosed as Parkinson’s of Alzheimer’s disease.

      The classic triad of normal pressure hydrocephalus, also known as Hakim’s triad, includes gait instability, urinary incontinence, and dementia. On the other hand, non-communicating hydrocephalus results from the obstruction of CSF flow in the third of fourth ventricle, which causes symptoms of raised intracranial pressure, such as headache, vomiting, hypertension, bradycardia, altered consciousness, and papilledema.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 21 - What is the primary neurotransmitter responsible for excitatory signals in the brain? ...

    Incorrect

    • What is the primary neurotransmitter responsible for excitatory signals in the brain?

      Your Answer:

      Correct Answer: Glutamate

      Explanation:

      Glutamate is the primary neurotransmitter responsible for excitatory signaling in the brain.

      Glutamate: The Most Abundant Neurotransmitter in the Brain

      Glutamate is a neurotransmitter that is found in abundance in the brain. It is always excitatory and can act through both ionotropic and metabotropic receptors. This neurotransmitter is believed to play a crucial role in learning and memory processes. Its ability to stimulate neurons and enhance synaptic plasticity is thought to be responsible for its role in memory formation. Glutamate is also involved in various other brain functions, including motor control, sensory perception, and emotional regulation. Its importance in the brain makes it a target for various neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and epilepsy.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 22 - What structure's reduced asymmetry has been linked to schizophrenia? ...

    Incorrect

    • What structure's reduced asymmetry has been linked to schizophrenia?

      Your Answer:

      Correct Answer: Planum temporale

      Explanation:

      Schizophrenia is a pathology that is characterized by a number of structural and functional brain alterations. Structural alterations include enlargement of the ventricles, reductions in total brain and gray matter volume, and regional reductions in the amygdala, parahippocampal gyrus, and temporal lobes. Antipsychotic treatment may be associated with gray matter loss over time, and even drug-naïve patients show volume reductions. Cerebral asymmetry is also reduced in affected individuals and healthy relatives. Functional alterations include diminished activation of frontal regions during cognitive tasks and increased activation of temporal regions during hallucinations. These findings suggest that schizophrenia is associated with both macroscopic and functional changes in the brain.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 23 - In what circumstances are neurofibrillary tangles less commonly observed? ...

    Incorrect

    • In what circumstances are neurofibrillary tangles less commonly observed?

      Your Answer:

      Correct Answer: Vascular dementia

      Explanation:

      Tauopathies exhibit tangles, but vascular dementia is not classified as one.

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 24 - Which symptom is most commonly associated with occlusion of the anterior cerebral artery?...

    Incorrect

    • Which symptom is most commonly associated with occlusion of the anterior cerebral artery?

      Your Answer:

      Correct Answer: Transcortical motor aphasia

      Explanation:

      Brain Blood Supply and Consequences of Occlusion

      The brain receives blood supply from the internal carotid and vertebral arteries, which form the circle of Willis. The circle of Willis acts as a shunt system in case of vessel damage. The three main vessels arising from the circle are the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA). Occlusion of these vessels can result in various neurological deficits. ACA occlusion may cause hemiparesis of the contralateral foot and leg, sensory loss, and frontal signs. MCA occlusion is the most common and can lead to hemiparesis, dysphasia/aphasia, neglect, and visual field defects. PCA occlusion may cause alexia, loss of sensation, hemianopia, prosopagnosia, and cranial nerve defects. It is important to recognize these consequences to provide appropriate treatment.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 25 - What is divided by the Sylvian fissure? ...

    Incorrect

    • What is divided by the Sylvian fissure?

      Your Answer:

      Correct Answer: The frontal and parietal lobes from the temporal lobe

      Explanation:

      The temporal lobe is separated from the frontal and parietal lobes by the Sylvian fissure.

      The Cerebral Cortex and Neocortex

      The cerebral cortex is the outermost layer of the cerebral hemispheres and is composed of three parts: the archicortex, paleocortex, and neocortex. The neocortex accounts for 90% of the cortex and is involved in higher functions such as thought and language. It is divided into 6-7 layers, with two main cell types: pyramidal cells and nonpyramidal cells. The surface of the neocortex is divided into separate areas, each given a number by Brodmann (e.g. Brodmann’s area 17 is the primary visual cortex). The surface is folded to increase surface area, with grooves called sulci and ridges called gyri. The neocortex is responsible for higher cognitive functions and is essential for human consciousness.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 26 - What is the accurate statement about night terrors in children? ...

    Incorrect

    • What is the accurate statement about night terrors in children?

      Your Answer:

      Correct Answer: Violent behaviour has been reported

      Explanation:

      Night terrors typically occur during deep sleep in stage 4. Upon waking, there is no memory of the experience. These episodes can be considered a dissociative state and may involve automatic behaviors. In some cases, violent behavior may occur during night terrors, but the individual cannot be held accountable for their actions. Family history is not a common factor in the occurrence of night terrors.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 27 - Which substance is secreted by the paraventricular nucleus during the stress response? ...

    Incorrect

    • Which substance is secreted by the paraventricular nucleus during the stress response?

      Your Answer:

      Correct Answer: Corticotropin-releasing hormone

      Explanation:

      When under stress, the paraventricular nucleus of the hypothalamus releases two hormones: corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP).

      HPA Axis Dysfunction in Mood Disorders

      The HPA axis, which includes regulatory neural inputs and a feedback loop involving the hypothalamus, pituitary, and adrenal glands, plays a central role in the stress response. Excessive secretion of cortisol, a glucocorticoid hormone, can lead to disruptions in cellular functioning and widespread physiologic dysfunction. Dysregulation of the HPA axis is implicated in mood disorders such as depression and bipolar affective disorder.

      In depressed patients, cortisol levels often do not decrease as expected in response to the administration of dexamethasone, a synthetic corticosteroid. This abnormality in the dexamethasone suppression test is thought to be linked to genetic of acquired defects of glucocorticoid receptors. Tricyclic antidepressants have been shown to increase expression of glucocorticoid receptors, whereas this is not the case for SSRIs.

      Early adverse experiences can produce long standing changes in HPA axis regulation, indicating a possible neurobiological mechanism whereby childhood trauma could be translated into increased vulnerability to mood disorder. In major depression, there is hypersecretion of cortisol, corticotropin-releasing factor (CRF), and ACTH, and associated adrenocortical enlargement. HPA abnormalities have also been found in other psychiatric disorders including Alzheimer’s and PTSD.

      In bipolar disorder, dysregulation of ACTH and cortisol response after CRH stimulation have been reported. Abnormal DST results are found more often during depressive episodes in the course of bipolar disorder than in unipolar disorder. Reduced pituitary volume secondary to LHPA stimulation, resulting in pituitary hypoactivity, has been observed in bipolar patients.

      Overall, HPA axis dysfunction is implicated in mood disorders, and understanding the underlying mechanisms may lead to new opportunities for treatments.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 28 - Which receptors are affected by fluoxetine that are believed to be responsible for...

    Incorrect

    • Which receptors are affected by fluoxetine that are believed to be responsible for causing insomnia?

      Your Answer:

      Correct Answer: 5-HT2

      Explanation:

      Serotonin (5-hydroxytryptamine, 5-HT) receptors are primarily G protein receptors, except for 5-HT3, which is a ligand-gated receptor. It is important to remember that 5-HT3 is most commonly associated with nausea. Additionally, 5-HT7 is linked to circadian rhythms. The stimulation of 5-HT2 receptors is believed to be responsible for the side effects of insomnia, agitation, and sexual dysfunction that are associated with the use of selective serotonin reuptake inhibitors (SSRIs).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 29 - An individual's EEG shows widespread flattening with the existence of theta (θ) and...

    Incorrect

    • An individual's EEG shows widespread flattening with the existence of theta (θ) and delta (δ) waves of low amplitude. What is the most probable diagnosis based on this information?

      Your Answer:

      Correct Answer: Huntington's disease

      Explanation:

      The EEG findings for Huntington’s disease typically show a widespread decrease in activity with low amplitude theta (θ) and delta (δ) waves. In contrast, CJD is characterized by bilateral, synchronous generalised irregular spike wave complexes occurring at a rate of 1-2/second, often accompanied by myoclonic jerks. Hepatic encephalopathy is associated with widespread slowing and triphasic waves, while herpes simplex encephalitis is linked to repetitive episodic discharges and temporal lobe focal slow waves. HIV typically demonstrates diffuse slowing on EEG.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 30 - What is the accurate statement about the pathology of schizophrenia? ...

    Incorrect

    • What is the accurate statement about the pathology of schizophrenia?

      Your Answer:

      Correct Answer: Brain volume of affected individuals is often reduced

      Explanation:

      While ventricular enlargement is often observed in individuals with schizophrenia, it is not a definitive indicator of the condition as it can also be present in other disorders.

      Schizophrenia is a pathology that is characterized by a number of structural and functional brain alterations. Structural alterations include enlargement of the ventricles, reductions in total brain and gray matter volume, and regional reductions in the amygdala, parahippocampal gyrus, and temporal lobes. Antipsychotic treatment may be associated with gray matter loss over time, and even drug-naïve patients show volume reductions. Cerebral asymmetry is also reduced in affected individuals and healthy relatives. Functional alterations include diminished activation of frontal regions during cognitive tasks and increased activation of temporal regions during hallucinations. These findings suggest that schizophrenia is associated with both macroscopic and functional changes in the brain.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 31 - Through which opening in the skull does the cranial nerve exit, which is...

    Incorrect

    • Through which opening in the skull does the cranial nerve exit, which is known as the internal auditory canal?

      Your Answer:

      Correct Answer: Vestibulocochlear (VIII)

      Explanation:

      Overview of Cranial Nerves and Their Functions

      The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.

      The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.

      The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.

      The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.

      The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.

      The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.

      The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.

      The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 32 - Which feature is not very useful in distinguishing between Parkinson's disease and progressive...

    Incorrect

    • Which feature is not very useful in distinguishing between Parkinson's disease and progressive supranuclear palsy?

      Your Answer:

      Correct Answer: Pallor of the substantia nigra

      Explanation:

      Both conditions exhibit pallor of the substantia nigra. However, in PSP, the locus coeruleus is typically unaffected, whereas in Parkinson’s disease, it shows pallor. Therefore, if there is pallor in this area, it would indicate Parkinson’s disease.

      Pathology of Progressive Supranuclear Palsy

      Progressive supranuclear palsy is a rare disorder that affects gait and balance, often accompanied by changes in mood, behavior, and dementia. The macroscopic changes observed in this condition include pallor of the substantia nigra (with sparing of the locus coeruleus), mild midbrain atrophy, atrophy of the superior cerebellar peduncles, and discolouration of the dentate nucleus. On a microscopic level, gliosis and the presence of neurofibrillary tangles and tau inclusions in both astrocytes and oligodendrocytes (coiled bodies) are observed, particularly in the substantia nigra, subthalamic nucleus, and globus pallidus.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 33 - What is the most probable outcome of damage to Broca's area? ...

    Incorrect

    • What is the most probable outcome of damage to Broca's area?

      Your Answer:

      Correct Answer: Non-fluent aphasia

      Explanation:

      Broca’s aphasia is also known as non-fluent aphasia, while Wernicke’s aphasia is referred to as fluent aphasia.

      Broca’s and Wernicke’s are two types of expressive dysphasia, which is characterized by difficulty producing speech despite intact comprehension. Dysarthria is a type of expressive dysphasia caused by damage to the speech production apparatus, while Broca’s aphasia is caused by damage to the area of the brain responsible for speech production, specifically Broca’s area located in Brodmann areas 44 and 45. On the other hand, Wernicke’s aphasia is a type of receptive of fluent aphasia caused by damage to the comprehension of speech, while the actual production of speech remains normal. Wernicke’s area is located in the posterior part of the superior temporal gyrus in the dominant hemisphere, within Brodmann area 22.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 34 - Which statement about the glossopharyngeal nerve is false? ...

    Incorrect

    • Which statement about the glossopharyngeal nerve is false?

      Your Answer:

      Correct Answer: Controls the muscles of mastication

      Explanation:

      The trigeminal nerve is responsible for controlling the muscles involved in chewing, while the glossopharyngeal nerves consist of both motor and sensory fibers that originate from nuclei in the medulla oblongata. The motor fibers of the glossopharyngeal nerves stimulate the pharyngeal muscles and parotid gland secretory cells, while the sensory fibers transmit impulses from the posterior third of the tongue, tonsils, and pharynx to the cerebral cortex.

      Overview of Cranial Nerves and Their Functions

      The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.

      The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.

      The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.

      The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.

      The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.

      The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.

      The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.

      The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 35 - Which artery is likely to be affected if a patient is unable to...

    Incorrect

    • Which artery is likely to be affected if a patient is unable to read but can still write after experiencing a stroke?

      Your Answer:

      Correct Answer: Left posterior cerebral

      Explanation:

      An infarction to the left posterior cerebral artery typically results in pure alexia, also known as alexia without agraphia, which is characterized by the inability to read but the ability to write.

      Brain Blood Supply and Consequences of Occlusion

      The brain receives blood supply from the internal carotid and vertebral arteries, which form the circle of Willis. The circle of Willis acts as a shunt system in case of vessel damage. The three main vessels arising from the circle are the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA). Occlusion of these vessels can result in various neurological deficits. ACA occlusion may cause hemiparesis of the contralateral foot and leg, sensory loss, and frontal signs. MCA occlusion is the most common and can lead to hemiparesis, dysphasia/aphasia, neglect, and visual field defects. PCA occlusion may cause alexia, loss of sensation, hemianopia, prosopagnosia, and cranial nerve defects. It is important to recognize these consequences to provide appropriate treatment.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 36 - What condition has been associated with decreased small interneurons in cortical layer II...

    Incorrect

    • What condition has been associated with decreased small interneurons in cortical layer II of the prefrontal cortex, which are believed to be related to the GABA system?

      Your Answer:

      Correct Answer: Schizophrenia

      Explanation:

      The key to answering this question is identifying that it pertains to the prefrontal cortex, which is strongly linked to schizophrenia. Other conditions that are associated with abnormalities in this region include ADHD and bipolar disorder. Schizophrenia is characterized by changes in GABA function, including both release and uptake. Additionally, a decrease in small interneurons in cortical layer II of the prefrontal cortex is believed to contribute to these alterations. Sedvall’s 2002 work on the pathophysiological mechanisms of schizophrenia provides further insight into these issues.

      Schizophrenia is a pathology that is characterized by a number of structural and functional brain alterations. Structural alterations include enlargement of the ventricles, reductions in total brain and gray matter volume, and regional reductions in the amygdala, parahippocampal gyrus, and temporal lobes. Antipsychotic treatment may be associated with gray matter loss over time, and even drug-naïve patients show volume reductions. Cerebral asymmetry is also reduced in affected individuals and healthy relatives. Functional alterations include diminished activation of frontal regions during cognitive tasks and increased activation of temporal regions during hallucinations. These findings suggest that schizophrenia is associated with both macroscopic and functional changes in the brain.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 37 - What is a true statement about sigma waves in relation to EEG? ...

    Incorrect

    • What is a true statement about sigma waves in relation to EEG?

      Your Answer:

      Correct Answer: They are absent in familial fatal insomnia

      Explanation:

      Sigma waves are typically observed during stage 2 sleep and are considered a normal occurrence during sleep. They usually follow muscle twitches and are believed to help maintain a peaceful state during sleep. These waves are produced in the reticular nucleus of the thalamus and arise from the interplay between the thalamus and the cortex. However, in familial fatal insomnia (a prion disease), the absence of sigma waves is a characteristic feature.

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 38 - What is the function of the Nissl substance within a neuron? ...

    Incorrect

    • What is the function of the Nissl substance within a neuron?

      Your Answer:

      Correct Answer: Protein synthesis

      Explanation:

      Melanin

      Melanin is a pigment found in various parts of the body, including the skin, hair, and eyes. It is produced by specialized cells called melanocytes, which are located in the skin’s basal layer. The function of melanin in the body is not fully understood, but it is thought to play a role in protecting the skin from the harmful effects of ultraviolet (UV) radiation from the sun. Additionally, melanin may be a by-product of neurotransmitter synthesis, although this function is not well established. Overall, the role of melanin in the body is an area of ongoing research.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 39 - Which feature is not associated with Gerstmann's syndrome? ...

    Incorrect

    • Which feature is not associated with Gerstmann's syndrome?

      Your Answer:

      Correct Answer: Anosognosia

      Explanation:

      Non-dominant parietal lobe dysfunction is indicated by the presence of anosognosia.

      Parietal Lobe Dysfunction: Types and Symptoms

      The parietal lobe is a part of the brain that plays a crucial role in processing sensory information and integrating it with other cognitive functions. Dysfunction in this area can lead to various symptoms, depending on the location and extent of the damage.

      Dominant parietal lobe dysfunction, often caused by a stroke, can result in Gerstmann’s syndrome, which includes finger agnosia, dyscalculia, dysgraphia, and right-left disorientation. Non-dominant parietal lobe dysfunction, on the other hand, can cause anosognosia, dressing apraxia, spatial neglect, and constructional apraxia.

      Bilateral damage to the parieto-occipital lobes, a rare condition, can lead to Balint’s syndrome, which is characterized by oculomotor apraxia, optic ataxia, and simultanagnosia. These symptoms can affect a person’s ability to shift gaze, interact with objects, and perceive multiple objects at once.

      In summary, parietal lobe dysfunction can manifest in various ways, and understanding the specific symptoms can help diagnose and treat the underlying condition.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 40 - Under normal circumstances, which stage of sleep is responsible for the largest portion...

    Incorrect

    • Under normal circumstances, which stage of sleep is responsible for the largest portion of total sleep time?

      Your Answer:

      Correct Answer: Stage II

      Explanation:

      Sleep Stages

      Sleep is divided into two distinct states called rapid eye movement (REM) and non-rapid eye movement (NREM). NREM is subdivided into four stages.

      Sleep stage
      Approx % of time spent in stage
      EEG findings
      Comment

      I
      5%
      Theta waves (4-7 Hz)
      The dozing off stage. Characterized by hypnic jerks: spontaneous myoclonic contractions associated with a sensation of twitching of falling.

      II
      45%
      Theta waves, K complexes and sleep spindles (short bursts of 12-14 Hz activity)
      Body enters a more subdued state including a drop in temperature, relaxed muscles, and slowed breathing and heart rate. At the same time, brain waves show a new pattern and eye movement stops.

      III
      15%
      Delta waves (0-4 Hz)
      Deepest stage of sleep (high waking threshold). The length of stage 3 decreases over the course of the night.

      IV
      15%
      Mixed, predominantly beta
      High dream activity.

      The percentage of REM sleep decreases with age.

      It takes the average person 15-20 minutes to fall asleep, this is called sleep latency (characterised by the onset of stage I sleep). Once asleep one descends through stages I-II and then III-IV (deep stages). After about 90 minutes of sleep one enters REM. The rest of the sleep comprises of cycles through the stages. As the sleep progresses the periods of REM become greater and the periods of NREM become less. During an average night’s sleep one spends 25% of the sleep in REM and 75% in NREM.

      REM sleep has certain characteristics that separate it from NREM

      Characteristics of REM sleep

      – Autonomic instability (variability in heart rate, respiratory rate, and BP)
      – Loss of muscle tone
      – Dreaming
      – Rapid eye movements
      – Penile erection

      Deafness:

      (No information provided on deafness in relation to sleep stages)

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 41 - The histopathological findings from a post-mortem of an older man with long standing...

    Incorrect

    • The histopathological findings from a post-mortem of an older man with long standing memory difficulties reveals neuronal and glial tau aggregation in addition to pronounced atrophy of the frontal and temporal lobes.

      What is the most probable diagnosis for an elderly man with these histopathological findings?

      Your Answer:

      Correct Answer: Pick's disease

      Explanation:

      Alzheimer’s disease is not characterized by significant frontal lobe atrophy, but rather by early medial temporal lobe atrophy (MTA) on MRI, particularly in the hippocampus, entorhinal cortex, amygdala, and parahippocampus. In contrast, frontotemporal lobar degeneration (FTLD) typically affects the frontal and anterior temporal lobes in behavioral variant frontotemporal dementia (bvFTD of Pick’s disease), the left anterior temporal lobe in semantic dementia (SD), and the left perisylvian fissure in progressive nonfluent aphasia (PNFA).

