00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - What is the significance of the cut off of 5 on the MDQ...

    Incorrect

    • What is the significance of the cut off of 5 on the MDQ in diagnosing depression?

      Your Answer: The sensitivity

      Correct Answer: The optimal threshold

      Explanation:

      The threshold score that results in the lowest misclassification rate, achieved by minimizing both false positive and false negative rates, is known as the optimal threshold. Based on the findings of the previous study, the ideal cut off for identifying caseness on the MDQ is five, making it the optimal threshold.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      20
      Seconds
  • Question 2 - What statement accurately describes the mean? ...

    Incorrect

    • What statement accurately describes the mean?

      Your Answer: Is less sensitive to outliers than the mode

      Correct Answer: Is sensitive to a change in any value in the data set

      Explanation:

      Measures of Central Tendency

      Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.

      The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.

      The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.

      In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      165.7
      Seconds
  • Question 3 - How can the pre-test probability be expressed in another way? ...

    Correct

    • How can the pre-test probability be expressed in another way?

      Your Answer: The prevalence of a condition

      Explanation:

      The prevalence refers to the percentage of individuals in a population who currently have a particular condition, while the incidence is the frequency at which new cases of the condition arise within a specific timeframe.

      Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      22.2
      Seconds
  • Question 4 - A team of scientists embarked on a research project to determine if a...

    Correct

    • A team of scientists embarked on a research project to determine if a new vaccine is effective in preventing a certain disease. They sought to satisfy the criteria outlined by Hill's guidelines for establishing causality.
      What is the primary criterion among Hill's guidelines for establishing causality?

      Your Answer: Temporality

      Explanation:

      The most crucial factor in Hill’s criteria for causation is temporality, of the temporal relationship between exposure and outcome. It is imperative that the exposure to a potential causal factor, such as factor ‘A’, always occurs before the onset of the disease. This criterion is the only absolute requirement for causation. The other criteria include the strength of the relationship, dose-response relationship, consistency, plausibility, consideration of alternative explanations, experimental evidence, specificity, and coherence.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      17.1
      Seconds
  • Question 5 - What type of bias could arise from using only one psychiatrist to diagnose...

    Correct

    • What type of bias could arise from using only one psychiatrist to diagnose all participants in a study?

      Your Answer: Information bias

      Explanation:

      The scenario described above highlights the issue of information bias, which can arise due to errors in measuring, collecting, of interpreting data related to the exposure of disease. Specifically, interviewer/observer bias is a type of information bias that can occur when a single psychiatrist has a tendency to either over of under diagnose a condition, potentially skewing the study results.

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      9.1
      Seconds
  • Question 6 - What term is used to describe an association between two variables that is...

    Correct

    • What term is used to describe an association between two variables that is influenced by a confounding factor?

      Your Answer: Indirect

      Explanation:

      Stats Association and Causation

      When two variables are found to be more commonly present together, they are said to be associated. However, this association can be of three types: spurious, indirect, of direct. Spurious association is one that has arisen by chance and is not real, while indirect association is due to the presence of another factor, known as a confounding variable. Direct association, on the other hand, is a true association not linked by a third variable.

      Once an association has been established, the next question is whether it is causal. To determine causation, the Bradford Hill Causal Criteria are used. These criteria include strength, temporality, specificity, coherence, and consistency. The stronger the association, the more likely it is to be truly causal. Temporality refers to whether the exposure precedes the outcome. Specificity asks whether the suspected cause is associated with a specific outcome of disease. Coherence refers to whether the association fits with other biological knowledge. Finally, consistency asks whether the same association is found in many studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      18.5
      Seconds
  • Question 7 - A team of scientists conduct a case control study to investigate the association...

    Correct

    • A team of scientists conduct a case control study to investigate the association between birth complications and attempted suicide in individuals aged 18-35 years. They enroll 296 cases of attempted suicide and recruit an equal number of controls who are matched for age, gender, and geographical location. Upon analyzing the birth history, they discover that 67 cases of attempted suicide and 61 controls had experienced birth difficulties. What is the unadjusted odds ratio for attempted suicide in individuals with a history of birth complications?

      Your Answer: 1.13

      Explanation:

      Odds Ratio Calculation for Birth Difficulties in Case and Control Groups

      The odds ratio is a statistical measure that compares the likelihood of an event occurring in one group to that of another group. In this case, we are interested in the odds of birth difficulties in a case group compared to a control group.

