-
Question 1
Correct
-
What study design would be most suitable for investigating the potential correlation between the use of pacifiers in infants and sudden infant death syndrome?
Your Answer: Case-control study
Explanation:A case-control design is more suitable than a cohort study for studying sudden infant death syndrome due to its low incidence.
Types of Primary Research Studies and Their Advantages and Disadvantages
Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.
Type of Question Best Type of Study
Therapy Randomized controlled trial (RCT), cohort, case control, case series
Diagnosis Cohort studies with comparison to gold standard test
Prognosis Cohort studies, case control, case series
Etiology/Harm RCT, cohort studies, case control, case series
Prevention RCT, cohort studies, case control, case series
Cost Economic analysisStudy Type Advantages Disadvantages
Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 2
Correct
-
Which of the following statistical measures does not indicate the spread of variability of data?
Your Answer: Mean
Explanation:The mean, mode, and median are all measures of central tendency.
Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 3
Incorrect
-
What is the standardized score (z-score) for a woman whose haemoglobin concentration is 150 g/L, given that the mean haemoglobin concentration for healthy women is 135 g/L and the standard deviation is 15 g/L?
Your Answer: 2
Correct Answer: 1
Explanation:Z Scores: A Special Application of Transformation Rules
Z scores are a unique way of measuring how much and in which direction an item deviates from the mean of its distribution, expressed in units of its standard deviation. To calculate the z score for an observation x from a population with mean and standard deviation, we use the formula z = (x – mean) / standard deviation. For example, if our observation is 150 and the mean and standard deviation are 135 and 15, respectively, then the z score would be 1.0. Z scores are a useful tool for comparing observations from different distributions and for identifying outliers.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 4
Incorrect
-
What is a true statement about standardised mortality ratios?
Your Answer: An SMR is the expected mortality divided by the observed mortality in a sample population
Correct Answer: Direct standardisation requires that we know the age-specific rates of mortality in all the populations under study
Explanation:Calculation of Standardised Mortality Ratio (SMR)
To calculate the SMR, age and sex-specific death rates in the standard population are obtained. An estimate for the number of people in each category for both the standard and study populations is needed. The number of expected deaths in each age-sex group of the study population is calculated by multiplying the age-sex-specific rates in the standard population by the number of people in each category of the study population. The sum of all age- and sex-specific expected deaths gives the expected number of deaths for the whole study population. The observed number of deaths is then divided by the expected number of deaths to obtain the SMR.
The SMR can be standardised using the direct of indirect method. The direct method is used when the age-sex-specific rates for the study population and the age-sex-structure of the standard population are known. The indirect method is used when the age-specific rates for the study population are unknown of not available. This method uses the observed number of deaths in the study population and compares it to the number of deaths that would be expected if the age distribution was the same as that of the standard population.
The SMR can be interpreted as follows: an SMR less than 1.0 indicates fewer than expected deaths in the study population, an SMR of 1.0 indicates the number of observed deaths equals the number of expected deaths in the study population, and an SMR greater than 1.0 indicates more than expected deaths in the study population (excess deaths). It is sometimes expressed after multiplying by 100.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 5
Correct
-
What is the probability that a person who tests negative on the new Mephedrone screening test does not actually use Mephedrone?
Your Answer: 172/177
Explanation:Negative predictive value = 172 / 177
Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 6
Incorrect
-
The national Health Department is concerned about reducing mortality rates among elderly patients with heart disease. They have tasked a team of researchers with comparing the effectiveness and economic costs of treatment options A and B in terms of life years gained. The researchers have collected data on the number of life years gained by each treatment option and are seeking advice on the next steps for analysis. What type of analysis would you recommend they undertake?
Your Answer: Cost utility analysis
Correct Answer: Cost effectiveness analysis
Explanation:Cost effectiveness analysis (CEA) is an economic evaluation method that compares the costs and outcomes of different courses of action. The outcomes of the interventions must be measurable using a single variable, such as life years gained, making it useful for comparing preventative treatments for fatal conditions.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 7
Correct
-
What is the proportion of values that fall within a range of 3 standard deviations from the mean in a normal distribution?
Your Answer: 99.70%
Explanation:Standard Deviation and Standard Error of the Mean
Standard deviation (SD) and standard error of the mean (SEM) are two important statistical measures used to describe data. SD is a measure of how much the data varies, while SEM is a measure of how precisely we know the true mean of the population. The normal distribution, also known as the Gaussian distribution, is a symmetrical bell-shaped curve that describes the spread of many biological and clinical measurements.