      Frontotemporal Lobar Degeneration (FTLD) is a pathological term that refers to a group of neurodegenerative disorders that affect the frontal and temporal lobes of the brain. FTLD is classified into several subtypes based on the main protein component of neuronal and glial abnormal inclusions and their distribution. The three main proteins associated with FTLD are Tau, TDP-43, and FUS. Each FTD clinical phenotype has been associated with different proportions of these proteins. Macroscopic changes in FTLD include atrophy of the frontal and temporal lobes, with focal gyral atrophy that resembles knives. Microscopic changes in FTLD-Tau include neuronal and glial tau aggregation, with further sub-classification based on the existence of different isoforms of tau protein. FTLD-TDP is characterized by cytoplasmic inclusions of TDP-43 in neurons, while FTLD-FUS is characterized by cytoplasmic inclusions of FUS.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 42 - Which one of these organs is not classified as a circumventricular organ? ...

    Incorrect

    • Which one of these organs is not classified as a circumventricular organ?

      Your Answer:

      Correct Answer: The olive

      Explanation:

      Understanding the Blood Brain Barrier

      The blood brain barrier (BBB) is a crucial component of the brain’s defense system against harmful chemicals and ion imbalances. It is a semi-permeable membrane formed by tight junctions of endothelial cells in the brain’s capillaries, which separates the blood from the cerebrospinal fluid. However, certain areas of the BBB, known as circumventricular organs, are fenestrated to allow neurosecretory products to enter the blood.

      When it comes to MRCPsych questions, the focus is on the following aspects of the BBB: the tight junctions between endothelial cells, the ease with which lipid-soluble molecules pass through compared to water-soluble ones, the difficulty large and highly charged molecules face in passing through, the increased permeability of the BBB during inflammation, and the theoretical ability of nasally administered drugs to bypass the BBB.

      It is important to remember the specific circumventricular organs where the BBB is fenestrated, including the posterior pituitary and the area postrema. Understanding the BBB’s function and characteristics is essential for medical professionals to diagnose and treat neurological disorders effectively.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 43 - Which process breaks down dopamine? ...

    Incorrect

    • Which process breaks down dopamine?

      Your Answer:

      Correct Answer: COMT and both forms of MAO

      Explanation:

      COMT and both types of MAO are responsible for the metabolism of dopamine.

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 44 - What is the cause of Kluver-Bucy syndrome, which occurs as a result of...

    Incorrect

    • What is the cause of Kluver-Bucy syndrome, which occurs as a result of damage to which part of the brain?

      Your Answer:

      Correct Answer: Temporal lobe

      Explanation:

      Kluver-Bucy syndrome is a neurological disorder that results from dysfunction in both the right and left medial temporal lobes of the brain. This condition is characterized by a range of symptoms, including docility, altered dietary habits, hyperorality, and changes in sexual behavior. Additionally, individuals with Kluver-Bucy syndrome may experience visual agnosia, which is a condition that impairs their ability to recognize and interpret visual stimuli.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 45 - Which structure is thought to play a major role in processing rewards? ...

    Incorrect

    • Which structure is thought to play a major role in processing rewards?

      Your Answer:

      Correct Answer: Nucleus accumbens

      Explanation:

      Drug addiction is closely linked to reward processing, which is primarily regulated by the nucleus accumbens and the ventral tegmental area (VTA).

      The Basal Ganglia: Functions and Disorders

      The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.

      The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.

      However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.

      In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 46 - Which of these is a feature of Balint's syndrome? ...

    Incorrect

    • Which of these is a feature of Balint's syndrome?

      Your Answer:

      Correct Answer: Simultagnosia

      Explanation:

      Simultagnosia is a condition where an individual is unable to focus on more than one aspect of a complex scene at a time. This condition, along with optic ataxia and oculomotor apraxia, is part of Balint’s syndrome.

      Gerstmann syndrome is characterized by four symptoms: dysgraphia/agraphia, dyscalculia/acalculia, finger agnosia, and left-right disorientation. This syndrome is linked to a lesion in the dominant parietal lobe, specifically the left side of the angular and supramarginal gyri. It is rare for an individual to present with all four symptoms of the tetrad.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 47 - What is the most probable cause of medial temporal lobe atrophy on structural...

    Incorrect

    • What is the most probable cause of medial temporal lobe atrophy on structural neuroimaging in an elderly individual with cognitive decline?

      Your Answer:

      Correct Answer: Alzheimer's dementia

      Explanation:

      Medial temporal lobe atrophy (MTA) is prevalent in 80% to 90% of individuals diagnosed with Alzheimer’s dementia, and can also be present in other forms of dementia, albeit less frequently and severely. MTA is an early and relatively reliable indicator of Alzheimer’s disease, although it is not exclusive to this condition.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 48 - In a healthy right-handed man, which structure is typically larger in the left...

    Incorrect

    • In a healthy right-handed man, which structure is typically larger in the left hemisphere compared to the right hemisphere?

      Your Answer:

      Correct Answer: Planum temporale

      Explanation:

      Cerebral Asymmetry in Planum Temporale and its Implications in Language and Auditory Processing

      The planum temporale, a triangular region in the posterior superior temporal gyrus, is a highly lateralized brain structure involved in language and music processing. Studies have shown that the planum temporale is up to ten times larger in the left cerebral hemisphere than the right, with this asymmetry being more prominent in men. This asymmetry can be observed in gestation and is present in up to 70% of right-handed individuals.

      Recent research suggests that the planum temporale also plays an important role in auditory processing, specifically in representing the location of sounds in space. However, reduced planum temporale asymmetry has been observed in individuals with dyslexia, stuttering, and schizophrenia. These findings highlight the importance of cerebral asymmetry in the planum temporale and its implications in language and auditory processing.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 49 - A 45-year-old man experiences a stroke caused by a ruptured berry aneurysm in...

    Incorrect

    • A 45-year-old man experiences a stroke caused by a ruptured berry aneurysm in the middle cerebral artery.
      What tests would you anticipate to show abnormalities?

      Your Answer:

      Correct Answer: Luria's motor test

      Explanation:

      Damage to the frontal lobe can impact sequencing abilities, as evidenced by Luria’s motor test which involves performing a sequence of fist-edge-palm movements. Additionally, the anterior cerebral artery is responsible for supplying blood to the frontal lobes.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 50 - Which condition has been eliminated due to the use of highly active antiretroviral...

    Incorrect

    • Which condition has been eliminated due to the use of highly active antiretroviral therapy (HAART) in individuals who are HIV positive?

      Your Answer:

      Correct Answer: Toxoplasmosis

      Explanation:

      The use of HAART has led to a complete elimination of new cases of toxoplasmosis in individuals who are HIV positive. Studies conducted on the Edinburgh cohort have revealed a significant decrease in the occurrence of CMV by 50% during autopsy, a 68% reduction in HIVE, and complete eradication of toxoplasmosis. However, there has been a slight increase in the incidence of PML and lymphoma in this group and other samples.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 51 - What is a true statement about Broca's aphasia? ...

    Incorrect

    • What is a true statement about Broca's aphasia?

      Your Answer:

      Correct Answer: Main areas affected are Brodmann areas 44 and 45

      Explanation:

      Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 52 - What substances are found at higher levels in individuals with depression and bipolar...

    Incorrect

    • What substances are found at higher levels in individuals with depression and bipolar affective disorder?

      Your Answer:

      Correct Answer: Cortisol

      Explanation:

      HPA Axis Dysfunction in Mood Disorders

      The HPA axis, which includes regulatory neural inputs and a feedback loop involving the hypothalamus, pituitary, and adrenal glands, plays a central role in the stress response. Excessive secretion of cortisol, a glucocorticoid hormone, can lead to disruptions in cellular functioning and widespread physiologic dysfunction. Dysregulation of the HPA axis is implicated in mood disorders such as depression and bipolar affective disorder.

      In depressed patients, cortisol levels often do not decrease as expected in response to the administration of dexamethasone, a synthetic corticosteroid. This abnormality in the dexamethasone suppression test is thought to be linked to genetic of acquired defects of glucocorticoid receptors. Tricyclic antidepressants have been shown to increase expression of glucocorticoid receptors, whereas this is not the case for SSRIs.

      Early adverse experiences can produce long standing changes in HPA axis regulation, indicating a possible neurobiological mechanism whereby childhood trauma could be translated into increased vulnerability to mood disorder. In major depression, there is hypersecretion of cortisol, corticotropin-releasing factor (CRF), and ACTH, and associated adrenocortical enlargement. HPA abnormalities have also been found in other psychiatric disorders including Alzheimer’s and PTSD.

      In bipolar disorder, dysregulation of ACTH and cortisol response after CRH stimulation have been reported. Abnormal DST results are found more often during depressive episodes in the course of bipolar disorder than in unipolar disorder. Reduced pituitary volume secondary to LHPA stimulation, resulting in pituitary hypoactivity, has been observed in bipolar patients.

      Overall, HPA axis dysfunction is implicated in mood disorders, and understanding the underlying mechanisms may lead to new opportunities for treatments.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 53 - From which neurotransmitters are the following pairs synthesised, using tyrosine as a precursor?...

    Incorrect

    • From which neurotransmitters are the following pairs synthesised, using tyrosine as a precursor?

      Your Answer:

      Correct Answer: Norepinephrine and dopamine

      Explanation:

      Norepinephrine: Synthesis, Release, and Breakdown

      Norepinephrine is synthesized from tyrosine through a series of enzymatic reactions. The first step involves the conversion of tyrosine to L-DOPA by tyrosine hydroxylase. L-DOPA is then converted to dopamine by DOPA decarboxylase. Dopamine is further converted to norepinephrine by dopamine beta-hydroxylase. Finally, norepinephrine is converted to epinephrine by phenylethanolamine-N-methyltransferase.

      The primary site of norepinephrine release is the locus coeruleus, also known as the blue spot, which is located in the pons. Once released, norepinephrine is broken down by two enzymes: catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO). These enzymes play a crucial role in regulating the levels of norepinephrine in the body.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 54 - An older woman presents to the emergency department with sudden onset of left...

    Incorrect

    • An older woman presents to the emergency department with sudden onset of left leg dysfunction, urinary incontinence, and abulia. As her time in the department progresses, her left arm also becomes affected. She has a history of vascular disease. Which artery do you suspect is involved?

      Your Answer:

      Correct Answer: Anterior cerebral artery

      Explanation:

      When there is a blockage in the anterior cerebral artery, the legs are typically impacted more than the arms. Additionally, a common symptom is abulia, which is a lack of determination of difficulty making firm decisions.

      Brain Blood Supply and Consequences of Occlusion

      The brain receives blood supply from the internal carotid and vertebral arteries, which form the circle of Willis. The circle of Willis acts as a shunt system in case of vessel damage. The three main vessels arising from the circle are the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA). Occlusion of these vessels can result in various neurological deficits. ACA occlusion may cause hemiparesis of the contralateral foot and leg, sensory loss, and frontal signs. MCA occlusion is the most common and can lead to hemiparesis, dysphasia/aphasia, neglect, and visual field defects. PCA occlusion may cause alexia, loss of sensation, hemianopia, prosopagnosia, and cranial nerve defects. It is important to recognize these consequences to provide appropriate treatment.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 55 - What is the breakdown product of serotonin? ...

    Incorrect

    • What is the breakdown product of serotonin?

      Your Answer:

      Correct Answer: 5-Hydroxyindoleacetic acid

      Explanation:

      Serotonin: Synthesis and Breakdown

      Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.

      The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.

      Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 56 - Which area of the central nervous system is indicated by a positive outcome...

    Incorrect

    • Which area of the central nervous system is indicated by a positive outcome in the finger-to-nose test?

      Your Answer:

      Correct Answer: Cerebellum

      Explanation:

      The finger-nose test requires the patient to touch their nose and then the examiner’s finger consecutively. If the patient is unable to perform this task, it indicates motor dysmetria, which is a lack of coordination and may indicate a cerebellar injury.

      Cerebellar Dysfunction: Symptoms and Signs

      Cerebellar dysfunction is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. The symptoms and signs of cerebellar dysfunction include ataxia, intention tremor, nystagmus, broad-based gait, slurred speech, dysdiadochokinesis, and dysmetria (lack of finger-nose coordination).

      Ataxia refers to the lack of coordination of voluntary movements, resulting in unsteady gait, difficulty with balance, and clumsiness. Intention tremor is a type of tremor that occurs during voluntary movements, such as reaching for an object. Nystagmus is an involuntary movement of the eyes, characterized by rapid, jerky movements.

      Broad-based gait refers to a wide stance while walking, which is often seen in individuals with cerebellar dysfunction. Slurred speech, also known as dysarthria, is a common symptom of cerebellar dysfunction, which affects the ability to articulate words clearly. Dysdiadochokinesis is the inability to perform rapid alternating movements, such as tapping the fingers on the palm of the hand.

      Dysmetria refers to the inability to accurately judge the distance and direction of movements, resulting in errors in reaching for objects of touching the nose with the finger. These symptoms and signs of cerebellar dysfunction can be caused by a variety of conditions, including stroke, multiple sclerosis, and alcoholism. Treatment depends on the underlying cause and may include medications, physical therapy, and surgery.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 57 - Which statement about serotonin is incorrect? ...

    Incorrect

    • Which statement about serotonin is incorrect?

      Your Answer:

      Correct Answer: It can cross the blood brain barrier

      Explanation:

      Serotonin: Synthesis and Breakdown

      Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.

      The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.

      Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 58 - During which stage of sleep do sleep spindles appear on an EEG in...

    Incorrect

    • During which stage of sleep do sleep spindles appear on an EEG in a typical individual?

      Your Answer:

      Correct Answer: Stage 2

      Explanation:

      Sleep is a complex process that involves different stages. These stages are categorized into Non-REM (NREM) and Rapid Eye Movement (REM) sleep. Each cycle of NREM and REM sleep takes around 90 to 110 minutes.

      Stage 1 is the lightest stage of sleep, where the sleeper may experience sudden muscle contractions and a sense of falling. The brain waves during this stage are called theta waves.

      In Stage 2, eye movement stops, and brain waves become lower. Sleep spindles and K complexes, which are rapid bursts of 12-14 Hz waves, are seen during this stage.

      Stages 3 and 4 are referred to as deep sleep of delta sleep. There is no eye movement of muscle activity during these stages. Children may experience night terrors of somnambulism during these stages.

      REM sleep is characterized by rapid, shallow breathing and rapid, jerky eye movements. Most dreaming occurs during REM sleep.

      Overall, the different stages of sleep are important for the body to rest and rejuvenate. Understanding these stages can help individuals improve their sleep quality and overall health.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 59 - A 65-year-old individual reports a sudden inability to chew food and upon examination,...

    Incorrect

    • A 65-year-old individual reports a sudden inability to chew food and upon examination, displays weakened masseter muscles. What nerve damage do you suspect?

      Your Answer:

      Correct Answer: Cranial nerve V

      Explanation:

      Overview of Cranial Nerves and Their Functions

      The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.

      The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.

      The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.

      The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.

      The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.

      The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.

      The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.

      The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 60 - What is a pathological characteristic observed in individuals with Alzheimer's disease? ...

    Incorrect

    • What is a pathological characteristic observed in individuals with Alzheimer's disease?

      Your Answer:

      Correct Answer: Hyperphosphorylated tau

      Explanation:

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 61 - What is a true statement about Anton-Babinski syndrome? ...

    Incorrect

    • What is a true statement about Anton-Babinski syndrome?

      Your Answer:

      Correct Answer: Confabulation is a characteristic feature

      Explanation:

      Anton’s syndrome, also known as Anton-Babinski syndrome, is a condition that results from damage to the occipital lobe. People with this syndrome are cortically blind, but they are not aware of it and deny having any problem, a condition known as anosognosia. They may start falling over furniture as they cannot see, but they believe they can still see and describe their surroundings in detail, even though their descriptions are incorrect (confabulation). This syndrome is characterized by a lack of awareness of visual impairment, which can lead to significant difficulties in daily life.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 62 - A middle-aged patient comes to your clinic with a complaint of double vision...

    Incorrect

    • A middle-aged patient comes to your clinic with a complaint of double vision that they believe is caused by a new medication you prescribed. They report experiencing both vertical and torsional diplopia. During the examination, you observe that they are unable to move their left eye downwards and outwards. Which cranial nerve is most likely affected?

      Your Answer:

      Correct Answer: IV

      Explanation:

      Overview of Cranial Nerves and Their Functions

      The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.

      The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.

      The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.

      The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.

      The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.

      The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.

      The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.

      The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 63 - A senior citizen visits your clinic and reports experiencing difficulty in seeing more...

    Incorrect

    • A senior citizen visits your clinic and reports experiencing difficulty in seeing more than one object at a time. As a result, they have been colliding with objects while moving around. What condition do you suspect?

      Your Answer:

      Correct Answer: Bilateral parieto occipital lobe dysfunction

      Explanation:

      The observed symptoms in the patient are indicative of simultanagnosia, a condition that arises due to dysfunction in the parieto occipital lobes on both sides of the brain.

      Parietal Lobe Dysfunction: Types and Symptoms

      The parietal lobe is a part of the brain that plays a crucial role in processing sensory information and integrating it with other cognitive functions. Dysfunction in this area can lead to various symptoms, depending on the location and extent of the damage.

      Dominant parietal lobe dysfunction, often caused by a stroke, can result in Gerstmann’s syndrome, which includes finger agnosia, dyscalculia, dysgraphia, and right-left disorientation. Non-dominant parietal lobe dysfunction, on the other hand, can cause anosognosia, dressing apraxia, spatial neglect, and constructional apraxia.

      Bilateral damage to the parieto-occipital lobes, a rare condition, can lead to Balint’s syndrome, which is characterized by oculomotor apraxia, optic ataxia, and simultanagnosia. These symptoms can affect a person’s ability to shift gaze, interact with objects, and perceive multiple objects at once.

      In summary, parietal lobe dysfunction can manifest in various ways, and understanding the specific symptoms can help diagnose and treat the underlying condition.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 64 - In which condition is the presence of regular, rapid, and generalized spike and...

    Incorrect

    • In which condition is the presence of regular, rapid, and generalized spike and wave activity observed?

      Your Answer:

      Correct Answer: Myoclonic epilepsy

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 65 - In addition to alcohol, what other substance is metabolized by aldehyde dehydrogenase? ...

    Incorrect

    • In addition to alcohol, what other substance is metabolized by aldehyde dehydrogenase?

      Your Answer:

      Correct Answer: Serotonin

      Explanation:

      Serotonin: Synthesis and Breakdown

      Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.

      The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.

      Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 66 - Which of the following is an example of a non-fluent aphasia? ...

    Incorrect

    • Which of the following is an example of a non-fluent aphasia?

      Your Answer:

      Correct Answer: Broca's aphasia

      Explanation:

      Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 67 - Age-related plaques are made up of what substances? ...

    Incorrect

    • Age-related plaques are made up of what substances?

      Your Answer:

      Correct Answer: Beta amyloid

      Explanation:

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 68 - Which interleukin has been consistently found to be present in higher levels in...

    Incorrect

    • Which interleukin has been consistently found to be present in higher levels in individuals with depression compared to those without depression?

      Your Answer:

      Correct Answer: IL-6

      Explanation:

      Inflammatory Cytokines and Mental Health

      Research has suggested that an imbalance in the immune system, particularly the pro-inflammatory cytokines, may play a significant role in the development of common mental disorders. The strongest evidence is found in depression, where studies have shown increased levels of inflammatory markers, such as interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and c-reactive protein (CRP), in depressed individuals compared to healthy controls (Santoft, 2020).

      While most studies have focused on the differences in inflammatory markers between depressed and healthy individuals, some have also found a correlation between higher levels of inflammation and more severe depressive symptoms. The underlying cause of this chronic low-grade inflammation is not yet fully understood, but potential factors include psychosocial stress, physical inactivity, poor diet, smoking, obesity, altered gut permeability, disturbed sleep, and vitamin D deficiency.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 69 - What is a true statement about dopamine receptors? ...

    Incorrect

    • What is a true statement about dopamine receptors?

      Your Answer:

      Correct Answer: Activation of D1 receptors activates adenylyl cyclase

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 70 - Which reflex involves the motor component of cranial nerve VII? ...

    Incorrect

    • Which reflex involves the motor component of cranial nerve VII?