      To calculate the odds ratio, we need to determine the number of individuals in each group who had birth difficulties and those who did not. In the case group, 67 individuals had birth difficulties, while 229 did not. In the control group, 61 individuals had birth difficulties, while 235 did not.

      Using these numbers, we can calculate the odds ratio as follows:

      Odds ratio = (67/229) / (61/235) = 1.13

      This means that the odds of birth difficulties are 1.13 times higher in the case group compared to the control group.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      14586.7
      Seconds
  • Question 8 - Which of the following is another term for the average of squared deviations...

    Incorrect

    • Which of the following is another term for the average of squared deviations from the mean?

      Your Answer: Standard error

      Correct Answer: Variance

      Explanation:

      The variance can be expressed as the mean of the squared differences between each value and the mean.

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      684.7
      Seconds
  • Question 9 - A study is being planned to investigate whether exposure to pesticides is a...

    Correct

    • A study is being planned to investigate whether exposure to pesticides is a risk factor for Parkinson's disease. The researchers are considering conducting a case-control study instead of a cohort study. What is one advantage of using a case-control study design in this situation?

      Your Answer: It is possible to study diseases that are rare

      Explanation:

      The benefits of conducting a case-control study include its suitability for examining rare diseases, the ability to investigate a broad range of risk factors, no loss to follow-up, and its relatively low cost and quick turnaround time. The findings of such studies are typically presented as an odds ratio.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      31227.6
      Seconds
  • Question 10 - A team of investigators aims to explore the perspectives of middle-aged physicians regarding...

    Correct

    • A team of investigators aims to explore the perspectives of middle-aged physicians regarding individuals with chronic fatigue syndrome. They will conduct interviews with a random selection of physicians until no additional insights are gained of existing ones are substantially altered. What is their objective before concluding further interviews?

      Your Answer: Data saturation

      Explanation:

      In qualitative research, data saturation refers to the point where additional data collection becomes unnecessary as the responses obtained are repetitive and do not provide any new insights. This is when the researcher has heard the same information repeatedly and there is no need to continue recruiting participants. Understanding data saturation is crucial in qualitative research.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      78.8
      Seconds
  • Question 11 - What is the term coined by Robert Rosenthal that refers to the bias...

    Incorrect

    • What is the term coined by Robert Rosenthal that refers to the bias that can result from the non-publication of a few studies with negative of inconclusive results, leading to a significant impact on research in a specific field?

      Your Answer: Publication bias

      Correct Answer: File drawer problem

      Explanation:

      Publication bias refers to the tendency of researchers, editors, and pharmaceutical companies to favor the publication of studies with positive results over those with negative of inconclusive results. This bias can have various causes and can result in a skewed representation of the literature. The file drawer problem refers to the phenomenon of unpublished negative studies. HARKing, of hypothesizing after the results are known, is a form of outcome reporting bias where outcomes are selectively reported based on the strength and direction of observed associations. Begg’s funnel plot is an analytical tool used to quantify the presence of publication bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      15.9
      Seconds
  • Question 12 - For which of the following research areas are qualitative methods least effective? ...

    Incorrect

    • For which of the following research areas are qualitative methods least effective?

      Your Answer: Exploring barriers to policy implementation

      Correct Answer: Treatment evaluation

      Explanation:

      While quantitative methods are typically used for treatment evaluation, qualitative studies can also provide valuable insights by interpreting, qualifying, of illuminating findings. This is especially beneficial when examining unexpected results, as they can help to test the primary hypothesis.

      Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      17.7
      Seconds
  • Question 13 - An endocrinologist conducts a study to determine if there is a correlation between...

    Incorrect

    • An endocrinologist conducts a study to determine if there is a correlation between a patient's age and their blood pressure. Assuming both age and blood pressure are normally distributed, what statistical test would be most suitable to use?

      Your Answer: Chi-squared test

      Correct Answer: Pearson's product-moment coefficient

      Explanation:

      Since the data is normally distributed and the study aims to evaluate the correlation between two variables, the most suitable test to use is Pearson’s product-moment coefficient. On the other hand, if the data is non-parametric, Spearman’s coefficient would be more appropriate.

      Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      23
      Seconds
  • Question 14 - Which of the following statements accurately describes the concept of study power? ...

    Incorrect

    • Which of the following statements accurately describes the concept of study power?

      Your Answer: Is the chance a significant p value will be reached

      Correct Answer: Is the probability of rejecting the null hypothesis when it is false

      Explanation:

      The Importance of Power in Statistical Analysis

      Power is a crucial concept in statistical analysis as it helps researchers determine the number of participants needed in a study to detect a clinically significant difference of effect. It represents the probability of correctly rejecting the null hypothesis when it is false, which means avoiding a Type II error. Power values range from 0 to 1, with 0 indicating 0% and 1 indicating 100%. A power of 0.80 is generally considered the minimum acceptable level.

      Several factors influence the power of a study, including sample size, effect size, and significance level. Larger sample sizes lead to more precise parameter estimations and increase the study’s ability to detect a significant effect. Effect size, which is determined at the beginning of a study, refers to the size of the difference between two means that leads to rejecting the null hypothesis. Finally, the significance level, also known as the alpha level, represents the probability of a Type I error. By considering these factors, researchers can optimize the power of their studies and increase the likelihood of detecting meaningful effects.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      64.6
      Seconds
  • Question 15 - What is the accurate formula for determining the likelihood ratio of a positive...

    Correct

    • What is the accurate formula for determining the likelihood ratio of a positive test outcome?

      Your Answer: Sensitivity / (1 - specificity)

      Explanation:

      Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      20.3
      Seconds
  • Question 16 - Through what method is data collected in the Delphi technique? ...

    Correct

    • Through what method is data collected in the Delphi technique?

      Your Answer: Questionnaires

      Explanation:

      The Delphi Method: A Widely Used Technique for Achieving Convergence of Opinion

      The Delphi method is a well-established technique for soliciting expert opinions on real-world knowledge within specific topic areas. The process involves multiple rounds of questionnaires, with each round building on the previous one to achieve convergence of opinion among the participants. However, there are potential issues with the Delphi method, such as the time-consuming nature of the process, low response rates, and the potential for investigators to influence the opinions of the participants. Despite these challenges, the Delphi method remains a valuable tool for generating consensus among experts in various fields.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      19.6
      Seconds
  • Question 17 - What is another name for admission rate bias? ...

    Correct

    • What is another name for admission rate bias?

      Your Answer: Berkson's bias

      Explanation:

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      15.7
      Seconds
  • Question 18 - What is a characteristic of a type II error? ...

    Incorrect

    • What is a characteristic of a type II error?

      Your Answer: Occurs when the alternative hypothesis is incorrectly accepted

      Correct Answer: Occurs when the null hypothesis is incorrectly accepted

      Explanation:

      Hypothesis testing involves the possibility of two types of errors, namely type I and type II errors. A type I error occurs when the null hypothesis is wrongly rejected of the alternative hypothesis is incorrectly accepted. This error is also referred to as an alpha error, error of the first kind, of a false positive. On the other hand, a type II error occurs when the null hypothesis is wrongly accepted. This error is also known as the beta error, error of the second kind, of the false negative.

      Understanding Hypothesis Testing in Statistics

      In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.

      The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.

      Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

      P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      35.1
      Seconds
  • Question 19 - What level of kappa score indicates complete agreement between two observers? ...

    Correct

    • What level of kappa score indicates complete agreement between two observers?

      Your Answer: 1

      Explanation:

      Understanding the Kappa Statistic for Measuring Interobserver Variation

      The kappa statistic, also known as Cohen’s kappa coefficient, is a useful tool for quantifying the level of agreement between independent observers. This measure can be applied in any situation where multiple observers are evaluating the same thing, such as in medical diagnoses of research studies. The kappa coefficient ranges from 0 to 1, with 0 indicating complete disagreement and 1 indicating perfect agreement. By using the kappa statistic, researchers and practitioners can gain insight into the level of interobserver variation present in their data, which can help to improve the accuracy and reliability of their findings. Overall, the kappa statistic is a valuable tool for understanding and measuring interobserver variation in a variety of contexts.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      8.4
      Seconds
  • Question 20 - Which of the following is not a factor considered when determining causality? ...

    Incorrect

    • Which of the following is not a factor considered when determining causality?

      Your Answer: Coherence

      Correct Answer: Sensitivity

      Explanation:

      Stats Association and Causation

      When two variables are found to be more commonly present together, they are said to be associated. However, this association can be of three types: spurious, indirect, of direct. Spurious association is one that has arisen by chance and is not real, while indirect association is due to the presence of another factor, known as a confounding variable. Direct association, on the other hand, is a true association not linked by a third variable.