      Your Answer:

      Correct Answer: Corneal reflex

      Explanation:

      Cranial Nerve Reflexes

      When it comes to questions on cranial nerve reflexes, it is important to match the reflex to the nerves involved. Here are some examples:

      – Pupillary light reflex: involves the optic nerve (sensory) and oculomotor nerve (motor).
      – Accommodation reflex: involves the optic nerve (sensory) and oculomotor nerve (motor).
      – Jaw jerk: involves the trigeminal nerve (sensory and motor).
      – Corneal reflex: involves the trigeminal nerve (sensory) and facial nerve (motor).
      – Vestibulo-ocular reflex: involves the vestibulocochlear nerve (sensory) and oculomotor, trochlear, and abducent nerves (motor).

      Another example of a cranial nerve reflex is the gag reflex, which involves the glossopharyngeal nerve (sensory) and the vagus nerve (motor). This reflex is important for protecting the airway from foreign objects of substances that may trigger a gag reflex. It is also used as a diagnostic tool to assess the function of these nerves.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 71 - What is a true statement about multiple sclerosis? ...

    Incorrect

    • What is a true statement about multiple sclerosis?

      Your Answer:

      Correct Answer: The mean age of onset is between 20 and 40

      Explanation:

      Multiple Sclerosis: An Overview

      Multiple sclerosis is a neurological disorder that is classified into three categories: primary progressive, relapsing-remitting, and secondary progressive. Primary progressive multiple sclerosis affects 5-10% of patients and is characterized by a steady progression with no remissions. Relapsing-remitting multiple sclerosis affects 20-30% of patients and presents with a relapsing-remitting course but does not lead to serious disability. Secondary progressive multiple sclerosis affects 60% of patients and initially presents with a relapsing-remitting course but is then followed by a phase of progressive deterioration.

      The disorder typically begins between the ages of 20 and 40 and is characterized by multiple demyelinating lesions that have a preference for the optic nerves, cerebellum, brainstem, and spinal cord. Patients with multiple sclerosis present with a variety of neurological signs that reflect the presence and distribution of plaques. Ocular features of multiple sclerosis include optic neuritis, internuclear ophthalmoplegia, and ocular motor cranial neuropathy.

      Multiple sclerosis is more common in women than in men and is seen with increasing frequency as the distance from the equator increases. It is believed to be caused by a combination of genetic and environmental factors, with monozygotic concordance at 25%. Overall, multiple sclerosis is a predominantly white matter disease that can have a significant impact on a patient’s quality of life.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 72 - Which of the options below does not act as a blocker for the...

    Incorrect

    • Which of the options below does not act as a blocker for the serotonin transporter (SERT), also known as the monoamine transporter?

      Your Answer:

      Correct Answer: Monoamine oxidase inhibitors

      Explanation:

      Serotonin: Synthesis and Breakdown

      Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.

      The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.

      Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 73 - What is the name of the bundle of association fibers that connects the...

    Incorrect

    • What is the name of the bundle of association fibers that connects the frontal and temporal lobes and is crucial for language repetition?

      Your Answer:

      Correct Answer: Arcuate fasciculus

      Explanation:

      Association fibres refer to axons that link different cortical areas within the same hemisphere of the brain. The middle longitudinal fasciculus is a white matter tract that connects the inferior parietal lobule to the temporal cortices. The uncinate fasciculus is a relatively short pathway that connects the anterior temporal areas to the inferior frontal areas. The inferior longitudinal fasciculus and inferior fronto-occipital fasciculus fibre pathways are believed to connect the occipital cortices to the anterior temporal and inferior frontal cortices (note that the inferior fronto-occipital fasciculus pathway is also known as the inferior occipitofrontal fasciculus). The cingulum is a group of white matter fibres that extend from the cingulate gyrus to the entorhinal cortex, facilitating communication between different parts of the limbic system.

      Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 74 - Are athetoid movements commonly associated with basal ganglia dysfunction rather than cerebellar dysfunction?...

    Incorrect

    • Are athetoid movements commonly associated with basal ganglia dysfunction rather than cerebellar dysfunction?

      Your Answer:

      Correct Answer: Athetoid movements

      Explanation:

      Abnormal movements known as athetoid movements are commonly associated with issues in the basal ganglia.

      Cerebellar Dysfunction: Symptoms and Signs

      Cerebellar dysfunction is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. The symptoms and signs of cerebellar dysfunction include ataxia, intention tremor, nystagmus, broad-based gait, slurred speech, dysdiadochokinesis, and dysmetria (lack of finger-nose coordination).

      Ataxia refers to the lack of coordination of voluntary movements, resulting in unsteady gait, difficulty with balance, and clumsiness. Intention tremor is a type of tremor that occurs during voluntary movements, such as reaching for an object. Nystagmus is an involuntary movement of the eyes, characterized by rapid, jerky movements.

      Broad-based gait refers to a wide stance while walking, which is often seen in individuals with cerebellar dysfunction. Slurred speech, also known as dysarthria, is a common symptom of cerebellar dysfunction, which affects the ability to articulate words clearly. Dysdiadochokinesis is the inability to perform rapid alternating movements, such as tapping the fingers on the palm of the hand.

      Dysmetria refers to the inability to accurately judge the distance and direction of movements, resulting in errors in reaching for objects of touching the nose with the finger. These symptoms and signs of cerebellar dysfunction can be caused by a variety of conditions, including stroke, multiple sclerosis, and alcoholism. Treatment depends on the underlying cause and may include medications, physical therapy, and surgery.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 75 - Which cognitive function is thought to be essential for the ventromedial prefrontal cortex?...

    Incorrect

    • Which cognitive function is thought to be essential for the ventromedial prefrontal cortex?

      Your Answer:

      Correct Answer: Moral judgement

      Explanation:

      The Neuroscience of Morality

      Morality is a process that involves both instinctive feelings and rational judgement. The ventromedial prefrontal cortex (PFC) is responsible for the emotional baseline, while the dorsolateral PFC is involved in cognitive control and problem solving. Studies have shown that the ventromedial PFC is activated during the solving of moral problems, particularly when responding to emotionally charged scenarios. On the other hand, the dorsolateral PFC is involved in tamping down our innate, reactionary moral system. These findings suggest that morality is a dual process event that involves both emotional and cognitive systems in the brain.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 76 - Which of the following neuroanatomical structures is larger on the left in a...

    Incorrect

    • Which of the following neuroanatomical structures is larger on the left in a healthy right-handed female aged 25-30 years?

      Your Answer:

      Correct Answer: Transverse temporal gyrus

      Explanation:

      The Heschl gyrus, also known as the transverse temporal gyrus, is a component of the primary auditory complex located in the temporal lobe. It is noteworthy that the left Heschl gyrus is typically larger than the right. This structure is responsible for processing incoming auditory information and is unique in its mediolateral orientation. The brain hemispheres exhibit structural differences, with the left hemisphere (in over 90% of right-handed individuals) specializing in language function. Another structure within the primary auditory complex, the planum temporale, is also typically larger on the left side (up to ten times larger). Conversely, the amygdala, caudate nucleus, cingulate sulcus, and hippocampus are typically larger on the right side.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 77 - Which area of the cerebellum is responsible for regulating precise and delicate movements...

    Incorrect

    • Which area of the cerebellum is responsible for regulating precise and delicate movements of the body?

      Your Answer:

      Correct Answer: Spinocerebellum

      Explanation:

      The Cerebellum: Anatomy and Function

      The cerebellum is a part of the brain that consists of two hemispheres and a median vermis. It is separated from the cerebral hemispheres by the tentorium cerebelli and connected to the brain stem by the cerebellar peduncles. Anatomically, it is divided into three lobes: the flocculonodular lobe, anterior lobe, and posterior lobe. Functionally, it is divided into three regions: the vestibulocerebellum, spinocerebellum, and cerebrocerebellum.

      The vestibulocerebellum, located in the flocculonodular lobe, is responsible for balance and spatial orientation. The spinocerebellum, located in the medial section of the anterior and posterior lobes, is involved in fine-tuned body movements. The cerebrocerebellum, located in the lateral section of the anterior and posterior lobes, is involved in planning movement and the conscious assessment of movement.

      Overall, the cerebellum plays a crucial role in motor coordination and control. Its different regions and lobes work together to ensure smooth and precise movements of the body.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 78 - In which region of the CNS do serotonergic neurons have the highest concentration...

    Incorrect

    • In which region of the CNS do serotonergic neurons have the highest concentration of cell bodies?

      Your Answer:

      Correct Answer: Raphe nuclei

      Explanation:

      The raphe nuclei in the brainstem are the primary location of serotonergic neuronal cell bodies in the central nervous system (CNS), which project to the brain and spinal cord. Noradrenaline is synthesised by the locus coeruleus, located in the pons. Dopamine is produced in the substantia nigra and ventral tegmental area in the midbrain. While the majority of serotonin is found in enterochromaffin cells in the gastrointestinal (GI) tract, this is not considered part of the CNS. These neurotransmitters play important roles in various physiological and psychological processes.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 79 - What methods are used to generate estimates of white matter tracts? ...

    Incorrect

    • What methods are used to generate estimates of white matter tracts?

      Your Answer:

      Correct Answer: DTI

      Explanation:

      Neuroimaging techniques can be divided into structural and functional types, although this distinction is becoming less clear as new techniques emerge. Structural techniques include computed tomography (CT) and magnetic resonance imaging (MRI), which use x-rays and magnetic fields, respectively, to produce images of the brain’s structure. Functional techniques, on the other hand, measure brain activity by detecting changes in blood flow of oxygen consumption. These include functional MRI (fMRI), emission tomography (PET and SPECT), perfusion MRI (pMRI), and magnetic resonance spectroscopy (MRS). Some techniques, such as diffusion tensor imaging (DTI), combine both structural and functional information to provide a more complete picture of the brain’s anatomy and function. DTI, for example, uses MRI to estimate the paths that water takes as it diffuses through white matter, allowing researchers to visualize white matter tracts.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 80 - What is a component of the hypothalamus in terms of neuroanatomy? ...

    Incorrect

    • What is a component of the hypothalamus in terms of neuroanatomy?

      Your Answer:

      Correct Answer: Mammillary bodies

      Explanation:

      The striatum is composed of the caudate nucleus and putamen, which are part of the basal ganglia. The basal ganglia is the largest subcortical structure in the brain and consists of a group of grey matter nuclei located in the subcortical area. In contrast, the mammillary bodies are small round bodies that are part of the hypothalamus and play a crucial role in the Papez circuit as a component of the limbic system.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 81 - Which waves are present at the onset of stage 2 sleep, in addition...

    Incorrect

    • Which waves are present at the onset of stage 2 sleep, in addition to k-complexes?

      Your Answer:

      Correct Answer: Sigma

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 82 - Which statement is false regarding microglia? ...

    Incorrect

    • Which statement is false regarding microglia?

      Your Answer:

      Correct Answer: They are neuronal cells

      Explanation:

      Microglia serve as the immune cells of the central nervous system and perform functions similar to macrophages. When a microglial cell engulfs infectious material, it is referred to as a Gitter cell.

      Glial Cells: The Support System of the Central Nervous System

      The central nervous system is composed of two basic cell types: neurons and glial cells. Glial cells, also known as support cells, play a crucial role in maintaining the health and function of neurons. There are several types of glial cells, including macroglia (astrocytes and oligodendrocytes), ependymal cells, and microglia.

      Astrocytes are the most abundant type of glial cell and have numerous functions, such as providing structural support, repairing nervous tissue, nourishing neurons, contributing to the blood-brain barrier, and regulating neurotransmission and blood flow. There are two main types of astrocytes: protoplasmic and fibrous.

      Oligodendrocytes are responsible for the formation of myelin sheaths, which insulate and protect axons, allowing for faster and more efficient transmission of nerve impulses.

      Ependymal cells line the ventricular system and are involved in the circulation of cerebrospinal fluid (CSF) and fluid homeostasis in the brain. Specialized ependymal cells called choroid plexus cells produce CSF.

      Microglia are the immune cells of the CNS and play a crucial role in protecting the brain from infection and injury. They also contribute to the maintenance of neuronal health and function.

      In summary, glial cells are essential for the proper functioning of the central nervous system. They provide structural support, nourishment, insulation, and immune defense to neurons, ensuring the health and well-being of the brain and spinal cord.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 83 - Which condition is commonly linked to pronator drift? ...

    Incorrect

    • Which condition is commonly linked to pronator drift?

      Your Answer:

      Correct Answer: Spasticity

      Explanation:

      Spasticity is the correct answer as pronator drift is a sign of upper motor neuron lesions, while the other options are indicative of lower motor neuron lesions.

      Understanding Pronator Drift in Neurological Examinations

      Pronator drift is a neurological sign that is commonly observed during a medical examination. This sign is elicited by asking the patient to flex their arms forward at a 90-degree angle to the shoulders, supinate their forearms, close their eyes, and maintain the position. In a normal scenario, the position should remain unchanged. However, in some cases, one arm may be seen to pronate.

      Pronator drift is typically caused by an upper motor neuron lesion. There are various underlying conditions that can lead to this type of lesion, including stroke, multiple sclerosis, and brain tumors. The presence of pronator drift can help healthcare professionals to identify the location and severity of the lesion, as well as to determine the appropriate course of treatment.

      Overall, understanding pronator drift is an important aspect of neurological examinations. By recognizing this sign and its underlying causes, healthcare professionals can provide more accurate diagnoses and develop effective treatment plans for their patients.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 84 - Which serotonin receptor is associated with regulating circadian rhythms? ...

    Incorrect

    • Which serotonin receptor is associated with regulating circadian rhythms?

      Your Answer:

      Correct Answer: 5HT-7

      Explanation:

      Serotonin (5-hydroxytryptamine, 5-HT) receptors are primarily G protein receptors, except for 5-HT3, which is a ligand-gated receptor. It is important to remember that 5-HT3 is most commonly associated with nausea. Additionally, 5-HT7 is linked to circadian rhythms. The stimulation of 5-HT2 receptors is believed to be responsible for the side effects of insomnia, agitation, and sexual dysfunction that are associated with the use of selective serotonin reuptake inhibitors (SSRIs).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 85 - From which amino acid is serotonin synthesized? ...

    Incorrect

    • From which amino acid is serotonin synthesized?

      Your Answer:

      Correct Answer: Tryptophan

      Explanation:

      Serotonin: Synthesis and Breakdown

      Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.

      The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.

      Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 86 - What is the primary component of alpha-synuclein? ...

    Incorrect

    • What is the primary component of alpha-synuclein?

      Your Answer:

      Correct Answer: Lewy bodies

      Explanation:

      Lewy body dementia is a neurodegenerative disorder that is characterized by both macroscopic and microscopic changes in the brain. Macroscopically, there is cerebral atrophy, but it is less marked than in Alzheimer’s disease, and the brain weight is usually in the normal range. There is also pallor of the substantia nigra and the locus coeruleus, which are regions of the brain that produce dopamine and norepinephrine, respectively.

      Microscopically, Lewy body dementia is characterized by the presence of intracellular protein accumulations called Lewy bodies. The major component of a Lewy body is alpha synuclein, and as they grow, they start to draw in other proteins such as ubiquitin. Lewy bodies are also found in Alzheimer’s disease, but they tend to be in the amygdala. They can also be found in healthy individuals, although it has been suggested that these may be pre-clinical cases of dementia with Lewy bodies. Lewy bodies are also found in other neurodegenerative disorders such as progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy.

      In Lewy body dementia, Lewy bodies are mainly found within the brainstem, but they are also found in non-brainstem regions such as the amygdaloid nucleus, parahippocampal gyrus, cingulate cortex, and cerebral neocortex. Classic brainstem Lewy bodies are spherical intraneuronal cytoplasmic inclusions, characterized by hyaline eosinophilic cores, concentric lamellar bands, narrow pale halos, and immunoreactivity for alpha synuclein and ubiquitin. In contrast, cortical Lewy bodies typically lack a halo.

      Most brains with Lewy body dementia also show some plaques and tangles, although in most instances, the lesions are not nearly as severe as in Alzheimer’s disease. Neuronal loss and gliosis are usually restricted to brainstem regions, particularly the substantia nigra and locus ceruleus.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 87 - From which amino acids are the catecholamines derived? ...

    Incorrect

    • From which amino acids are the catecholamines derived?

      Your Answer:

      Correct Answer: Tyrosine

      Explanation:

      Catecholamines are a group of chemical compounds that have a distinct structure consisting of a benzene ring with two hydroxyl groups, an intermediate ethyl chain, and a terminal amine group. These compounds play an important role in the body and are involved in various physiological processes. The three main catecholamines found in the body are dopamine, adrenaline, and noradrenaline. All of these compounds are derived from the amino acid tyrosine. Overall, catecholamines are essential for maintaining proper bodily functions and are involved in a wide range of physiological processes.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 88 - Which neuroimaging technique that maps cortical activation uses the non-invasive BOLD method? ...

    Incorrect

    • Which neuroimaging technique that maps cortical activation uses the non-invasive BOLD method?

      Your Answer:

      Correct Answer: Functional MRI (fMRI)

      Explanation:

      The BOLD technique is used by fMRI to non-invasively map cortical activation, while PET and SPECT require the administration of a radioactive isotope and are invasive. Although all three magnetic imaging techniques are non-invasive, fMRI stands out for its use of the BOLD technique.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 89 - What are the roles of purposes of the amygdala? ...

    Incorrect

    • What are the roles of purposes of the amygdala?

      Your Answer:

      Correct Answer: All of the above

      Explanation:

      The Amygdala: A Key Player in Emotional Processing

      The amygdala is a small, almond-shaped structure located in the anterior temporal lobe of the brain. As a core component of the limbic system, it plays a crucial role in emotional processing and regulation.

      To better understand its function, we can use the metaphor of a car being driven on the road. The frontal lobe of the brain acts as the driver, making decisions and navigating the environment. The amygdala, on the other hand, serves as the dashboard, providing the driver with important information about the car’s status, such as temperature and fuel levels. In this way, the amygdala gives emotional meaning to sensory input, allowing us to respond appropriately to potential threats of opportunities.

      One of the amygdala’s primary functions is to activate the fight or flight response in response to perceived danger. It does this by sending signals to the hypothalamus, which in turn triggers the release of stress hormones like adrenaline and cortisol. This prepares the body to either confront the threat of flee from it.

      In addition to its role in the fight or flight response, the amygdala also plays a role in regulating appetite and eating behavior. Studies have shown that damage to the amygdala can lead to overeating and obesity, suggesting that it may be involved in the hypothalamic control of feeding behavior.

      Overall, the amygdala is a key player in emotional processing and regulation, helping us to respond appropriately to the world around us.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 90 - What is the other structure that, along with the putamen, comprises the lenticular...

    Incorrect

    • What is the other structure that, along with the putamen, comprises the lenticular nucleus?

      Your Answer:

      Correct Answer: Globus pallidus

      Explanation:

      The Edinger-Westphal nucleus is the motor nucleus of the third cranial nerve, while the putamen and globus pallidus comprise the lenticular nucleus, which is part of the basal ganglia. The basal ganglia play a role in motor control and use the inhibitory neurotransmitter GABA. The components of the basal ganglia can be classified in various ways, with the corpus striatum (caudate nucleus, putamen, nucleus accumbens, and globus pallidus) and the striatum of neostriatum (caudate, putamen, and globus pallidus) being common groupings.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 91 - What is a true statement about the endocannabinoid system? ...

    Incorrect

    • What is a true statement about the endocannabinoid system?

      Your Answer:

      Correct Answer: CB2 receptors are expressed at much lower levels in the central nervous system compared to CB1

      Explanation:

      The Endocannabinoid System and its Role in Psychosis

      The endocannabinoid system (ECS) plays a crucial role in regulating various physiological functions in the body, including cognition, sleep, energy metabolism, and inflammation. It is composed of endogenous cannabinoids, cannabinoid receptors, and proteins that transport, synthesize, and degrade endocannabinoids. The two best-characterized cannabinoid receptors are CB1 and CB2, which primarily couple to inhibitory G proteins and modulate different neurotransmitter systems in the brain.