      Once an association has been established, the next question is whether it is causal. To determine causation, the Bradford Hill Causal Criteria are used. These criteria include strength, temporality, specificity, coherence, and consistency. The stronger the association, the more likely it is to be truly causal. Temporality refers to whether the exposure precedes the outcome. Specificity asks whether the suspected cause is associated with a specific outcome of disease. Coherence refers to whether the association fits with other biological knowledge. Finally, consistency asks whether the same association is found in many studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      15.5
      Seconds
  • Question 21 - The average survival time for people diagnosed with Alzheimer's at age 65 is...

    Correct

    • The average survival time for people diagnosed with Alzheimer's at age 65 is reported to be 8 years. A new pilot scheme consisting of early screening and the provision of high dose fish oils is offered to a designated subgroup of the population. The screening test enables the early detection of Alzheimer's before symptoms arise. A study is conducted on the scheme and reports an increase in survival time and attributes this to the use of fish oils.

      What type of bias could be responsible for the observed increase in survival time?

      Your Answer: Lead Time bias

      Explanation:

      It is possible that the longer survival time is a result of detecting the condition earlier rather than an actual extension of life.

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      51
      Seconds
  • Question 22 - A new clinical trial has found a correlation between alcohol consumption and lung...

    Correct

    • A new clinical trial has found a correlation between alcohol consumption and lung cancer. Considering the well-known link between alcohol consumption and smoking, what is the most probable explanation for this new association?

      Your Answer: Confounding

      Explanation:

      The observed link between alcohol consumption and lung cancer is likely due to confounding factors, such as cigarette smoking. Confounding variables are those that are associated with both the independent and dependent variables, in this case, alcohol consumption and lung cancer.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      13.4
      Seconds
  • Question 23 - Which of the following is an example of selection bias? ...

    Correct

    • Which of the following is an example of selection bias?

      Your Answer: Berkson's bias

      Explanation:

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      13.2
      Seconds
  • Question 24 - Which type of evidence is typically regarded as the most reliable according to...

    Correct

    • Which type of evidence is typically regarded as the most reliable according to traditional methods?

      Your Answer: RCTs with non-definitive results

      Explanation:

      Levels and Grades of Evidence in Evidence-Based Medicine

      To evaluate the quality of evidence on a subject of question, levels of grades are used. The traditional hierarchy approach places systematic reviews of randomized control trials at the top and case-series/report at the bottom. However, this approach is overly simplistic as certain research questions cannot be answered using RCTs. To address this, the Oxford Centre for Evidence-Based Medicine introduced their 2011 Levels of Evidence system, which separates the type of study questions and gives a hierarchy for each.

      The grading approach to be aware of is the GRADE system, which classifies the quality of evidence as high, moderate, low, of very low. The process begins by formulating a study question and identifying specific outcomes. Outcomes are then graded as critical of important. The evidence is then gathered and criteria are used to grade the evidence, with the type of evidence being a significant factor. Evidence can be promoted of downgraded based on certain criteria, such as limitations to study quality, inconsistency, uncertainty about directness, imprecise of sparse data, and reporting bias. The GRADE system allows for the promotion of observational studies to high-quality evidence under the right circumstances.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      15.9
      Seconds
  • Question 25 - What is the accurate definition of the standardised mortality ratio? ...

    Correct

    • What is the accurate definition of the standardised mortality ratio?

      Your Answer: The ratio between the observed number of deaths in a study population and the number of deaths that would be expected

      Explanation:

      Calculation of Standardised Mortality Ratio (SMR)

      To calculate the SMR, age and sex-specific death rates in the standard population are obtained. An estimate for the number of people in each category for both the standard and study populations is needed. The number of expected deaths in each age-sex group of the study population is calculated by multiplying the age-sex-specific rates in the standard population by the number of people in each category of the study population. The sum of all age- and sex-specific expected deaths gives the expected number of deaths for the whole study population. The observed number of deaths is then divided by the expected number of deaths to obtain the SMR.

      The SMR can be standardised using the direct of indirect method. The direct method is used when the age-sex-specific rates for the study population and the age-sex-structure of the standard population are known. The indirect method is used when the age-specific rates for the study population are unknown of not available. This method uses the observed number of deaths in the study population and compares it to the number of deaths that would be expected if the age distribution was the same as that of the standard population.