      Impairment of the ECS after cannabis consumption has been linked to an increased risk of psychotic illness. However, enhancing the ECS with cannabidiol (CBD) has shown anti-inflammatory and antipsychotic outcomes in both healthy study participants and in preliminary clinical trials on people with psychotic illness of at high risk of developing psychosis. Studies have also found increased anandamide levels in the cerebrospinal fluid and blood, as well as increased CB1 expression in peripheral immune cells of people with psychotic illness compared to healthy controls. Overall, understanding the role of the ECS in psychosis may lead to new therapeutic approaches for treating this condition.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 92 - What is the condition that is identified by the presence of Papp-Lantos bodies?...

    Incorrect

    • What is the condition that is identified by the presence of Papp-Lantos bodies?

      Your Answer:

      Correct Answer: Multisystem atrophy

      Explanation:

      Multisystem Atrophy: A Parkinson Plus Syndrome

      Multisystem atrophy is a type of Parkinson plus syndrome that is characterized by three main features: Parkinsonism, autonomic failure, and cerebellar ataxia. It can present in three different ways, including Shy-Drager Syndrome, Striatonigral degeneration, and Olivopontocerebellar atrophy, each with varying degrees of the three main features.

      Macroscopic features of multisystem atrophy include pallor of the substantia nigra, greenish discoloration and atrophy of the putamen, and cerebellar atrophy. Microscopic features include the presence of Papp-Lantos bodies, which are alpha-synuclein inclusions found in oligodendrocytes in the substantia nigra, cerebellum, and basal ganglia.

      Overall, multisystem atrophy is a complex and debilitating condition that affects multiple systems in the body, leading to a range of symptoms and challenges for patients and their caregivers.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 93 - A 65-year-old woman passed away unexpectedly due to a heart attack. She had...

    Incorrect

    • A 65-year-old woman passed away unexpectedly due to a heart attack. She had been experiencing significant difficulties with her short-term memory, which had been impacting her daily activities. Upon conducting an autopsy of her brain, it was discovered that she had widespread cerebral atrophy, as well as numerous neurofibrillary tangles and neuritic plaques. What is the probable diagnosis?

      Your Answer:

      Correct Answer: Alzheimer's disease

      Explanation:

      Neurofibrillary tangles and neuritic (senile) plaques are commonly found in the brains of elderly individuals, but they are not present in Lewy body dementia. Pick’s disease is characterized by the presence of Pick’s bodies and knife blade atrophy. Creutzfeldt-Jakob disease (CJD) is identified by the spongy appearance of the grey matter in the cerebral cortex due to multiple vacuoles. If an individual experiences short-term memory problems that affect their daily life, it may indicate the presence of dementia. Alzheimer’s disease is characterized by extensive tangles and plaques in the brain.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 94 - Anomic aphasia is most likely to occur due to a lesion in which...

    Incorrect

    • Anomic aphasia is most likely to occur due to a lesion in which area?

      Your Answer:

      Correct Answer: Angular gyrus

      Explanation:

      The parahippocampal gyrus is located surrounding the hippocampus and is involved in memory processing. Asymmetry in this area has also been observed in individuals with schizophrenia.

      Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 95 - How would you describe Broca's aphasia in a speech? ...

    Incorrect

    • How would you describe Broca's aphasia in a speech?

      Your Answer:

      Correct Answer: Non-fluent aphasia

      Explanation:

      Broca’s and Wernicke’s are two types of expressive dysphasia, which is characterized by difficulty producing speech despite intact comprehension. Dysarthria is a type of expressive dysphasia caused by damage to the speech production apparatus, while Broca’s aphasia is caused by damage to the area of the brain responsible for speech production, specifically Broca’s area located in Brodmann areas 44 and 45. On the other hand, Wernicke’s aphasia is a type of receptive of fluent aphasia caused by damage to the comprehension of speech, while the actual production of speech remains normal. Wernicke’s area is located in the posterior part of the superior temporal gyrus in the dominant hemisphere, within Brodmann area 22.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 96 - A 3-year-old girl wakes up crying in the middle of the night. This...

    Incorrect

    • A 3-year-old girl wakes up crying in the middle of the night. This typically occurs shortly after she has fallen asleep. Her parents report that she sits up in bed and appears to be awake but does not acknowledge them. The episodes last for a few minutes before the child falls back asleep. The parents have checked her pulse during these episodes and note that it is very rapid. This started happening around six months ago and lasted for about two weeks before resolving on its own. What is the likely diagnosis?

      Your Answer:

      Correct Answer: Night terrors

      Explanation:

      Night terrors are a type of sleep disorder that typically occur during the first few hours of sleep. They are characterized by sudden and intense feelings of fear, panic, of terror that can cause the person to scream, thrash around, of even try to escape from their bed. Unlike nightmares, which occur during REM sleep and are often remembered upon waking, night terrors occur during non-REM sleep and are usually not remembered. Night terrors are most common in children, but can also occur in adults. They are thought to be caused by a combination of genetic and environmental factors, and may be triggered by stress, anxiety, of sleep deprivation. Treatment for night terrors may include improving sleep hygiene, reducing stress, and in some cases, medication.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 97 - Which enzyme converts L-DOPA to dopamine? ...

    Incorrect

    • Which enzyme converts L-DOPA to dopamine?

      Your Answer:

      Correct Answer: DOPA decarboxylase

      Explanation:

      Tyrosine is converted to L-DOPA by the enzyme tyrosine hydroxylase. L-DOPA is then converted to dopamine by the enzyme dopa decarboxylase.

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 98 - What structure is impacted in the pathology of Parkinson's disease? ...

    Incorrect

    • What structure is impacted in the pathology of Parkinson's disease?

      Your Answer:

      Correct Answer: Substantia nigra

      Explanation:

      Brain Structures and Functions

      The brain is a complex organ that is responsible for controlling various bodily functions. Among the important structures in the brain are the substantia nigra, hippocampus, hypothalamus, pituitary gland, and thalamus.

      The substantia nigra is a part of the basal ganglia located in the midbrain. It contains dopamine-producing neurons that regulate voluntary movement and mood. Parkinson’s disease is associated with the degeneration of the melanin-containing cells in the pars compacta of the substantia nigra.

      The hippocampus is a part of the limbic system that is involved in memory, learning, attention, and information processing.

      The hypothalamus is located at the base of the brain near the pituitary gland. It regulates thirst, hunger, circadian rhythm, emotions, and body temperature. It also controls the pituitary gland by secreting hormones.

      The pituitary gland is a small endocrine organ located below the hypothalamus in the middle of the base of the brain. It controls many bodily functions through the action of hormones and is divided into an anterior lobe, intermediate lobe, and posterior lobe.

      The thalamus is located above the brainstem and processes and relays sensory and motor information.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 99 - Which of the following do not describe the features of REM sleep? ...

    Incorrect

    • Which of the following do not describe the features of REM sleep?

      Your Answer:

      Correct Answer: K complexes on the EEG

      Explanation:

      During REM sleep, the EEG patterns resemble those observed during wakefulness, characterized by numerous beta-rhythms that are fast.

      Sleep Stages

      Sleep is divided into two distinct states called rapid eye movement (REM) and non-rapid eye movement (NREM). NREM is subdivided into four stages.

      Sleep stage
      Approx % of time spent in stage
      EEG findings
      Comment

      I
      5%
      Theta waves (4-7 Hz)
      The dozing off stage. Characterized by hypnic jerks: spontaneous myoclonic contractions associated with a sensation of twitching of falling.

      II
      45%
      Theta waves, K complexes and sleep spindles (short bursts of 12-14 Hz activity)
      Body enters a more subdued state including a drop in temperature, relaxed muscles, and slowed breathing and heart rate. At the same time, brain waves show a new pattern and eye movement stops.

      III
      15%
      Delta waves (0-4 Hz)
      Deepest stage of sleep (high waking threshold). The length of stage 3 decreases over the course of the night.

      IV
      15%
      Mixed, predominantly beta
      High dream activity.

      The percentage of REM sleep decreases with age.

      It takes the average person 15-20 minutes to fall asleep, this is called sleep latency (characterised by the onset of stage I sleep). Once asleep one descends through stages I-II and then III-IV (deep stages). After about 90 minutes of sleep one enters REM. The rest of the sleep comprises of cycles through the stages. As the sleep progresses the periods of REM become greater and the periods of NREM become less. During an average night’s sleep one spends 25% of the sleep in REM and 75% in NREM.

      REM sleep has certain characteristics that separate it from NREM

      Characteristics of REM sleep

      – Autonomic instability (variability in heart rate, respiratory rate, and BP)
      – Loss of muscle tone
      – Dreaming
      – Rapid eye movements
      – Penile erection

      Deafness:

      (No information provided on deafness in relation to sleep stages)

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 100 - Which statement about dementia pugilistica is accurate? ...

    Incorrect

    • Which statement about dementia pugilistica is accurate?

      Your Answer:

      Correct Answer: Symptoms may result from a single traumatic brain injury

      Explanation:

      Dementia pugilistica, also known as CTE, is categorized as a tauopathy, which is a type of neurodegenerative disease that involves the accumulation of tau protein into NFTs of gliofibrillary tangles in the brain. While it commonly occurs due to repeated brain injuries, it can also develop from a single traumatic event, as reported by Smith in 2013.

      Dementia Pugilistica: A Neurodegenerative Condition Resulting from Neurotrauma

      Dementia pugilistica, also known as chronic traumatic encephalopathy (CTE), is a neurodegenerative condition that results from neurotrauma. It is commonly seen in boxers and NFL players, but can also occur in anyone with neurotrauma. The condition is characterized by symptoms such as gait ataxia, slurred speech, impaired hearing, tremors, disequilibrium, neurobehavioral disturbances, and progressive cognitive decline.

      Most cases of dementia pugilistica present with early onset cognitive deficits, and behavioral signs exhibited by patients include aggression, suspiciousness, paranoia, childishness, hypersexuality, depression, and restlessness. The progression of the condition leads to more prominent behavioral symptoms such as difficulty with impulse control, irritability, inappropriateness, and explosive outbursts of aggression.

      Neuropathological abnormalities have been identified in CTE, with the most unique feature being the abnormal accumulation of tau in neurons and glia in an irregular, focal, perivascular distribution and at the depths of cortical sulci. Abnormalities of the septum pellucidum, such as cavum and fenestration, are also a common feature.

      While the condition has become increasingly rare due to the progressive improvement in sports safety, it is important to recognize the potential long-term consequences of repeated head injuries and take steps to prevent them.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 101 - From where does the nerve that originates in the medulla oblongata come? ...

    Incorrect

    • From where does the nerve that originates in the medulla oblongata come?

      Your Answer:

      Correct Answer: Vagus

      Explanation:

      Overview of Cranial Nerves and Their Functions

      The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.

      The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.

      The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.

      The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.

      The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.

      The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.

      The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.

      The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 102 - What is the term used to describe the condition where a person cannot...

    Incorrect

    • What is the term used to describe the condition where a person cannot identify faces?

      Your Answer:

      Correct Answer: Prosopagnosia

      Explanation:

      Agnosia is a condition where a person loses the ability to recognize objects, persons, sounds, shapes, of smells, despite having no significant memory loss of defective senses. There are different types of agnosia, such as prosopagnosia (inability to recognize familiar faces), anosognosia (inability to recognize one’s own condition/illness), autotopagnosia (inability to orient parts of the body), phonagnosia (inability to recognize familiar voices), simultanagnosia (inability to appreciate two objects in the visual field at the same time), and astereoagnosia (inability to recognize objects by touch).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 103 - What is the most probable outcome of the occlusion of the main trunk...

    Incorrect

    • What is the most probable outcome of the occlusion of the main trunk of the middle cerebral artery?

      Your Answer:

      Correct Answer: Hemiparesis of the contralateral face and limbs

      Explanation:

      Brain Blood Supply and Consequences of Occlusion

      The brain receives blood supply from the internal carotid and vertebral arteries, which form the circle of Willis. The circle of Willis acts as a shunt system in case of vessel damage. The three main vessels arising from the circle are the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA). Occlusion of these vessels can result in various neurological deficits. ACA occlusion may cause hemiparesis of the contralateral foot and leg, sensory loss, and frontal signs. MCA occlusion is the most common and can lead to hemiparesis, dysphasia/aphasia, neglect, and visual field defects. PCA occlusion may cause alexia, loss of sensation, hemianopia, prosopagnosia, and cranial nerve defects. It is important to recognize these consequences to provide appropriate treatment.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 104 - What is the entity responsible for producing myelin in the central nervous system?...

    Incorrect

    • What is the entity responsible for producing myelin in the central nervous system?

      Your Answer:

      Correct Answer: Oligodendrocyte

      Explanation:

      Glial Cells: The Support System of the Central Nervous System

      The central nervous system is composed of two basic cell types: neurons and glial cells. Glial cells, also known as support cells, play a crucial role in maintaining the health and function of neurons. There are several types of glial cells, including macroglia (astrocytes and oligodendrocytes), ependymal cells, and microglia.

      Astrocytes are the most abundant type of glial cell and have numerous functions, such as providing structural support, repairing nervous tissue, nourishing neurons, contributing to the blood-brain barrier, and regulating neurotransmission and blood flow. There are two main types of astrocytes: protoplasmic and fibrous.

      Oligodendrocytes are responsible for the formation of myelin sheaths, which insulate and protect axons, allowing for faster and more efficient transmission of nerve impulses.

      Ependymal cells line the ventricular system and are involved in the circulation of cerebrospinal fluid (CSF) and fluid homeostasis in the brain. Specialized ependymal cells called choroid plexus cells produce CSF.

      Microglia are the immune cells of the CNS and play a crucial role in protecting the brain from infection and injury. They also contribute to the maintenance of neuronal health and function.

      In summary, glial cells are essential for the proper functioning of the central nervous system. They provide structural support, nourishment, insulation, and immune defense to neurons, ensuring the health and well-being of the brain and spinal cord.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 105 - Which component is excluded from the Papez circuit? ...

    Incorrect

    • Which component is excluded from the Papez circuit?

      Your Answer:

      Correct Answer: Caudate nucleus

      Explanation:

      The basal ganglia includes the caudate nucleus.

      The Papez Circuit: A Neural Pathway for Emotion

      James Papez was the first to describe a neural pathway in the brain that mediates the process of emotion. This pathway is known as the ‘Papez circuit’ and is located on the medial surface of the brain. It is bilateral, symmetrical, and links the cortex to the hypothalamus.

      According to Papez, information about emotion passes through several structures in the brain, including the hippocampus, the Mammillary bodies of the hypothalamus, the anterior nucleus of the thalamus, the cingular cortex, and the entorhinal cortex. Finally, the information passes through the hippocampus again, completing the circuit.

      The Papez circuit was one of the first descriptions of the limbic system, which is responsible for regulating emotions, motivation, and memory. Understanding the Papez circuit and the limbic system has important implications for understanding and treating emotional disorders such as anxiety and depression.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 106 - Which area of the brain is responsible for causing hemiballismus when it is...

    Incorrect

    • Which area of the brain is responsible for causing hemiballismus when it is damaged?

      Your Answer:

      Correct Answer: Subthalamic nucleus

      Explanation:

      Hemiballismus is an uncommon condition that arises following a stroke affecting the basal ganglia, particularly the subthalamic nucleus. It is typically identified by uncontrolled flinging movements of the limbs, which can be forceful and have a broad range of motion. These movements are unpredictable and ongoing, and may affect either the proximal or distal muscles on one side of the body.

      The Basal Ganglia: Functions and Disorders

      The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.

      The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.

      However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.

      In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 107 - What is the definition of sleep latency? ...

    Incorrect

    • What is the definition of sleep latency?

      Your Answer:

      Correct Answer: The time taken to fall asleep after going to bed

      Explanation:

      Sleep Stages

      Sleep is divided into two distinct states called rapid eye movement (REM) and non-rapid eye movement (NREM). NREM is subdivided into four stages.

      Sleep stage
      Approx % of time spent in stage
      EEG findings
      Comment

      I
      5%
      Theta waves (4-7 Hz)
      The dozing off stage. Characterized by hypnic jerks: spontaneous myoclonic contractions associated with a sensation of twitching of falling.

      II
      45%
      Theta waves, K complexes and sleep spindles (short bursts of 12-14 Hz activity)
      Body enters a more subdued state including a drop in temperature, relaxed muscles, and slowed breathing and heart rate. At the same time, brain waves show a new pattern and eye movement stops.

      III
      15%
      Delta waves (0-4 Hz)
      Deepest stage of sleep (high waking threshold). The length of stage 3 decreases over the course of the night.

      IV
      15%
      Mixed, predominantly beta
      High dream activity.

      The percentage of REM sleep decreases with age.

      It takes the average person 15-20 minutes to fall asleep, this is called sleep latency (characterised by the onset of stage I sleep). Once asleep one descends through stages I-II and then III-IV (deep stages). After about 90 minutes of sleep one enters REM. The rest of the sleep comprises of cycles through the stages. As the sleep progresses the periods of REM become greater and the periods of NREM become less. During an average night’s sleep one spends 25% of the sleep in REM and 75% in NREM.

      REM sleep has certain characteristics that separate it from NREM

      Characteristics of REM sleep

      – Autonomic instability (variability in heart rate, respiratory rate, and BP)
      – Loss of muscle tone
      – Dreaming
      – Rapid eye movements
      – Penile erection

      Deafness:

      (No information provided on deafness in relation to sleep stages)

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 108 - Through which route does the caudate nucleus obtain its blood supply? ...

    Incorrect

    • Through which route does the caudate nucleus obtain its blood supply?

      Your Answer:

      Correct Answer: Anterior and middle cerebral arteries

      Explanation:

      The blood supply to the caudate nucleus primarily comes from the deep penetrators of the anterior and middle cerebral arteries. The effects of caudate infarcts can differ depending on the study, but typically include behavioral symptoms such as abulia and agitation, loss of executive function, and motor weakness.

      Brain Blood Supply and Consequences of Occlusion

      The brain receives blood supply from the internal carotid and vertebral arteries, which form the circle of Willis. The circle of Willis acts as a shunt system in case of vessel damage. The three main vessels arising from the circle are the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA). Occlusion of these vessels can result in various neurological deficits. ACA occlusion may cause hemiparesis of the contralateral foot and leg, sensory loss, and frontal signs. MCA occlusion is the most common and can lead to hemiparesis, dysphasia/aphasia, neglect, and visual field defects. PCA occlusion may cause alexia, loss of sensation, hemianopia, prosopagnosia, and cranial nerve defects. It is important to recognize these consequences to provide appropriate treatment.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 109 - What hormone is secreted by the gastrointestinal tract and has a significant impact...

    Incorrect

    • What hormone is secreted by the gastrointestinal tract and has a significant impact on digestion and feelings of fullness?

      Your Answer:

      Correct Answer: Cholecystokinin

      Explanation:

      Cholecystokinin (CCK) is a hormone produced and released by the duodenum that stimulates the secretion of digestive enzymes and bile, while also acting as an appetite suppressant. corticotropin releasing hormone is secreted by the paraventricular nucleus of the hypothalamus and triggers the release of ACTH from the pituitary gland. Met- and Leu- encephalin are peptides that play a role in pain modulation. α-endorphin is one of several endorphins that can inhibit pain and induce a feeling of euphoria.

      Source: https://www.ncbi.nlm.nih.gov/pubmed/16246215

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 110 - Which of the following indicates the presence of a dominant parietal lobe injury?...

    Incorrect

    • Which of the following indicates the presence of a dominant parietal lobe injury?

      Your Answer:

      Correct Answer: Finger agnosia

      Explanation:

      Parietal Lobe Dysfunction: Types and Symptoms

      The parietal lobe is a part of the brain that plays a crucial role in processing sensory information and integrating it with other cognitive functions. Dysfunction in this area can lead to various symptoms, depending on the location and extent of the damage.

      Dominant parietal lobe dysfunction, often caused by a stroke, can result in Gerstmann’s syndrome, which includes finger agnosia, dyscalculia, dysgraphia, and right-left disorientation. Non-dominant parietal lobe dysfunction, on the other hand, can cause anosognosia, dressing apraxia, spatial neglect, and constructional apraxia.

      Bilateral damage to the parieto-occipital lobes, a rare condition, can lead to Balint’s syndrome, which is characterized by oculomotor apraxia, optic ataxia, and simultanagnosia. These symptoms can affect a person’s ability to shift gaze, interact with objects, and perceive multiple objects at once.

      In summary, parietal lobe dysfunction can manifest in various ways, and understanding the specific symptoms can help diagnose and treat the underlying condition.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 111 - What is a correct statement about the blood brain barrier? ...

    Incorrect

    • What is a correct statement about the blood brain barrier?

      Your Answer:

      Correct Answer: It is fenestrated at the posterior pituitary gland

      Explanation:

      Understanding the Blood Brain Barrier

      The blood brain barrier (BBB) is a crucial component of the brain’s defense system against harmful chemicals and ion imbalances. It is a semi-permeable membrane formed by tight junctions of endothelial cells in the brain’s capillaries, which separates the blood from the cerebrospinal fluid. However, certain areas of the BBB, known as circumventricular organs, are fenestrated to allow neurosecretory products to enter the blood.

      When it comes to MRCPsych questions, the focus is on the following aspects of the BBB: the tight junctions between endothelial cells, the ease with which lipid-soluble molecules pass through compared to water-soluble ones, the difficulty large and highly charged molecules face in passing through, the increased permeability of the BBB during inflammation, and the theoretical ability of nasally administered drugs to bypass the BBB.

      It is important to remember the specific circumventricular organs where the BBB is fenestrated, including the posterior pituitary and the area postrema. Understanding the BBB’s function and characteristics is essential for medical professionals to diagnose and treat neurological disorders effectively.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 112 - What is the term used to describe the small, horizontally arranged folds resembling...

    Incorrect

    • What is the term used to describe the small, horizontally arranged folds resembling pleats on the outer surface of the cerebellum?

      Your Answer:

      Correct Answer: Folia

      Explanation:

      Brain Anatomy

      The brain is a complex organ with various regions responsible for different functions. The major areas of the cerebrum (telencephalon) include the frontal lobe, parietal lobe, occipital lobe, temporal lobe, insula, corpus callosum, fornix, anterior commissure, and striatum. The cerebrum is responsible for complex learning, language acquisition, visual and auditory processing, memory, and emotion processing.

      The diencephalon includes the thalamus, hypothalamus and pituitary, pineal gland, and mammillary body. The thalamus is a major relay point and processing center for all sensory impulses (excluding olfaction). The hypothalamus and pituitary are involved in homeostasis and hormone release. The pineal gland secretes melatonin to regulate circadian rhythms. The mammillary body is a relay point involved in memory.

      The cerebellum is primarily concerned with movement and has two major hemispheres with an outer cortex made up of gray matter and an inner region of white matter. The cerebellum provides precise timing and appropriate patterns of skeletal muscle contraction for smooth, coordinated movements and agility needed for daily life.

      The brainstem includes the substantia nigra, which is involved in controlling and regulating activities of the motor and premotor cortical areas for smooth voluntary movements, eye movement, reward seeking, the pleasurable effects of substance misuse, and learning.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 113 - What is the most consistently observed pathology in schizophrenia? ...

    Incorrect

    • What is the most consistently observed pathology in schizophrenia?

      Your Answer:

      Correct Answer: Reduced total grey matter volume

      Explanation:

      Alzheimer’s disease is associated with the presence of Hirano bodies.

      Schizophrenia is a pathology that is characterized by a number of structural and functional brain alterations. Structural alterations include enlargement of the ventricles, reductions in total brain and gray matter volume, and regional reductions in the amygdala, parahippocampal gyrus, and temporal lobes. Antipsychotic treatment may be associated with gray matter loss over time, and even drug-naïve patients show volume reductions. Cerebral asymmetry is also reduced in affected individuals and healthy relatives. Functional alterations include diminished activation of frontal regions during cognitive tasks and increased activation of temporal regions during hallucinations. These findings suggest that schizophrenia is associated with both macroscopic and functional changes in the brain.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 114 - Which structure's division results in a condition known as 'split brain'? ...

    Incorrect

    • Which structure's division results in a condition known as 'split brain'?

      Your Answer:

      Correct Answer: Corpus callosum

      Explanation:

      The Corpus Callosum and Circle of Willis: Important Structures in the Brain

      The corpus callosum is a thick bundle of fibers that connects the two cerebral hemispheres. When this structure is divided, communication between the hemispheres is disrupted, resulting in observable effects through experimental techniques. For instance, if an object is presented to the left visual field only (and therefore processed by the right visual cortex only), a subject may be unable to name the object out loud due to the speech center typically being located in the left hemisphere.

      On the other hand, the Circle of Willis is a crucial part of the cerebral circulation. If the optic chiasm is divided, it can lead to specific visual problems known as chiasmal syndrome. These structures play important roles in brain function and can have significant consequences when damaged of disrupted.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 115 - What is the most probable outcome of damage to Broca's area? ...

    Incorrect

    • What is the most probable outcome of damage to Broca's area?

      Your Answer:

      Correct Answer: Non-fluent aphasia

      Explanation:

      Broca’s and Wernicke’s are two types of expressive dysphasia, which is characterized by difficulty producing speech despite intact comprehension. Dysarthria is a type of expressive dysphasia caused by damage to the speech production apparatus, while Broca’s aphasia is caused by damage to the area of the brain responsible for speech production, specifically Broca’s area located in Brodmann areas 44 and 45. On the other hand, Wernicke’s aphasia is a type of receptive of fluent aphasia caused by damage to the comprehension of speech, while the actual production of speech remains normal. Wernicke’s area is located in the posterior part of the superior temporal gyrus in the dominant hemisphere, within Brodmann area 22.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 116 - Who is the neurologist that created a map of the cortex surface with...

    Incorrect

    • Who is the neurologist that created a map of the cortex surface with specific areas?

      Your Answer:

      Correct Answer: Korbinian Brodmann

      Explanation:

      The Cerebral Cortex and Neocortex

      The cerebral cortex is the outermost layer of the cerebral hemispheres and is composed of three parts: the archicortex, paleocortex, and neocortex. The neocortex accounts for 90% of the cortex and is involved in higher functions such as thought and language. It is divided into 6-7 layers, with two main cell types: pyramidal cells and nonpyramidal cells. The surface of the neocortex is divided into separate areas, each given a number by Brodmann (e.g. Brodmann’s area 17 is the primary visual cortex). The surface is folded to increase surface area, with grooves called sulci and ridges called gyri. The neocortex is responsible for higher cognitive functions and is essential for human consciousness.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 117 - Which cranial nerve is solely responsible for sensory functions? ...

    Incorrect

    • Which cranial nerve is solely responsible for sensory functions?

      Your Answer:

      Correct Answer: Vestibulocochlear

      Explanation:

      Overview of Cranial Nerves and Their Functions

      The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.

      The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.

      The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.

      The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.

      The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.

      The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.

      The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.

      The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 118 - In which region of the brain is Broca's area located? ...

    Incorrect

    • In which region of the brain is Broca's area located?

      Your Answer:

      Correct Answer: Brodmann areas 44 and 45

      Explanation:

      Broca’s and Wernicke’s are two types of expressive dysphasia, which is characterized by difficulty producing speech despite intact comprehension. Dysarthria is a type of expressive dysphasia caused by damage to the speech production apparatus, while Broca’s aphasia is caused by damage to the area of the brain responsible for speech production, specifically Broca’s area located in Brodmann areas 44 and 45. On the other hand, Wernicke’s aphasia is a type of receptive of fluent aphasia caused by damage to the comprehension of speech, while the actual production of speech remains normal. Wernicke’s area is located in the posterior part of the superior temporal gyrus in the dominant hemisphere, within Brodmann area 22.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 119 - What is the term used to describe an intense and brief emotional reaction...

    Incorrect

    • What is the term used to describe an intense and brief emotional reaction to a minor trigger?

      Your Answer:

      Correct Answer: Emotional lability

      Explanation:

      Multiple Sclerosis: An Overview

      Multiple sclerosis is a neurological disorder that is classified into three categories: primary progressive, relapsing-remitting, and secondary progressive. Primary progressive multiple sclerosis affects 5-10% of patients and is characterized by a steady progression with no remissions. Relapsing-remitting multiple sclerosis affects 20-30% of patients and presents with a relapsing-remitting course but does not lead to serious disability. Secondary progressive multiple sclerosis affects 60% of patients and initially presents with a relapsing-remitting course but is then followed by a phase of progressive deterioration.

      The disorder typically begins between the ages of 20 and 40 and is characterized by multiple demyelinating lesions that have a preference for the optic nerves, cerebellum, brainstem, and spinal cord. Patients with multiple sclerosis present with a variety of neurological signs that reflect the presence and distribution of plaques. Ocular features of multiple sclerosis include optic neuritis, internuclear ophthalmoplegia, and ocular motor cranial neuropathy.

      Multiple sclerosis is more common in women than in men and is seen with increasing frequency as the distance from the equator increases. It is believed to be caused by a combination of genetic and environmental factors, with monozygotic concordance at 25%. Overall, multiple sclerosis is a predominantly white matter disease that can have a significant impact on a patient’s quality of life.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 120 - The sella turcica is a saddle-shaped depression in which bone that houses the...

    Incorrect

    • The sella turcica is a saddle-shaped depression in which bone that houses the pituitary gland?

      Your Answer:

      Correct Answer: Sphenoid

      Explanation:

      The sphenoid bone contains a saddle-shaped depression known as the sella turcica. The anterior cranial fossa is formed by the frontal, ethmoid, and a portion of the sphenoid bones. The middle cranial fossa is formed by the sphenoid and temporal bones, while the posterior cranial fossa is formed by the occipital and temporal bones.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 121 - What is a minimally invasive method that utilizes radioisotopes? ...

    Incorrect

    • What is a minimally invasive method that utilizes radioisotopes?

      Your Answer:

      Correct Answer: SPECT

      Explanation:

      Neuroimaging techniques can be divided into structural and functional types, although this distinction is becoming less clear as new techniques emerge. Structural techniques include computed tomography (CT) and magnetic resonance imaging (MRI), which use x-rays and magnetic fields, respectively, to produce images of the brain’s structure. Functional techniques, on the other hand, measure brain activity by detecting changes in blood flow of oxygen consumption. These include functional MRI (fMRI), emission tomography (PET and SPECT), perfusion MRI (pMRI), and magnetic resonance spectroscopy (MRS). Some techniques, such as diffusion tensor imaging (DTI), combine both structural and functional information to provide a more complete picture of the brain’s anatomy and function. DTI, for example, uses MRI to estimate the paths that water takes as it diffuses through white matter, allowing researchers to visualize white matter tracts.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 122 - An elevation in Brain-derived neurotrophic factor levels in cortical regions compared to healthy...

    Incorrect

    • An elevation in Brain-derived neurotrophic factor levels in cortical regions compared to healthy individuals has been observed for which of the following disorders?

      Your Answer:

      Correct Answer: Schizophrenia

      Explanation:

      Neurotrophins: Crucial for Neuronal Growth and Development

      Neurotrophins are essential for the growth and development of neurons. However, disturbances in neurotrophic factors may contribute to some neurodevelopmental aspects of schizophrenia and major depression.

      Studies have shown that patients with schizophrenia have increased concentrations of Brain-derived neurotrophic factor (BDNF) in cortical areas, but decreased levels in the hippocampus compared to controls. Additionally, patients with schizophrenia have lower concentrations of neurotrophin-3 in frontal and parietal areas than controls.

      These findings suggest that neurotrophins play a critical role in the pathophysiology of schizophrenia and major depression. Further research is needed to fully understand the mechanisms underlying these disturbances in neurotrophic factors.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 123 - Which type of white matter tract is categorized as a commissural tract? ...

    Incorrect

    • Which type of white matter tract is categorized as a commissural tract?

      Your Answer:

      Correct Answer: Corpus callosum

      Explanation:

      White matter is the cabling that links different parts of the CNS together. There are three types of white matter cables: projection tracts, commissural tracts, and association tracts. Projection tracts connect higher centers of the brain with lower centers, commissural tracts connect the two hemispheres together, and association tracts connect regions of the same hemisphere. Some common tracts include the corticospinal tract, which connects the motor cortex to the brainstem and spinal cord, and the corpus callosum, which is the largest white matter fiber bundle connecting corresponding areas of cortex between the hemispheres. Other tracts include the cingulum, superior and inferior occipitofrontal fasciculi, and the superior and inferior longitudinal fasciculi.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 124 - What is a correct statement about the blood brain barrier? ...

    Incorrect

    • What is a correct statement about the blood brain barrier?

      Your Answer:

      Correct Answer: Nasally administered drugs can bypass the blood brain barrier

      Explanation:

      Understanding the Blood Brain Barrier

      The blood brain barrier (BBB) is a crucial component of the brain’s defense system against harmful chemicals and ion imbalances. It is a semi-permeable membrane formed by tight junctions of endothelial cells in the brain’s capillaries, which separates the blood from the cerebrospinal fluid. However, certain areas of the BBB, known as circumventricular organs, are fenestrated to allow neurosecretory products to enter the blood.

      When it comes to MRCPsych questions, the focus is on the following aspects of the BBB: the tight junctions between endothelial cells, the ease with which lipid-soluble molecules pass through compared to water-soluble ones, the difficulty large and highly charged molecules face in passing through, the increased permeability of the BBB during inflammation, and the theoretical ability of nasally administered drugs to bypass the BBB.

      It is important to remember the specific circumventricular organs where the BBB is fenestrated, including the posterior pituitary and the area postrema. Understanding the BBB’s function and characteristics is essential for medical professionals to diagnose and treat neurological disorders effectively.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 125 - From which structure are the cerebral peduncles derived? ...

    Incorrect

    • From which structure are the cerebral peduncles derived?

      Your Answer:

      Correct Answer: Mesencephalon

      Explanation:

      Neurodevelopment: Understanding Brain Development

      The development of the central nervous system begins with the neuroectoderm, a specialized region of ectoderm. The embryonic brain is divided into three areas: the forebrain (prosencephalon), midbrain (mesencephalon), and hindbrain (rhombencephalon). The prosencephalon further divides into the telencephalon and diencephalon, while the hindbrain subdivides into the metencephalon and myelencephalon.

      The telencephalon, of cerebrum, consists of the cerebral cortex, underlying white matter, and the basal ganglia. The diencephalon includes the prethalamus, thalamus, hypothalamus, subthalamus, epithalamus, and pretectum. The mesencephalon comprises the tectum, tegmentum, ventricular mesocoelia, cerebral peduncles, and several nuclei and fasciculi.

      The rhombencephalon includes the medulla, pons, and cerebellum, which can be subdivided into a variable number of transversal swellings called rhombomeres. In humans, eight rhombomeres can be distinguished, from caudal to rostral: Rh7-Rh1 and the isthmus. Rhombomeres Rh7-Rh4 form the myelencephalon, while Rh3-Rh1 form the metencephalon.

      Understanding neurodevelopment is crucial in comprehending brain development and its complexities. By studying the different areas of the embryonic brain, we can gain insight into the formation of the central nervous system and its functions.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 126 - What brain region has been identified as a target for deep brain stimulation...

    Incorrect

    • What brain region has been identified as a target for deep brain stimulation (DBS) in individuals with treatment-resistant depression?

      Your Answer:

      Correct Answer: Nucleus accumbens

      Explanation:

      Deep brain stimulation (DBS) for treatment resistant depression targets specific brain regions based on their known involvement in pleasure, reward, and mood regulation. The nucleus accumbens is targeted due to its role in pleasure and reward processing. The inferior thalamic peduncle is targeted based on PET studies showing hyperactivity in depression. The lateral habenula is chosen due to observed hypermetabolism in depressed patients. The subgenual cingulate gyrus is targeted due to its hyperactivity in depression. The ventral capsule/ventral striatum is chosen based on its association with improved mood and reduced depressive symptoms following ablation treatments for OCD and depression.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 127 - What type of MRI scan is available? ...

    Incorrect

    • What type of MRI scan is available?

      Your Answer:

      Correct Answer: DTI

      Explanation:

      Neuroimaging techniques can be divided into structural and functional types, although this distinction is becoming less clear as new techniques emerge. Structural techniques include computed tomography (CT) and magnetic resonance imaging (MRI), which use x-rays and magnetic fields, respectively, to produce images of the brain’s structure. Functional techniques, on the other hand, measure brain activity by detecting changes in blood flow of oxygen consumption. These include functional MRI (fMRI), emission tomography (PET and SPECT), perfusion MRI (pMRI), and magnetic resonance spectroscopy (MRS). Some techniques, such as diffusion tensor imaging (DTI), combine both structural and functional information to provide a more complete picture of the brain’s anatomy and function. DTI, for example, uses MRI to estimate the paths that water takes as it diffuses through white matter, allowing researchers to visualize white matter tracts.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 128 - What waveform represents a frequency range of 8-12Hz? ...

    Incorrect

    • What waveform represents a frequency range of 8-12Hz?

      Your Answer:

      Correct Answer: Alpha

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 129 - What are the differences between CT and MRI? ...

    Incorrect

    • What are the differences between CT and MRI?

      Your Answer:

      Correct Answer: CT is very good for imaging bone structures

      Explanation:

      Neuroimaging techniques can be divided into structural and functional types, although this distinction is becoming less clear as new techniques emerge. Structural techniques include computed tomography (CT) and magnetic resonance imaging (MRI), which use x-rays and magnetic fields, respectively, to produce images of the brain’s structure. Functional techniques, on the other hand, measure brain activity by detecting changes in blood flow of oxygen consumption. These include functional MRI (fMRI), emission tomography (PET and SPECT), perfusion MRI (pMRI), and magnetic resonance spectroscopy (MRS). Some techniques, such as diffusion tensor imaging (DTI), combine both structural and functional information to provide a more complete picture of the brain’s anatomy and function. DTI, for example, uses MRI to estimate the paths that water takes as it diffuses through white matter, allowing researchers to visualize white matter tracts.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 130 - Which of the following eosinophilic inclusion bodies are observed as a neuropathological discovery...

    Incorrect

    • Which of the following eosinophilic inclusion bodies are observed as a neuropathological discovery in individuals with Alzheimer's disease?

      Your Answer:

      Correct Answer: Hirano bodies

      Explanation:

      Hirano bodies, Pick bodies, Lewy bodies, Negri bodies, and Barr bodies are all types of inclusion bodies that can be seen in various cells. Hirano bodies are rod-shaped structures found in the cytoplasm of neurons, composed of actin and other proteins. They are commonly seen in the hippocampus, along with granulovacuolar degeneration, which may represent lysosomal accumulations within neuronal cytoplasm. The clinical significance of these microscopic features is not yet fully understood. Pick bodies are masses of cytoskeletal elements seen in Pick’s disease, while Lewy bodies are abnormal protein aggregates that develop in nerve cells in Lewy body disease. Negri bodies are inclusion bodies seen in rabies, and Barr bodies are inactive X chromosomes in a female somatic cell.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 131 - What factors contribute to the potency of a drug? ...

    Incorrect

    • What factors contribute to the potency of a drug?

      Your Answer:

      Correct Answer: Efficacy and affinity

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 132 - Which condition is most commonly associated with fast, generalized spike and wave activity...

    Incorrect

    • Which condition is most commonly associated with fast, generalized spike and wave activity on the EEG?

      Your Answer:

      Correct Answer: Myoclonic epilepsy

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 133 - The dopamine hypothesis of schizophrenia suggests that an overabundance of dopamine in which...

    Incorrect

    • The dopamine hypothesis of schizophrenia suggests that an overabundance of dopamine in which specific pathway is accountable for the heightened importance placed on trivial thoughts and events?

      Your Answer:

      Correct Answer: Mesolimbic pathway

      Explanation:

      The mesolimbic pathway is the correct answer, as it is associated with an excess of dopamine in individuals with addiction. This excess is accompanied by a relative deficiency of dopamine in the frontal lobes. The limbopituitary pathway is not a recognized dopamine pathway, so it should not be considered. The other options listed are all established dopamine pathways.

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 134 - Where is serotonin primarily produced in the body? ...

    Incorrect

    • Where is serotonin primarily produced in the body?

      Your Answer:

      Correct Answer: Raphe nuclei

      Explanation:

      Serotonin: Synthesis and Breakdown

      Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.

      The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.

      Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 135 - What is the closest estimate of the membrane potential of a cell at...

    Incorrect

    • What is the closest estimate of the membrane potential of a cell at rest?

      Your Answer:

      Correct Answer: -70 mV

      Explanation:

      Understanding Action Potentials in Neurons and Muscle Cells

      The membrane potential is a crucial aspect of cell physiology, and it exists across the plasma membrane of most cells. However, in neurons and muscle cells, this membrane potential can change over time. When a cell is not stimulated, it is in a resting state, and the inside of the cell is negatively charged compared to the outside. This resting membrane potential is typically around -70mV, and it is maintained by the Na/K pump, which maintains a high concentration of Na outside and K inside the cell.