      The SMR can be interpreted as follows: an SMR less than 1.0 indicates fewer than expected deaths in the study population, an SMR of 1.0 indicates the number of observed deaths equals the number of expected deaths in the study population, and an SMR greater than 1.0 indicates more than expected deaths in the study population (excess deaths). It is sometimes expressed after multiplying by 100.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      9.6
      Seconds
  • Question 26 - Which statement about disease rates is incorrect? ...

    Incorrect

    • Which statement about disease rates is incorrect?

      Your Answer: Attributable risk is equal to the disease rate in exposed people minus that in unexposed people

      Correct Answer: The odds ratio is synonymous with the risk ratio

      Explanation:

      Disease Rates and Their Interpretation

      Disease rates are a measure of the occurrence of a disease in a population. They are used to establish causation, monitor interventions, and measure the impact of exposure on disease rates. The attributable risk is the difference in the rate of disease between the exposed and unexposed groups. It tells us what proportion of deaths in the exposed group were due to the exposure. The relative risk is the risk of an event relative to exposure. It is calculated by dividing the rate of disease in the exposed group by the rate of disease in the unexposed group. A relative risk of 1 means there is no difference between the two groups. A relative risk of <1 means that the event is less likely to occur in the exposed group, while a relative risk of >1 means that the event is more likely to occur in the exposed group. The population attributable risk is the reduction in incidence that would be observed if the population were entirely unexposed. It can be calculated by multiplying the attributable risk by the prevalence of exposure in the population. The attributable proportion is the proportion of the disease that would be eliminated in a population if its disease rate were reduced to that of the unexposed group.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      331.1
      Seconds
  • Question 27 - Which of the following can be used to represent the overall number of...

    Incorrect

    • Which of the following can be used to represent the overall number of individuals affected by a disease during a specific period?

      Your Answer: Point prevalence

      Correct Answer: Period prevalence

      Explanation:

      Measures of Disease Frequency: Incidence and Prevalence

      Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.

      Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.

      It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.

      Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      100.7
      Seconds
  • Question 28 - What type of bias is present in a study evaluating the accuracy of...

    Incorrect

    • What type of bias is present in a study evaluating the accuracy of a new diagnostic test for epilepsy if not all patients undergo the established gold-standard test?

      Your Answer: Instrument bias

      Correct Answer: Work-up bias

      Explanation:

      When comparing new diagnostic tests with gold standard tests, work-up bias can be a concern. Clinicians may be hesitant to order the gold standard test unless the new test yields a positive result, as the gold standard test may involve invasive procedures like tissue biopsy. This can significantly skew the study’s findings and affect metrics such as sensitivity and specificity. While it may not always be possible to eliminate work-up bias, researchers must account for it in their analysis.

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      56.6
      Seconds
  • Question 29 - What topics do the STARD guidelines provide recommendations for? ...

    Incorrect

    • What topics do the STARD guidelines provide recommendations for?

      Your Answer: Standards for randomising data

      Correct Answer: Studies of diagnostic accuracy

      Explanation:

      The aim of the STARD initiative is to enhance the precision and comprehensiveness of reporting diagnostic accuracy studies, enabling readers to evaluate the study’s potential for bias (internal validity) and generalizability (external validity). The STARD statement comprises a checklist of 25 items and suggests utilizing a flow diagram that outlines the study’s design and patient flow.

      As an AI language model, I do not have personal opinions of beliefs. However, I can provide information and guidance on the standards of reporting for different types of research studies. The guidelines mentioned above are essential for ensuring that research studies are reported accurately and transparently, which is crucial for the scientific community to evaluate and replicate the findings. It is important for researchers to be familiar with these standards and follow them when reporting their studies to ensure the quality and integrity of their research.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      15.2
      Seconds
  • Question 30 - A masters student had noticed that nearly all of her patients with arthritis...

    Incorrect

    • A masters student had noticed that nearly all of her patients with arthritis were over the age of 50. She was keen to investigate this further to see if there was an association.
      She selected 100 patients with arthritis and 100 controls. of the 100 patients with arthritis, 90 were over the age of 50. of the 100 controls, only 40 were over the age of 50.
      What is the odds ratio?

      Your Answer: 1.41

      Correct Answer: 3.77

      Explanation:

      The odds of being married are 3.77 times higher in individuals with panic disorder compared to controls.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      85.9
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Research Methods, Statistics, Critical Review And Evidence-Based Practice (16/30) 53%
Passmed