      To trigger an action potential, the membrane potential must be raised to around -55mV. This can occur when a neurotransmitter binds to the postsynaptic neuron and opens some ion channels. Once the membrane potential reaches -55mV, a cascade of events is initiated, leading to the opening of a large number of Na channels and causing the cell to depolarize. As the membrane potential reaches around +40 mV, the Na channels close, and the K gates open, allowing K to flood out of the cell and causing the membrane potential to fall back down. This process is irreversible and is critical for the transmission of signals in neurons and the contraction of muscle cells.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 136 - What is the hypothalamic nucleus that is responsible for regulating heat generation and...

    Incorrect

    • What is the hypothalamic nucleus that is responsible for regulating heat generation and conservation?

      Your Answer:

      Correct Answer: Posterior

      Explanation:

      Functions of the Hypothalamus

      The hypothalamus is a vital part of the brain that plays a crucial role in regulating various bodily functions. It receives and integrates sensory information about the internal environment and directs actions to control internal homeostasis. The hypothalamus contains several nuclei and fiber tracts, each with specific functions.

      The suprachiasmatic nucleus (SCN) is responsible for regulating circadian rhythms. Neurons in the SCN have an intrinsic rhythm of discharge activity and receive input from the retina. The SCN is considered the body’s master clock, but it has multiple connections with other hypothalamic nuclei.

      Body temperature control is mainly under the control of the preoptic, anterior, and posterior nuclei, which have temperature-sensitive neurons. As the temperature goes above 37ºC, warm-sensitive neurons are activated, triggering parasympathetic activity to promote heat loss. As the temperature goes below 37ºC, cold-sensitive neurons are activated, triggering sympathetic activity to promote conservation of heat.

      The hypothalamus also plays a role in regulating prolactin secretion. Dopamine is tonically secreted by dopaminergic neurons that project from the arcuate nucleus of the hypothalamus into the anterior pituitary gland via the tuberoinfundibular pathway. The dopamine that is released acts on lactotrophic cells through D2-receptors, inhibiting prolactin synthesis. In the absence of pregnancy of lactation, prolactin is constitutively inhibited by dopamine. Dopamine antagonists result in hyperprolactinemia, while dopamine agonists inhibit prolactin secretion.

      In summary, the hypothalamus is a complex structure that regulates various bodily functions, including circadian rhythms, body temperature, and prolactin secretion. Dysfunction of the hypothalamus can lead to various disorders, such as sleep-rhythm disorder, diabetes insipidus, hyperprolactinemia, and obesity.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 137 - What is a true statement about the prion protein (PrPc)? ...

    Incorrect

    • What is a true statement about the prion protein (PrPc)?

      Your Answer:

      Correct Answer: It can be broken down by protease

      Explanation:

      The prion protein has two forms: the normal form (PrPc) and the infectious form (PrPSc). The normal form can be broken down by proteases, while the infectious form is resistant to proteases.

      Prion Protein and its Role in Disease

      Prion protein is a type of infective agent that is composed of protein. It is made up of proteins called PrP, which exist in two forms: a normal form (PrPC) and an abnormal form (PrPSc). The abnormal form is resistant to protease, which means it cannot be broken down in the body. This abnormal form can change adjacent normal PrPC into the abnormal form, which is how the infection spreads.

      PrPC is a normal component of cell membranes and has an alpha-helical structure. However, in PrPSc, much of the alpha-helical structure is replaced by a beta-sheet structure. This change in structure causes PrPSc to aggregate into plaques in the extracellular space of the central nervous system, disrupting normal tissue structure.

      Prions cause disease by this disruption of normal tissue structure, leading to neurological symptoms and ultimately death. Understanding the structure and behavior of prion proteins is crucial in developing treatments and preventative measures for prion diseases.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 138 - Which brain system enables the integration of emotional sensory information between the cortex...

    Incorrect

    • Which brain system enables the integration of emotional sensory information between the cortex and hypothalamus?

      Your Answer:

      Correct Answer: Papez circuit

      Explanation:

      In 1937, James Papez proposed a neural circuit that explained how emotional experiences occur in the brain. According to Papez, sensory messages related to emotional stimuli are first received by the thalamus, which then directs them to both the cortex (stream of thinking) and hypothalamus (stream of feeling). The cingulate cortex integrates this information from the hypothalamus and sensory cortex, leading to emotional experiences. The output via the hippocampus and hypothalamus allows cortical control of emotional responses. This circuit has since been reconceptualized as the limbic system.

      The medial longitudinal fasciculus carries fibres from cranial nerves III, IV and IV. The nucleus accumbens plays a major role in the reward circuit, while the somatosensory cortex is involved in processing pain. The basal ganglia are involved in voluntary motor control.

      Overall, the Papez circuit theory provides a framework for understanding the functional neuroanatomy of emotion. It highlights the importance of the limbic system in emotional experiences and the role of various brain regions in processing different aspects of emotional stimuli.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 139 - Which part of a neuron is accountable for generating energy? ...

    Incorrect

    • Which part of a neuron is accountable for generating energy?

      Your Answer:

      Correct Answer: Mitochondria

      Explanation:

      Melanin

      Melanin is a pigment found in various parts of the body, including the skin, hair, and eyes. It is produced by specialized cells called melanocytes, which are located in the skin’s basal layer. The function of melanin in the body is not fully understood, but it is thought to play a role in protecting the skin from the harmful effects of ultraviolet (UV) radiation from the sun. Additionally, melanin may be a by-product of neurotransmitter synthesis, although this function is not well established. Overall, the role of melanin in the body is an area of ongoing research.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 140 - In a normal, healthy person during stage III sleep, what EEG patterns would...

    Incorrect

    • In a normal, healthy person during stage III sleep, what EEG patterns would be most expected to be observed?

      Your Answer:

      Correct Answer: Delta waves

      Explanation:

      Sleep Stages

      Sleep is divided into two distinct states called rapid eye movement (REM) and non-rapid eye movement (NREM). NREM is subdivided into four stages.

      Sleep stage
      Approx % of time spent in stage
      EEG findings
      Comment

      I
      5%
      Theta waves (4-7 Hz)
      The dozing off stage. Characterized by hypnic jerks: spontaneous myoclonic contractions associated with a sensation of twitching of falling.

      II
      45%
      Theta waves, K complexes and sleep spindles (short bursts of 12-14 Hz activity)
      Body enters a more subdued state including a drop in temperature, relaxed muscles, and slowed breathing and heart rate. At the same time, brain waves show a new pattern and eye movement stops.

      III
      15%
      Delta waves (0-4 Hz)
      Deepest stage of sleep (high waking threshold). The length of stage 3 decreases over the course of the night.

      IV
      15%
      Mixed, predominantly beta
      High dream activity.

      The percentage of REM sleep decreases with age.

      It takes the average person 15-20 minutes to fall asleep, this is called sleep latency (characterised by the onset of stage I sleep). Once asleep one descends through stages I-II and then III-IV (deep stages). After about 90 minutes of sleep one enters REM. The rest of the sleep comprises of cycles through the stages. As the sleep progresses the periods of REM become greater and the periods of NREM become less. During an average night’s sleep one spends 25% of the sleep in REM and 75% in NREM.

      REM sleep has certain characteristics that separate it from NREM

      Characteristics of REM sleep

      – Autonomic instability (variability in heart rate, respiratory rate, and BP)
      – Loss of muscle tone
      – Dreaming
      – Rapid eye movements
      – Penile erection

      Deafness:

      (No information provided on deafness in relation to sleep stages)

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 141 - What EEG alterations are observed in individuals with Creutzfeldt-Jakob disease? ...

    Incorrect

    • What EEG alterations are observed in individuals with Creutzfeldt-Jakob disease?

      Your Answer:

      Correct Answer: Periodic sharp wave complexes

      Explanation:

      The typical EEG pattern for CJD includes periodic sharp wave complexes, which is a diagnostic criterion. Lewy body dementia may show generalized slow wave activity, but if it is more prominent in the temporal and parietal regions, it may indicate Alzheimer’s disease. Toxic encephalopathies, such as lithium toxicity, may show periodic triphasic waves on EEG. For more information, see Smith SJ’s article EEG in neurological conditions other than epilepsy: when does it help, what does it add? (2005).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 142 - When activated, which type of receptor increases the permeability of a plasma membrane...

    Incorrect

    • When activated, which type of receptor increases the permeability of a plasma membrane to chloride ions?

      Your Answer:

      Correct Answer: GABA-A

      Explanation:

      GABA-A is the sole ionotropic receptor among the options provided. Its function involves the selective conduction of chloride ions across the cell membrane upon activation by GABA, leading to hyperpolarization of the neuron.

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 143 - In the field of neurology, which specific region of the brain did the...

    Incorrect

    • In the field of neurology, which specific region of the brain did the case of Phineas Gage contribute to our understanding of?

      Your Answer:

      Correct Answer: Frontal lobe

      Explanation:

      The Case of Phineas Gage and the Importance of the Frontal Lobe

      Phineas Gage was a railroad worker who experienced a traumatic accident where an iron pole went through his frontal lobe. Despite surviving the incident, his personality underwent a significant change. This case was crucial in advancing our knowledge of the frontal lobe’s function.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 144 - The patient, a 25-year-old male who was recently started on risperidone, presents to...

    Incorrect

    • The patient, a 25-year-old male who was recently started on risperidone, presents to the clinic with complaints of decreased libido and gynecomastia. These symptoms may be attributed to the blockade of D-2 receptors in which of the following pathways?

      Your Answer:

      Correct Answer: Tuberoinfundibular

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 145 - Mirror neurons provide a biological framework for comprehending what concept? ...

    Incorrect

    • Mirror neurons provide a biological framework for comprehending what concept?

      Your Answer:

      Correct Answer: Imitation learning

      Explanation:

      Mirror Neurons: A Model for Imitation Learning

      Mirror neurons are a unique type of visuomotor neurons that were first identified in the premotor cortex of monkeys in area F5. These neurons fire not only when the monkey performs a specific action but also when it observes another individual, whether it is a monkey of a human, performing a similar action. This discovery has led to the development of a model for understanding imitation learning.

      Mirror neurons offer a fascinating insight into how humans and animals learn by imitation. They provide a neural mechanism that allows individuals to understand the actions of others and to replicate those actions themselves. This process is essential for social learning, as it enables individuals to learn from others and to adapt to their environment.

      The discovery of mirror neurons has also led to new research in the field of neuroscience, as scientists seek to understand how these neurons work and how they can be used to improve our understanding of human behavior. As we continue to learn more about mirror neurons, we may be able to develop new therapies for individuals with social and communication disorders, such as autism.

      Overall, mirror neurons are a fascinating area of research that has the potential to revolutionize our understanding of human behavior and learning. By studying these neurons, we may be able to unlock new insights into how we learn, communicate, and interact with others.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 146 - What is the name of the dural reflection that acts as a boundary...

    Incorrect

    • What is the name of the dural reflection that acts as a boundary between the cerebellum and the occipital lobes of the cerebrum?

      Your Answer:

      Correct Answer: Tentorium cerebelli

      Explanation:

      Dura Mater

      The dura mater is one of the three membranes, known as meninges, that cover the brain and spinal cord. It is the outermost and most fibrous layer, with the pia mater and arachnoid mater making up the remaining layers. The pia mater is the innermost layer.

      The dura mater is folded at certain points, including the falx cerebri, which separates the two cerebral hemispheres of the brain, the tentorium cerebelli, which separates the cerebellum from the cerebrum, the falx cerebelli, which separates the cerebellar hemispheres, and the sellar diaphragm, which covers the pituitary gland and forms a roof over the hypophyseal fossa.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 147 - What are the potential consequences of damage to the dominant cerebral hemisphere? ...

    Incorrect

    • What are the potential consequences of damage to the dominant cerebral hemisphere?

      Your Answer:

      Correct Answer: Right-left disorientation

      Explanation:

      Hemispheric Damage: Selected Deficits in Dominant and Non-Dominant Hemispheres

      Many functions are performed by both the right and left cerebral hemispheres. However, certain functions are localized, and damage to a specific hemisphere can result in deficits in specific areas. The following table outlines selected deficits seen in hemispheric damage.

      Dominant Hemisphere (usually left):
      – Aphasia: difficulty with language and communication
      – Limb apraxia: difficulty with skilled movements of limbs
      – Finger agnosia: difficulty recognizing fingers
      – Dysgraphia (aphasic): difficulty with writing and spelling
      – Dyscalculia (number alexia): difficulty with reading and understanding numbers
      – Constructional apraxia: difficulty with constructing objects of copying designs
      – Right-left disorientation: difficulty distinguishing left from right

      Non-Dominant Hemisphere (usually right):
      – Visuospatial deficits: difficulty with spatial perception and orientation
      – Impaired visual perception: difficulty with recognizing and interpreting visual information
      – Neglect: lack of awareness of one side of the body of environment
      – Dysgraphia (spatial neglect): difficulty with writing on one side of the page
      – Dyscalculia (spatial): difficulty with spatial reasoning and understanding of shapes and sizes
      – Constructional apraxia (Gestalt): difficulty with assembling parts into a whole
      – Dressing apraxia: difficulty with dressing oneself
      – Anosognosia: lack of awareness of denial of one’s own deficits of condition.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 148 - What is the role of the Golgi apparatus in a neuron? ...

    Incorrect

    • What is the role of the Golgi apparatus in a neuron?

      Your Answer:

      Correct Answer: Packaging of macromolecules

      Explanation:

      Melanin

      Melanin is a pigment found in various parts of the body, including the skin, hair, and eyes. It is produced by specialized cells called melanocytes, which are located in the skin’s basal layer. The function of melanin in the body is not fully understood, but it is thought to play a role in protecting the skin from the harmful effects of ultraviolet (UV) radiation from the sun. Additionally, melanin may be a by-product of neurotransmitter synthesis, although this function is not well established. Overall, the role of melanin in the body is an area of ongoing research.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 149 - What SPECT finding is indicative of Alzheimer's disease? ...

    Incorrect

    • What SPECT finding is indicative of Alzheimer's disease?

      Your Answer:

      Correct Answer: Decreased temporal perfusion

      Explanation:

      Given the medial temporal lobe atrophy commonly observed in Alzheimer’s disease, a reduction in perfusion of the temporal lobe would be anticipated.

      Alzheimer’s disease can be differentiated from healthy older individuals by using SPECT imaging to detect temporal and parietal hypoperfusion, according to studies such as one conducted by W. Jagust in 2001. Additionally, SPECT imaging has proven to be a useful tool in distinguishing between Alzheimer’s disease and Lewy body dementia, as demonstrated in a study by Vaamonde-Gamo in 2005. The image provided shows a SPECT scan of a patient with Alzheimer’s disease compared to one with Lewy body dementia, with the latter showing lower perfusion in the occipital cortex and the former showing lower perfusion in medial temporal areas.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 150 - What is the primary component of Hirano bodies? ...

    Incorrect

    • What is the primary component of Hirano bodies?

      Your Answer:

      Correct Answer: Actin

      Explanation:

      Actin is the primary component of Hirano bodies, which are indicative of neurodegeneration but lack specificity.

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 151 - In which region of the brain is the 'Arbor vitae' situated? ...

    Incorrect

    • In which region of the brain is the 'Arbor vitae' situated?

      Your Answer:

      Correct Answer: Cerebellum

      Explanation:

      Brain Anatomy

      The brain is a complex organ with various regions responsible for different functions. The major areas of the cerebrum (telencephalon) include the frontal lobe, parietal lobe, occipital lobe, temporal lobe, insula, corpus callosum, fornix, anterior commissure, and striatum. The cerebrum is responsible for complex learning, language acquisition, visual and auditory processing, memory, and emotion processing.

      The diencephalon includes the thalamus, hypothalamus and pituitary, pineal gland, and mammillary body. The thalamus is a major relay point and processing center for all sensory impulses (excluding olfaction). The hypothalamus and pituitary are involved in homeostasis and hormone release. The pineal gland secretes melatonin to regulate circadian rhythms. The mammillary body is a relay point involved in memory.

      The cerebellum is primarily concerned with movement and has two major hemispheres with an outer cortex made up of gray matter and an inner region of white matter. The cerebellum provides precise timing and appropriate patterns of skeletal muscle contraction for smooth, coordinated movements and agility needed for daily life.

      The brainstem includes the substantia nigra, which is involved in controlling and regulating activities of the motor and premotor cortical areas for smooth voluntary movements, eye movement, reward seeking, the pleasurable effects of substance misuse, and learning.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 152 - What is the neurotransmitter that prevents the pituitary gland from releasing prolactin? ...

    Incorrect

    • What is the neurotransmitter that prevents the pituitary gland from releasing prolactin?

      Your Answer:

      Correct Answer: Dopamine

      Explanation:

      Hormones and their functions:

      Dopamine, also known as prolactin inhibitory factor, is released from the hypothalamus. Antipsychotics, which are dopamine antagonists, are often linked to increased prolactin levels.

      Oxytocin, released from the posterior pituitary, plays a crucial role in sexual reproduction.

      Substance P is present throughout the brain and is essential in pain perception.

      Vasopressin, a peptide hormone, is released from the posterior pituitary.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 153 - Which of the following binds to metabotropic receptors but not ionotropic receptors? ...

    Incorrect

    • Which of the following binds to metabotropic receptors but not ionotropic receptors?

      Your Answer:

      Correct Answer: Dopaminergic

      Explanation:

      Dopamine receptors are classified as metabotropic receptors rather than ionotropic receptors.

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 154 - You are asked to review a child on the ward who the staff...

    Incorrect

    • You are asked to review a child on the ward who the staff noted had a sudden and brief (one minute) episode whereby they went into what they described as a trance-like state. During this time the child was unresponsive and was seen to be picking aimlessly at their clothes. Following this episode the child did not recall being unresponsive but did report that before this happened they felt a strange sense of unfamiliarity. Which of the following epilepsy types would you most suspect?:

      Your Answer:

      Correct Answer: Complex partial seizure

      Explanation:

      The indication of a complex partial seizure is strongly implied by the absence of knowledge regarding aura.

      Epilepsy and Aura

      An aura is a subjective sensation that is a type of simple partial seizure. It typically lasts only a few seconds and can help identify the site of cortical onset. There are eight recognized types of auras, including somatosensory, visual, auditory, gustatory, olfactory, autonomic, abdominal, and psychic.

      In about 80% of cases, auras precede temporal lobe seizures. The most common auras in these seizures are abdominal and psychic, which can cause a rising epigastric sensation of feelings of fear, déjà vu, of jamais vu. Parietal lobe seizures may begin with a contralateral sensation, usually of the positive type, such as an electrical sensation of tingling. Occipital lobe seizures may begin with contralateral visual changes, such as colored lines, spots, of shapes, of even a loss of vision. Temporal-parietal-occipital seizures may produce more formed auras.

      Complex partial seizures are defined by impairment of consciousness, which means decreased responsiveness and awareness of oneself and surroundings. During a complex partial seizure, a patient is unresponsive and does not remember events that occurred.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 155 - Which type of brain lesion is typically associated with Alexia without agraphia? ...

    Incorrect

    • Which type of brain lesion is typically associated with Alexia without agraphia?

      Your Answer:

      Correct Answer: Posterior cerebral artery

      Explanation:

      Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 156 - What neuroimaging result is the strongest indicator of new variant CJD? ...

    Incorrect

    • What neuroimaging result is the strongest indicator of new variant CJD?

      Your Answer:

      Correct Answer: Increased signal in the pulvinar nucleus of thalamus bilaterally

      Explanation:

      Creutzfeldt-Jakob Disease: Differences between vCJD and CJD

      Creutzfeldt-Jakob Disease (CJD) is a prion disease that includes scrapie, BSE, and Kuru. However, there are important differences between sporadic (also known as classic) CJD and variant CJD. The table below summarizes these differences.

      vCJD:
      – Longer duration from onset of symptoms to death (a year of more)
      – Presents with psychiatric and behavioral symptoms before neurological symptoms
      – MRI shows pulvinar sign
      – EEG shows generalized slowing
      – Originates from infected meat products
      – Affects younger people (age 25-30)

      CJD:
      – Shorter duration from onset of symptoms to death (a few months)
      – Presents with neurological symptoms
      – MRI shows bilateral anterior basal ganglia high signal
      – EEG shows biphasic and triphasic waves 1-2 per second
      – Originates from genetic mutation (bad luck)
      – Affects older people (age 55-65)

      Overall, understanding the differences between vCJD and CJD is important for diagnosis and treatment.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 157 - Which wave pattern is considered the most abnormal during a state of wakefulness?...

    Incorrect

    • Which wave pattern is considered the most abnormal during a state of wakefulness?

      Your Answer:

      Correct Answer: Delta

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 158 - What signs of symptoms might indicate the presence of Balint's syndrome? ...

    Incorrect

    • What signs of symptoms might indicate the presence of Balint's syndrome?

      Your Answer:

      Correct Answer: Simultanagnosia

      Explanation:

      Parietal Lobe Dysfunction: Types and Symptoms

      The parietal lobe is a part of the brain that plays a crucial role in processing sensory information and integrating it with other cognitive functions. Dysfunction in this area can lead to various symptoms, depending on the location and extent of the damage.

      Dominant parietal lobe dysfunction, often caused by a stroke, can result in Gerstmann’s syndrome, which includes finger agnosia, dyscalculia, dysgraphia, and right-left disorientation. Non-dominant parietal lobe dysfunction, on the other hand, can cause anosognosia, dressing apraxia, spatial neglect, and constructional apraxia.

      Bilateral damage to the parieto-occipital lobes, a rare condition, can lead to Balint’s syndrome, which is characterized by oculomotor apraxia, optic ataxia, and simultanagnosia. These symptoms can affect a person’s ability to shift gaze, interact with objects, and perceive multiple objects at once.

      In summary, parietal lobe dysfunction can manifest in various ways, and understanding the specific symptoms can help diagnose and treat the underlying condition.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 159 - From which region is the largest amount of norepinephrine released? ...

    Incorrect

    • From which region is the largest amount of norepinephrine released?

      Your Answer:

      Correct Answer: Locus coeruleus

      Explanation:

      Norepinephrine: Synthesis, Release, and Breakdown

      Norepinephrine is synthesized from tyrosine through a series of enzymatic reactions. The first step involves the conversion of tyrosine to L-DOPA by tyrosine hydroxylase. L-DOPA is then converted to dopamine by DOPA decarboxylase. Dopamine is further converted to norepinephrine by dopamine beta-hydroxylase. Finally, norepinephrine is converted to epinephrine by phenylethanolamine-N-methyltransferase.

      The primary site of norepinephrine release is the locus coeruleus, also known as the blue spot, which is located in the pons. Once released, norepinephrine is broken down by two enzymes: catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO). These enzymes play a crucial role in regulating the levels of norepinephrine in the body.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 160 - What can be said about alterations in dopamine transporter levels observed in individuals...

    Incorrect

    • What can be said about alterations in dopamine transporter levels observed in individuals with ADHD?

      Your Answer:

      Correct Answer: Elevated due to psychostimulant treatment

      Explanation:

      The density of striatal dopamine transporters in individuals with ADHD is influenced by their prior exposure to psychostimulants. ADHD is a complex disorder that involves dysfunction in multiple neurotransmitter systems, including dopamine, adrenergic, cholinergic, and serotonergic systems. Dopamine systems have received significant attention due to their role in regulating psychomotor activity, motivation, inhibition, and attention. Psychostimulants increase dopamine availability by blocking striatal dopamine transporters. Individuals with untreated ADHD have lower levels of dopamine transporters, while those who have received psychostimulants have higher levels.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 161 - Which of the following conditions is characterized by an increase in the size...

    Incorrect

    • Which of the following conditions is characterized by an increase in the size of the ventricles on structural neuroimaging over time?

      Your Answer:

      Correct Answer: Alzheimer's dementia

      Explanation:

      Neuroimaging studies have shown that Alzheimer’s dementia is linked to a gradual increase in ventricular size, while schizophrenia is associated with non-progressive enlargement of the lateral and third ventricles. Although some studies have reported increased ventricular size in individuals with affective disorders, the findings are not consistent. Additionally, individuals with antisocial personality disorder may have reduced prefrontal gray matter volume.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 162 - What is a true statement about the neocortex? ...

    Incorrect

    • What is a true statement about the neocortex?

      Your Answer:

      Correct Answer: It contains both pyramidal and nonpyramidal cells

      Explanation:

      The Cerebral Cortex and Neocortex

      The cerebral cortex is the outermost layer of the cerebral hemispheres and is composed of three parts: the archicortex, paleocortex, and neocortex. The neocortex accounts for 90% of the cortex and is involved in higher functions such as thought and language. It is divided into 6-7 layers, with two main cell types: pyramidal cells and nonpyramidal cells. The surface of the neocortex is divided into separate areas, each given a number by Brodmann (e.g. Brodmann’s area 17 is the primary visual cortex). The surface is folded to increase surface area, with grooves called sulci and ridges called gyri. The neocortex is responsible for higher cognitive functions and is essential for human consciousness.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 163 - The patient's complaint of being unable to identify objects in their hand without...

    Incorrect

    • The patient's complaint of being unable to identify objects in their hand without visual confirmation is an instance of what?

      Your Answer:

      Correct Answer: Astereognosia

      Explanation:

      Agnosia is a condition where a person loses the ability to recognize objects, persons, sounds, shapes, of smells, despite having no significant memory loss of defective senses. There are different types of agnosia, such as prosopagnosia (inability to recognize familiar faces), anosognosia (inability to recognize one’s own condition/illness), autotopagnosia (inability to orient parts of the body), phonagnosia (inability to recognize familiar voices), simultanagnosia (inability to appreciate two objects in the visual field at the same time), and astereoagnosia (inability to recognize objects by touch).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 164 - What is a typical EEG finding in individuals with Creutzfeldt-Jakob disease? ...

    Incorrect

    • What is a typical EEG finding in individuals with Creutzfeldt-Jakob disease?

      Your Answer:

      Correct Answer: Slow background rhythm with paroxysmal sharp waves

      Explanation:

      Creutzfeldt-Jakob disease is characterized by a slow background rhythm accompanied by paroxysmal sharp waves on EEG, while the remaining options are typical EEG features of the aging process.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 165 - Disinhibition is most likely to occur as a result of dysfunction in which...

    Incorrect

    • Disinhibition is most likely to occur as a result of dysfunction in which of the following regions?

      Your Answer:

      Correct Answer: Right frontal lobe

      Explanation:

      Psychiatric and behavioral disturbances in individuals with frontal lobe lesions show a pattern of lateralization. Lesions in the left hemisphere are more commonly linked to depression, especially if they affect the prefrontal cortex’s dorsolateral region. Conversely, lesions in the right hemisphere are linked to impulsivity, disinhibition, and aggression.

      Cerebral Dysfunction: Lobe-Specific Features

      When the brain experiences dysfunction, it can manifest in various ways depending on the affected lobe. In the frontal lobe, dysfunction can lead to contralateral hemiplegia, impaired problem solving, disinhibition, lack of initiative, Broca’s aphasia, and agraphia (dominant). The temporal lobe dysfunction can result in Wernicke’s aphasia (dominant), homonymous upper quadrantanopia, and auditory agnosia (non-dominant). On the other hand, the non-dominant parietal lobe dysfunction can lead to anosognosia, dressing apraxia, spatial neglect, and constructional apraxia. Meanwhile, the dominant parietal lobe dysfunction can result in Gerstmann’s syndrome. Lastly, occipital lobe dysfunction can lead to visual agnosia, visual illusions, and contralateral homonymous hemianopia.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 166 - Research has suggested that dysfunction of oligodendrocytes and the myelin sheath may play...

    Incorrect

    • Research has suggested that dysfunction of oligodendrocytes and the myelin sheath may play a role in the development of schizophrenia. Can you provide information on the function of the myelin sheath in the nervous system?

      Your Answer:

      Correct Answer: Increases the transmission of electrochemical impulses

      Explanation:

      Myelin sheaths are composed of cells containing fat that act as insulation for the axons of neurons. These cells run along the axons with gaps between them called nodes of Ranvier. The fat in the myelin sheath makes it a poor conductor, causing impulses to jump from one gap to the next, which increases the speed of transmission of action potentials.

      The white matter of the brain gets its whitish appearance from the myelin sheath, which is made up of glial cells. Oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system are responsible for forming the myelin sheath. The electrical impulse jumps from one node to the next at a rapid rate of up to 120 meters per second, which is known as saltatory conduction.

      Glycoproteins play a crucial role in the formation, maintenance, and degradation of myelin sheaths. Recent studies suggest that dysfunction in oligodendrocytes and myelin can lead to changes in synaptic formation and function, resulting in cognitive dysfunction, a core symptom of schizophrenia. Additionally, there is evidence linking oligodendrocyte and myelin dysfunction with abnormalities in dopamine and glutamate, both of which are found in schizophrenia. Addressing these abnormalities could offer therapeutic opportunities for individuals with schizophrenia.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 167 - What is the purpose of the blood brain barrier in keeping the blood...

    Incorrect

    • What is the purpose of the blood brain barrier in keeping the blood separated from what?

      Your Answer:

      Correct Answer: Cerebrospinal fluid

      Explanation:

      The blood retinal barrier refers to the membrane that separates the aqueous humour from the blood.

      Understanding the Blood Brain Barrier

      The blood brain barrier (BBB) is a crucial component of the brain’s defense system against harmful chemicals and ion imbalances. It is a semi-permeable membrane formed by tight junctions of endothelial cells in the brain’s capillaries, which separates the blood from the cerebrospinal fluid. However, certain areas of the BBB, known as circumventricular organs, are fenestrated to allow neurosecretory products to enter the blood.

      When it comes to MRCPsych questions, the focus is on the following aspects of the BBB: the tight junctions between endothelial cells, the ease with which lipid-soluble molecules pass through compared to water-soluble ones, the difficulty large and highly charged molecules face in passing through, the increased permeability of the BBB during inflammation, and the theoretical ability of nasally administered drugs to bypass the BBB.

      It is important to remember the specific circumventricular organs where the BBB is fenestrated, including the posterior pituitary and the area postrema. Understanding the BBB’s function and characteristics is essential for medical professionals to diagnose and treat neurological disorders effectively.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 168 - With what condition of disease are Hirano bodies commonly linked? ...

    Incorrect

    • With what condition of disease are Hirano bodies commonly linked?

      Your Answer:

      Correct Answer: Alzheimer's

      Explanation:

      Hirano bodies are considered to be a general indication of neuronal degeneration and are primarily observed in cases of Alzheimer’s disease.

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 169 - Which of the following neuropathological findings in young individuals with HIV infection is...

    Incorrect

    • Which of the following neuropathological findings in young individuals with HIV infection is also seen in the brains of drug users who do not have HIV?

      Your Answer:

      Correct Answer: Axonal damage

      Explanation:

      Axonal damage is present in the brains of both individuals with early HIV infection and those who do not have HIV but use drugs. Pre-symptomatic HIV infection has been linked to various neurological changes, including lymphocytic leptomeningitis, perivascular lymphocytic cuffing, and infiltration of T and B lymphocytes in brain tissue, as well as subtle gliosis and microglial activation. While axonal damage has been observed in early HIV infection, it may also be caused by factors such as inflammation, trauma, and hypoxia.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 170 - Which germ cell layer gives rise to the developing human brain during embryonic...

    Incorrect

    • Which germ cell layer gives rise to the developing human brain during embryonic development?

      Your Answer:

      Correct Answer: Ectoderm

      Explanation:

      The three primary cell layers in embryonic development are the ectoderm, endoderm, and mesoderm. The ectoderm is responsible for the development of the nervous system, skin, and tooth enamel. The endoderm differentiates into the epithelial lining of the gastrointestinal, respiratory, and renal tracts, while the mesoderm develops into muscle, blood, and connective tissues. Within the ectodermal layer, a neural plate thickens and folds to form the neural tube, which ultimately gives rise to the brain and spinal cord.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 171 - What is a characteristic that is shared by both upper and lower motor...

    Incorrect

    • What is a characteristic that is shared by both upper and lower motor neuron lesions?

      Your Answer:

      Correct Answer: Weakness

      Explanation:

      Motor Neuron Lesions

      Signs of an upper motor neuron lesion include weakness, increased reflexes, increased tone (spasticity), mild atrophy, an upgoing plantar response (Babinski reflex), and clonus. On the other hand, signs of a lower motor neuron lesion include atrophy, weakness, fasciculations, decreased reflexes, and decreased tone. It is important to differentiate between the two types of lesions as they have different underlying causes and require different treatment approaches. A thorough neurological examination can help identify the location and extent of the lesion, which can guide further diagnostic testing and management.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 172 - What is another name for the lateral sulcus? ...

    Incorrect

    • What is another name for the lateral sulcus?

      Your Answer:

      Correct Answer: Sylvian fissure

      Explanation:

      The regions associated with language are located in the vicinity of the sylvian fissure of lateral sulcus.

      Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 173 - Which statement accurately describes the role of the basal ganglia? ...

    Incorrect

    • Which statement accurately describes the role of the basal ganglia?

      Your Answer:

      Correct Answer: Degeneration of the basal ganglia is associated with movement problems

      Explanation:

      The Basal Ganglia: Functions and Disorders

      The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.

      The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.

      However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.

      In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 174 - What is the pathway for cerebrospinal fluid to return from the subarachnoid space...

    Incorrect

    • What is the pathway for cerebrospinal fluid to return from the subarachnoid space to the vascular system?

      Your Answer:

      Correct Answer: Subarachnoid villi

      Explanation:

      Cerebrospinal Fluid: Formation, Circulation, and Composition

      Cerebrospinal fluid (CSF) is produced by ependymal cells in the choroid plexus of the lateral, third, and fourth ventricles. It is constantly reabsorbed, so only a small amount is present at any given time. CSF occupies the space between the arachnoid and pia mater and passes through various foramina and aqueducts to reach the subarachnoid space and spinal cord. It is then reabsorbed by the arachnoid villi and enters the dural venous sinuses.

      The normal intracerebral pressure (ICP) is 5 to 15 mmHg, and the rate of formation of CSF is constant. The composition of CSF is similar to that of brain extracellular fluid (ECF) but different from plasma. CSF has a higher pCO2, lower pH, lower protein content, lower glucose concentration, higher chloride and magnesium concentration, and very low cholesterol content. The concentration of calcium and potassium is lower, while the concentration of sodium is unchanged.

      CSF fulfills the role of returning interstitial fluid and protein to the circulation since there are no lymphatic channels in the brain. The blood-brain barrier separates CSF from blood, and only lipid-soluble substances can easily cross this barrier, maintaining the compositional differences.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 175 - Which of the following diseases is not caused by prions? ...

    Incorrect

    • Which of the following diseases is not caused by prions?

      Your Answer:

      Correct Answer: Progressive supranuclear palsy

      Explanation:

      Prion Diseases

      Prion diseases are a group of rare and fatal neurodegenerative disorders that affect humans and animals. These diseases are caused by abnormal proteins called prions, which can cause normal proteins in the brain to fold abnormally and form clumps. This leads to damage and death of brain cells, resulting in a range of symptoms such as dementia, movement disorders, and behavioral changes.

      Some of the most well-known prion diseases in humans include Creutzfeldt-Jakob disease, Kuru, Gerstman-Straussler-Scheinker syndrome, and Fatal Familial Insomnia. Creutzfeldt-Jakob disease is the most common prion disease in humans, and it can occur sporadically, genetically, of through exposure to contaminated tissue. Kuru is a rare disease that was once prevalent in Papua New Guinea, and it was transmitted through cannibalism. Gerstman-Straussler-Scheinker syndrome is a rare genetic disorder that affects the nervous system, while Fatal Familial Insomnia is a rare inherited disorder that causes progressive insomnia and other neurological symptoms.

      Despite extensive research, there is currently no cure for prion diseases, and treatment is mainly supportive. Prevention measures include avoiding exposure to contaminated tissue and practicing good hygiene.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 176 - A 56-year-old woman experiences a stroke caused by a ruptured berry aneurysm in...

    Incorrect

    • A 56-year-old woman experiences a stroke caused by a ruptured berry aneurysm in the right middle cerebral artery. She frequently collides with objects but denies any visual impairment.
      What is the probable diagnosis?

      Your Answer:

      Correct Answer: Anton syndrome

      Explanation:

      Anton-Babinski syndrome, also known as Anton syndrome of Anton’s blindness, is a rare condition caused by brain damage in the occipital lobe. Individuals with this syndrome are unable to see due to cortical blindness, but they insist that they can see despite evidence to the contrary. This is because they confabulate, of make up explanations for their inability to see. The syndrome is typically a result of a stroke, but can also occur after a head injury.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 177 - What is the association with theta rhythms? ...

    Incorrect

    • What is the association with theta rhythms?

      Your Answer:

      Correct Answer: Seen in meditative practice

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 178 - Which waveform represents a frequency that is less than 4 Hz? ...

    Incorrect

    • Which waveform represents a frequency that is less than 4 Hz?

      Your Answer:

      Correct Answer: Delta

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 179 - In which hypothalamic nuclei are leptin receptors found in the highest concentration? ...

    Incorrect

    • In which hypothalamic nuclei are leptin receptors found in the highest concentration?

      Your Answer:

      Correct Answer: Arcuate

      Explanation:

      Functions of the Hypothalamus

      The hypothalamus is a vital part of the brain that plays a crucial role in regulating various bodily functions. It receives and integrates sensory information about the internal environment and directs actions to control internal homeostasis. The hypothalamus contains several nuclei and fiber tracts, each with specific functions.

      The suprachiasmatic nucleus (SCN) is responsible for regulating circadian rhythms. Neurons in the SCN have an intrinsic rhythm of discharge activity and receive input from the retina. The SCN is considered the body’s master clock, but it has multiple connections with other hypothalamic nuclei.

      Body temperature control is mainly under the control of the preoptic, anterior, and posterior nuclei, which have temperature-sensitive neurons. As the temperature goes above 37ºC, warm-sensitive neurons are activated, triggering parasympathetic activity to promote heat loss. As the temperature goes below 37ºC, cold-sensitive neurons are activated, triggering sympathetic activity to promote conservation of heat.

      The hypothalamus also plays a role in regulating prolactin secretion. Dopamine is tonically secreted by dopaminergic neurons that project from the arcuate nucleus of the hypothalamus into the anterior pituitary gland via the tuberoinfundibular pathway. The dopamine that is released acts on lactotrophic cells through D2-receptors, inhibiting prolactin synthesis. In the absence of pregnancy of lactation, prolactin is constitutively inhibited by dopamine. Dopamine antagonists result in hyperprolactinemia, while dopamine agonists inhibit prolactin secretion.

      In summary, the hypothalamus is a complex structure that regulates various bodily functions, including circadian rhythms, body temperature, and prolactin secretion. Dysfunction of the hypothalamus can lead to various disorders, such as sleep-rhythm disorder, diabetes insipidus, hyperprolactinemia, and obesity.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 180 - Which condition is linked to tardive dyskinesia? ...

    Incorrect

    • Which condition is linked to tardive dyskinesia?

      Your Answer:

      Correct Answer: Hyperkinetic dysarthria

      Explanation:

      Dysarthria is a speech disorder that affects the volume, rate, tone, of quality of spoken language. There are different types of dysarthria, each with its own set of features, associated conditions, and localisation. The types of dysarthria include spastic, flaccid, hypokinetic, hyperkinetic, and ataxic.

      Spastic dysarthria is characterised by explosive and forceful speech at a slow rate and is associated with conditions such as pseudobulbar palsy and spastic hemiplegia.

      Flaccid dysarthria, on the other hand, is characterised by a breathy, nasal voice and imprecise consonants and is associated with conditions such as myasthenia gravis.

      Hypokinetic dysarthria is characterised by slow, quiet speech with a tremor and is associated with conditions such as Parkinson’s disease.

      Hyperkinetic dysarthria is characterised by a variable rate, inappropriate stoppages, and a strained quality and is associated with conditions such as Huntington’s disease, Sydenham’s chorea, and tardive dyskinesia.

      Finally, ataxic dysarthria is characterised by rapid, monopitched, and slurred speech and is associated with conditions such as Friedreich’s ataxia and alcohol abuse. The localisation of each type of dysarthria varies, with spastic and flaccid dysarthria affecting the upper and lower motor neurons, respectively, and hypokinetic, hyperkinetic, and ataxic dysarthria affecting the extrapyramidal and cerebellar regions of the brain.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 181 - Which sensory component is correctly matched with its corresponding cranial nerve reflex? ...

    Incorrect

    • Which sensory component is correctly matched with its corresponding cranial nerve reflex?

      Your Answer:

      Correct Answer: Gag reflex - IX cranial nerve

      Explanation:

      The question specifically requests the sensory aspect.

      Cranial Nerve Reflexes

      When it comes to questions on cranial nerve reflexes, it is important to match the reflex to the nerves involved. Here are some examples:

      – Pupillary light reflex: involves the optic nerve (sensory) and oculomotor nerve (motor).
      – Accommodation reflex: involves the optic nerve (sensory) and oculomotor nerve (motor).
      – Jaw jerk: involves the trigeminal nerve (sensory and motor).
      – Corneal reflex: involves the trigeminal nerve (sensory) and facial nerve (motor).
      – Vestibulo-ocular reflex: involves the vestibulocochlear nerve (sensory) and oculomotor, trochlear, and abducent nerves (motor).

      Another example of a cranial nerve reflex is the gag reflex, which involves the glossopharyngeal nerve (sensory) and the vagus nerve (motor). This reflex is important for protecting the airway from foreign objects of substances that may trigger a gag reflex. It is also used as a diagnostic tool to assess the function of these nerves.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 182 - Which statement about acetylcholine is incorrect? ...

    Incorrect

    • Which statement about acetylcholine is incorrect?

      Your Answer:

      Correct Answer: Nicotinic receptors are also stimulated by muscarine

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 183 - What is the stage of sleep that is identified by hypnic jerks and...

    Incorrect

    • What is the stage of sleep that is identified by hypnic jerks and theta waves on the EEG?

      Your Answer:

      Correct Answer: Stage I

      Explanation:

      Sleep Stages

      Sleep is divided into two distinct states called rapid eye movement (REM) and non-rapid eye movement (NREM). NREM is subdivided into four stages.

      Sleep stage
      Approx % of time spent in stage
      EEG findings
      Comment

      I
      5%
      Theta waves (4-7 Hz)
      The dozing off stage. Characterized by hypnic jerks: spontaneous myoclonic contractions associated with a sensation of twitching of falling.

      II
      45%
      Theta waves, K complexes and sleep spindles (short bursts of 12-14 Hz activity)
      Body enters a more subdued state including a drop in temperature, relaxed muscles, and slowed breathing and heart rate. At the same time, brain waves show a new pattern and eye movement stops.

      III
      15%
      Delta waves (0-4 Hz)
      Deepest stage of sleep (high waking threshold). The length of stage 3 decreases over the course of the night.

      IV
      15%
      Mixed, predominantly beta
      High dream activity.

      The percentage of REM sleep decreases with age.

      It takes the average person 15-20 minutes to fall asleep, this is called sleep latency (characterised by the onset of stage I sleep). Once asleep one descends through stages I-II and then III-IV (deep stages). After about 90 minutes of sleep one enters REM. The rest of the sleep comprises of cycles through the stages. As the sleep progresses the periods of REM become greater and the periods of NREM become less. During an average night’s sleep one spends 25% of the sleep in REM and 75% in NREM.

      REM sleep has certain characteristics that separate it from NREM

      Characteristics of REM sleep

      – Autonomic instability (variability in heart rate, respiratory rate, and BP)
      – Loss of muscle tone
      – Dreaming
      – Rapid eye movements
      – Penile erection

      Deafness:

      (No information provided on deafness in relation to sleep stages)

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 184 - What is a distinguishing characteristic of normal pressure hydrocephalus? ...

    Incorrect

    • What is a distinguishing characteristic of normal pressure hydrocephalus?

      Your Answer:

      Correct Answer: Incontinence

      Explanation:

      Headache, nausea, vomiting, papilledema, and ocular palsies are symptoms of increased intracranial pressure, which are not typically present in cases of normal pressure hydrocephalus.

      Normal Pressure Hydrocephalus

      Normal pressure hydrocephalus is a type of chronic communicating hydrocephalus, which occurs due to the impaired reabsorption of cerebrospinal fluid (CSF) by the arachnoid villi. Although the CSF pressure is typically high, it remains within the normal range, and therefore, it does not cause symptoms of high intracranial pressure (ICP) such as headache and nausea. Instead, patients with normal pressure hydrocephalus usually present with a classic triad of symptoms, including incontinence, gait ataxia, and dementia, which is often referred to as wet, wobbly, and wacky. Unfortunately, this condition is often misdiagnosed as Parkinson’s of Alzheimer’s disease.

      The classic triad of normal pressure hydrocephalus, also known as Hakim’s triad, includes gait instability, urinary incontinence, and dementia. On the other hand, non-communicating hydrocephalus results from the obstruction of CSF flow in the third of fourth ventricle, which causes symptoms of raised intracranial pressure, such as headache, vomiting, hypertension, bradycardia, altered consciousness, and papilledema.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 185 - What is the accurate statement about the pathology of Parkinson's disease? ...

    Incorrect

    • What is the accurate statement about the pathology of Parkinson's disease?

      Your Answer:

      Correct Answer: Pallor of the locus coeruleus is seen

      Explanation:

      Lewy bodies are not exclusively indicative of a particular disease, as they can also be present in individuals with Alzheimer’s and even in those who do not exhibit any noticeable symptoms.

      Parkinson’s Disease Pathology

      Parkinson’s disease is a neurodegenerative disorder that affects the central nervous system. The pathology of Parkinson’s disease is very similar to that of Lewy body dementia. The macroscopic features of Parkinson’s disease include pallor of the substantia nigra (midbrain) and locus coeruleus (pons). The microscopic changes include the presence of Lewy bodies, which are intracellular aggregates of alpha-synuclein. Additionally, there is a loss of dopaminergic cells from the substantia nigra pars compacta. These changes contribute to the motor symptoms of Parkinson’s disease, such as tremors, rigidity, and bradykinesia. Understanding the pathology of Parkinson’s disease is crucial for developing effective treatments and improving the quality of life for those affected by this condition.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 186 - A 70-year-old individual presents with a fluent dysphasia and inability to understand instructions....

    Incorrect

    • A 70-year-old individual presents with a fluent dysphasia and inability to understand instructions. What is the probable location of arterial blockage?

      Your Answer:

      Correct Answer: Inferior division of middle cerebral artery (dominant hemisphere)

      Explanation:

      Wernicke’s aphasia is caused by a blockage in the inferior division of the middle cerebral artery, which provides blood to the temporal cortex (specifically, the posterior superior temporal gyrus of ‘Wernicke’s area’). This type of aphasia is characterized by fluent speech, but with significant comprehension difficulties. On the other hand, Broca’s aphasia is considered a non-fluent expressive aphasia, resulting from damage to Brodmann’s area in the frontal lobe.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 187 - What pathological finding is indicative of multisystem atrophy? ...

    Incorrect

    • What pathological finding is indicative of multisystem atrophy?

      Your Answer:

      Correct Answer: Shrinkage of the putamen

      Explanation:

      Multisystem Atrophy: A Parkinson Plus Syndrome

      Multisystem atrophy is a type of Parkinson plus syndrome that is characterized by three main features: Parkinsonism, autonomic failure, and cerebellar ataxia. It can present in three different ways, including Shy-Drager Syndrome, Striatonigral degeneration, and Olivopontocerebellar atrophy, each with varying degrees of the three main features.

      Macroscopic features of multisystem atrophy include pallor of the substantia nigra, greenish discoloration and atrophy of the putamen, and cerebellar atrophy. Microscopic features include the presence of Papp-Lantos bodies, which are alpha-synuclein inclusions found in oligodendrocytes in the substantia nigra, cerebellum, and basal ganglia.

      Overall, multisystem atrophy is a complex and debilitating condition that affects multiple systems in the body, leading to a range of symptoms and challenges for patients and their caregivers.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 188 - Which of these is not a typical symptom of epilepsy in the temporal...

    Incorrect

    • Which of these is not a typical symptom of epilepsy in the temporal lobe?

      Your Answer:

      Correct Answer: Visual aura

      Explanation:

      – Visual aura is not expected in temporal lobe epilepsy
      – Visual aura may occur in occipital seizures
      – Temporal lobe epilepsy is characterized by automatisms, altered consciousness, déjà vu, complex partial seizures, and olfactory hallucinations
      – Occipital epilepsy can cause visual phenomena and headaches
      – Occipital epilepsy should be differentiated from migraine

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 189 - What condition is identified by the existence of Pick bodies? ...

    Incorrect

    • What condition is identified by the existence of Pick bodies?

      Your Answer:

      Correct Answer: Frontotemporal dementia

      Explanation:

      Frontotemporal Lobar Degeneration (FTLD) is a pathological term that refers to a group of neurodegenerative disorders that affect the frontal and temporal lobes of the brain. FTLD is classified into several subtypes based on the main protein component of neuronal and glial abnormal inclusions and their distribution. The three main proteins associated with FTLD are Tau, TDP-43, and FUS. Each FTD clinical phenotype has been associated with different proportions of these proteins. Macroscopic changes in FTLD include atrophy of the frontal and temporal lobes, with focal gyral atrophy that resembles knives. Microscopic changes in FTLD-Tau include neuronal and glial tau aggregation, with further sub-classification based on the existence of different isoforms of tau protein. FTLD-TDP is characterized by cytoplasmic inclusions of TDP-43 in neurons, while FTLD-FUS is characterized by cytoplasmic inclusions of FUS.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 190 - Which statement accurately describes neurofibrillary tangles? ...

    Incorrect

    • Which statement accurately describes neurofibrillary tangles?

      Your Answer:

      Correct Answer: They are also seen in dementia pugilistica

      Explanation:

      Amyloid protein is the primary component of amyloid plaques, although they are most commonly linked to Alzheimer’s disease.

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 191 - What are the eosinophilic inclusion bodies observed in Alzheimer's Disease? ...

    Incorrect

    • What are the eosinophilic inclusion bodies observed in Alzheimer's Disease?

      Your Answer:

      Correct Answer: Hirano bodies

      Explanation:

      Pathology Findings in Psychiatry

      There are several pathology findings that are associated with various psychiatric conditions. Papp-Lantos bodies, for example, are visible in the CNS and are associated with multisystem atrophy. Pick bodies, on the other hand, are large, dark-staining aggregates of proteins in neurological tissue and are associated with frontotemporal dementia.

      Lewy bodies are another common pathology finding in psychiatry and are associated with Parkinson’s disease and Lewy Body dementia. These are round, concentrically laminated, pale eosinophilic cytoplasmic inclusions that are aggregates of alpha-synuclein.

      Other pathology findings include asteroid bodies, which are associated with sarcoidosis and berylliosis, and are acidophilic, stellate inclusions in giant cells. Barr bodies are associated with stains of X chromosomes and are inactivated X chromosomes that appear as a dark staining mass in contact with the nuclear membrane.

      Mallory bodies are another common pathology finding and are associated with alcoholic hepatitis, alcoholic cirrhosis, Wilson’s disease, and primary-biliary cirrhosis. These are eosinophilic intracytoplasmic inclusions in hepatocytes that are made up of intermediate filaments, predominantly prekeratin.

      Other pathology findings include Schaumann bodies, which are associated with sarcoidosis and berylliosis, and are concentrically laminated inclusions in giant cells. Zebra bodies are associated with Niemann-Pick disease, Tay-Sachs disease, of any of the mucopolysaccharidoses and are palisaded lamellated membranous cytoplasmic bodies seen in macrophages.

      LE bodies, also known as hematoxylin bodies, are associated with SLE (lupus) and are nuclei of damaged cells with bound anti-nuclear antibodies that become homogeneous and loose chromatin pattern. Verocay bodies are associated with Schwannoma (Neurilemoma) and are palisades of nuclei at the end of a fibrillar bundle.

      Hirano bodies are associated with normal aging but are more numerous in Alzheimer’s disease. These are eosinophilic, football-shaped inclusions seen in neurons of the brain. Neurofibrillary tangles are another common pathology finding in Alzheimer’s disease and are made up of microtubule-associated proteins and neurofilaments.

      Kayser-Fleischer rings are associated with Wilson’s disease and are rings of discoloration on the cornea. Finally, Kuru plaques are associated with Kuru and Gerstmann-Sträussler syndrome and are sometimes present in patients with Creutzfeldt-Jakob disease (CJD). These are composed partly of a host-encoded prion protein.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 192 - What is the term used to describe the inability to perceive multiple objects...

    Incorrect

    • What is the term used to describe the inability to perceive multiple objects in the visual field simultaneously?

      Your Answer:

      Correct Answer: Simultanagnosia

      Explanation:

      Agnosia is a condition where a person loses the ability to recognize objects, persons, sounds, shapes, of smells, despite having no significant memory loss of defective senses. There are different types of agnosia, such as prosopagnosia (inability to recognize familiar faces), anosognosia (inability to recognize one’s own condition/illness), autotopagnosia (inability to orient parts of the body), phonagnosia (inability to recognize familiar voices), simultanagnosia (inability to appreciate two objects in the visual field at the same time), and astereoagnosia (inability to recognize objects by touch).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 193 - From which gland is melatonin secreted? ...

    Incorrect

    • From which gland is melatonin secreted?

      Your Answer:

      Correct Answer: Pineal

      Explanation:

      The pineal gland secretes melatonin, while the adrenal glands secrete cortisol, aldosterone, adrenaline, and noradrenaline. The release of pituitary hormones is regulated by the hypothalamus, which synthesizes and secretes releasing hormones. Additionally, the parathyroid glands secrete parathyroid hormone (PTH).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 194 - What is the neural mechanism that plays a crucial role in drug addiction...

    Incorrect

    • What is the neural mechanism that plays a crucial role in drug addiction by processing specific information about past experiences and the environment?

      Your Answer:

      Correct Answer: Nucleus accumbens

      Explanation:

      Brain Anatomy

      The brain is a complex organ with various regions responsible for different functions. The major areas of the cerebrum (telencephalon) include the frontal lobe, parietal lobe, occipital lobe, temporal lobe, insula, corpus callosum, fornix, anterior commissure, and striatum. The cerebrum is responsible for complex learning, language acquisition, visual and auditory processing, memory, and emotion processing.

      The diencephalon includes the thalamus, hypothalamus and pituitary, pineal gland, and mammillary body. The thalamus is a major relay point and processing center for all sensory impulses (excluding olfaction). The hypothalamus and pituitary are involved in homeostasis and hormone release. The pineal gland secretes melatonin to regulate circadian rhythms. The mammillary body is a relay point involved in memory.

      The cerebellum is primarily concerned with movement and has two major hemispheres with an outer cortex made up of gray matter and an inner region of white matter. The cerebellum provides precise timing and appropriate patterns of skeletal muscle contraction for smooth, coordinated movements and agility needed for daily life.

      The brainstem includes the substantia nigra, which is involved in controlling and regulating activities of the motor and premotor cortical areas for smooth voluntary movements, eye movement, reward seeking, the pleasurable effects of substance misuse, and learning.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 195 - What is the primary neurotransmitter in the brain that has an inhibitory effect?...

    Incorrect

    • What is the primary neurotransmitter in the brain that has an inhibitory effect?

      Your Answer:

      Correct Answer: GABA

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 196 - Which of the following is not a visible characteristic observed in Alzheimer's disease...

    Incorrect

    • Which of the following is not a visible characteristic observed in Alzheimer's disease at a macroscopic level?

      Your Answer:

      Correct Answer: Gliosis

      Explanation:

      Gliosis is a discovery that can only be observed under a microscope.

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 197 - An agitated elderly patient requires restraint. Following the restraint, your examination of the...

    Incorrect

    • An agitated elderly patient requires restraint. Following the restraint, your examination of the patient reveals an inability to shrug the shoulders. Which nerve is most likely to have been damaged?

      Accessory

      91%

      Hypoglossal

      4%

      Abducent

      4%

      Oculomotor

      0%

      Glossopharyngeal

      1%

      This elderly patient has most likely suffered a traumatic injury to the accessory nerve.

      Your Answer:

      Correct Answer: Accessory

      Explanation:

      It is probable that this individual has experienced a traumatic injury affecting the accessory nerve.

      Overview of Cranial Nerves and Their Functions

      The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.

      The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.

      The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.

      The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.

      The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.

      The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.

      The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.

      The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 198 - What is the primary role of the dentate gyrus? ...

    Incorrect

    • What is the primary role of the dentate gyrus?

      Your Answer:

      Correct Answer: Episodic memory

      Explanation:

      A gyrus is a ridge on the cerebral cortex, and there are several important gyri to be aware of in exams. These include the angular gyrus in the parietal lobe for language, mathematics, and cognition; the cingulate gyrus adjacent to the corpus callosum for emotion, learning, and memory; the fusiform gyrus in the temporal lobe for face and body recognition, as well as word and number recognition; the precentral gyrus in the frontal lobe for voluntary movement control; the postcentral gyrus in the parietal lobe for touch; the lingual gyrus in the occipital lobe for dreaming and word recognition; the superior frontal gyrus in the frontal lobe for laughter and self-awareness; the superior temporal gyrus in the temporal lobe for language and sensation of sound; the parahippocampal gyrus surrounding the hippocampus for memory; and the dentate gyrus in the hippocampus for the formation of episodic memory.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 199 - A 40-year-old individual who has been struggling with opioid addiction is experiencing symptoms...

    Incorrect

    • A 40-year-old individual who has been struggling with opioid addiction is experiencing symptoms of opioid dependence. What electroencephalographic alterations are commonly observed in cases of opioid dependence?

      Your Answer:

      Correct Answer: Decreased alpha activity

      Explanation:

      Opioid dependence is characterized by a decrease in alpha activity on electroencephalography (EEG). Other drugs have distinct EEG changes, such as increased beta activity with benzodiazepines, decreased alpha activity and increased theta activity with alcohol, and increased beta activity with barbiturates. Marijuana use is associated with increased alpha activity in the frontal area of the brain and overall slow alpha activity. During opioid overdose, slow waves may be observed on EEG, while barbiturate withdrawal may result in generalized paroxysmal activity and spike discharges.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 200 - What is a true statement about Lewy bodies? ...

    Incorrect

    • What is a true statement about Lewy bodies?

      Your Answer:

      Correct Answer: Cortical Lewy bodies typically lack a halo on staining

      Explanation:

      The absence of a halo distinguishes the Lewy bodies found in the brainstem from those found in the cortex. These bodies consist of alpha-synuclein protein, along with other proteins like ubiquitin, neurofilament protein, and alpha B crystallin. Additionally, they may contain tau proteins and are sometimes encircled by neurofibrillary tangles.

      Lewy body dementia is a neurodegenerative disorder that is characterized by both macroscopic and microscopic changes in the brain. Macroscopically, there is cerebral atrophy, but it is less marked than in Alzheimer’s disease, and the brain weight is usually in the normal range. There is also pallor of the substantia nigra and the locus coeruleus, which are regions of the brain that produce dopamine and norepinephrine, respectively.

      Microscopically, Lewy body dementia is characterized by the presence of intracellular protein accumulations called Lewy bodies. The major component of a Lewy body is alpha synuclein, and as they grow, they start to draw in other proteins such as ubiquitin. Lewy bodies are also found in Alzheimer’s disease, but they tend to be in the amygdala. They can also be found in healthy individuals, although it has been suggested that these may be pre-clinical cases of dementia with Lewy bodies. Lewy bodies are also found in other neurodegenerative disorders such as progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy.

      In Lewy body dementia, Lewy bodies are mainly found within the brainstem, but they are also found in non-brainstem regions such as the amygdaloid nucleus, parahippocampal gyrus, cingulate cortex, and cerebral neocortex. Classic brainstem Lewy bodies are spherical intraneuronal cytoplasmic inclusions, characterized by hyaline eosinophilic cores, concentric lamellar bands, narrow pale halos, and immunoreactivity for alpha synuclein and ubiquitin. In contrast, cortical Lewy bodies typically lack a halo.

      Most brains with Lewy body dementia also show some plaques and tangles, although in most instances, the lesions are not nearly as severe as in Alzheimer’s disease. Neuronal loss and gliosis are usually restricted to brainstem regions, particularly the substantia nigra and locus ceruleus.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurosciences (2/5) 40%
Passmed