68.3% of the data lies within 1 SD of the mean, 95.4% of the data lies within 2 SD of the mean, and 99.7% of the data lies within 3 SD of the mean. The SD is calculated by taking the square root of the variance and is expressed in the same units as the data set. A low SD indicates that data points tend to be very close to the mean.
On the other hand, SEM is an inferential statistic that quantifies the precision of the mean. It is expressed in the same units as the data and is calculated by dividing the SD of the sample mean by the square root of the sample size. The SEM gets smaller as the sample size increases, and it takes into account both the value of the SD and the sample size.
Both SD and SEM are important measures in statistical analysis, and they are used to calculate confidence intervals and test hypotheses. While SD quantifies scatter, SEM quantifies precision, and both are essential in understanding and interpreting data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 8
Correct
-
What is the primary purpose of funnel plots?
Your Answer: Demonstrate the existence of publication bias in meta-analyses
Explanation:Stats Publication Bias
Publication bias refers to the tendency for studies with positive findings to be published more than studies with negative findings, leading to incomplete data sets in meta-analyses and erroneous conclusions. Graphical methods such as funnel plots, Galbraith plots, ordered forest plots, and normal quantile plots can be used to detect publication bias. Funnel plots are the most commonly used and offer an easy visual way to ensure that published literature is evenly weighted. The x-axis represents the effect size, and the y-axis represents the study size. A symmetrical, inverted funnel shape indicates that publication bias is unlikely, while an asymmetrical funnel indicates a relationship between treatment effect and study size, indicating either publication bias of small study effects.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 9
Correct
-
Which of the following is not considered a crucial factor according to Wilson and Junger when implementing a screening program?
Your Answer: The condition should be potentially curable
Explanation:Wilson and Junger Criteria for Screening
1. The condition should be an important public health problem.
2. There should be an acceptable treatment for patients with recognised disease.
3. Facilities for diagnosis and treatment should be available.
4. There should be a recognised latent of early symptomatic stage.
5. The natural history of the condition, including its development from latent to declared disease should be adequately understood.
6. There should be a suitable test of examination.
7. The test of examination should be acceptable to the population.
8. There should be agreed policy on whom to treat.
9. The cost of case-finding (including diagnosis and subsequent treatment of patients) should be economically balanced in relation to the possible expenditure as a whole.
10. Case-finding should be a continuous process and not a ‘once and for all’ project.The Wilson and Junger criteria provide a framework for evaluating the suitability of a screening program for a particular condition. The criteria emphasize the importance of the condition as a public health problem, the availability of effective treatment, and the feasibility of diagnosis and treatment. Additionally, the criteria highlight the importance of understanding the natural history of the condition and the need for a suitable test of examination that is acceptable to the population. The criteria also stress the importance of having agreed policies on whom to treat and ensuring that the cost of case-finding is economically balanced. Finally, the criteria emphasize that case-finding should be a continuous process rather than a one-time project. By considering these criteria, public health officials can determine whether a screening program is appropriate for a particular condition and ensure that resources are used effectively.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 10
Incorrect
-
What is a true statement about searching in PubMed?
Your Answer: PubMed processes Boolean connectors from right to left
Correct Answer: Truncation is generally not a recommended search technique for PubMed
Explanation:Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 11
Correct
-
In a study of a new statin therapy for primary prevention of ischaemic heart disease in a diabetic population over a five year period, 1000 patients were randomly assigned to receive the new therapy and 1000 were given a placebo. The results showed that 150 patients in the placebo group had a myocardial infarction (MI) compared to 100 patients in the statin group. What is the number needed to treat (NNT) to prevent one MI in this population?
Your Answer: 20
Explanation:– Treating 1000 patients with a new statin for five years prevented 50 MIs.
– The number needed to treat (NNT) to prevent one MI is 20 (1000/50).
– NNT provides information on treatment efficacy beyond statistical significance.
– Based on these data, treating as few as 20 patients over five years may prevent an infarct.
– Cost economic data can be calculated by factoring in drug costs and costs of treating and rehabilitating a patient with an MI. -
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 12
Incorrect
-
A new screening test is developed for Alzheimer's disease. It is a cognitive test which measures memory; the lower the score, the more likely a patient is to have the condition. If the cut-off for a positive test is increased, which one of the following will also be increased?
Your Answer: Negative predictive value
Correct Answer: Specificity
Explanation:Raising the threshold for a positive test outcome will result in a reduction in the number of incorrect positive results, leading to an improvement in specificity.
Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 13
Correct
-
Which of the following is an example of secondary evidence?
Your Answer: A Cochrane review on the evidence of exercise for reducing the duration of depression relapses
Explanation:Scientific literature can be classified into two main types: primary and secondary sources. Primary sources are original research studies that present data and analysis without any external evaluation of interpretation. Examples of primary sources include randomized controlled trials, cohort studies, case-control studies, case-series, and conference papers. Secondary sources, on the other hand, provide an interpretation and analysis of primary sources. These sources are typically removed by one of more steps from the original event. Examples of secondary sources include evidence-based guidelines and textbooks, meta-analyses, and systematic reviews.
Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 14
Incorrect
-
What type of evidence is considered the most robust and reliable?
Your Answer: Randomised controlled trial
Correct Answer: Meta-analysis
Explanation:Levels and Grades of Evidence in Evidence-Based Medicine
To evaluate the quality of evidence on a subject of question, levels of grades are used. The traditional hierarchy approach places systematic reviews of randomized control trials at the top and case-series/report at the bottom. However, this approach is overly simplistic as certain research questions cannot be answered using RCTs. To address this, the Oxford Centre for Evidence-Based Medicine introduced their 2011 Levels of Evidence system, which separates the type of study questions and gives a hierarchy for each.
The grading approach to be aware of is the GRADE system, which classifies the quality of evidence as high, moderate, low, of very low. The process begins by formulating a study question and identifying specific outcomes. Outcomes are then graded as critical of important. The evidence is then gathered and criteria are used to grade the evidence, with the type of evidence being a significant factor. Evidence can be promoted of downgraded based on certain criteria, such as limitations to study quality, inconsistency, uncertainty about directness, imprecise of sparse data, and reporting bias. The GRADE system allows for the promotion of observational studies to high-quality evidence under the right circumstances.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 15
Correct
-
What qualitative research approach aims to understand individuals' inner experiences and perspectives?
Your Answer: Phenomenology
Explanation:Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 16
Incorrect
-
In scientific research, what variable type has traditionally been used to record the age of study participants?
Your Answer: Ordinal
Correct Answer: Binary
Explanation:Gender has traditionally been recorded as either male of female, creating a binary of dichotomous variable. Other categorical variables, such as eye color and ethnicity, can be grouped into two or more categories. Continuous variables, such as temperature, height, weight, and age, can be placed anywhere on a scale and have mathematical properties. Ordinal variables allow for ranking, but do not allow for direct mathematical comparisons between values.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 17
Correct
-
How do the incidence rate and cumulative incidence differ from each other?
Your Answer: The incidence rate is a more accurate estimate of the rate at which the outcome develops
Explanation:Measures of Disease Frequency: Incidence and Prevalence
Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.
Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.
It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.
Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 18
Correct
-
Which term is used to describe the total number of newly diagnosed cases of a disease during a specific time frame?
Your Answer: Cumulative incidence
Explanation:Measures of Disease Frequency: Incidence and Prevalence
Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.
Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.
It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.
Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 19
Correct
-
A team of scientists aims to prevent bias in their study on the effectiveness of a new medication for elderly patients with hypertension. They randomly assign 80 patients to the treatment group, of which 60 complete the 12-week trial. Another 80 patients are assigned to the placebo group, with 75 completing the trial. The researchers agree to conduct an intention-to-treat (ITT) analysis using the LOCF method. What type of bias are they attempting to eliminate?
Your Answer: Attrition bias
Explanation:To address the issue of drop-outs in a study, an intention to treat (ITT) analysis can be employed. Drop-outs can lead to attrition bias, which creates systematic differences in attrition across treatment groups. In an ITT analysis, all patients are included in the groups they were initially assigned to through random allocation. To handle missing data, two common methods are last observation carried forward and worst case scenario analysis.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 20
Correct
-
What percentage of values fall within a range of 3 standard deviations above and below the mean?
Your Answer: 99.70%
Explanation:Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 21
Incorrect
-
What is a correct statement about funnel plots?
Your Answer: An asymmetric funnel shape confirms the presence of publication bias
Correct Answer: Each dot represents a separate study result
Explanation:An asymmetric funnel plot may indicate the presence of publication bias, although this is not a definitive confirmation. The x-axis typically represents a measure of effect, such as the risk ratio of odds ratio, although other measures may also be used.
Stats Publication Bias
Publication bias refers to the tendency for studies with positive findings to be published more than studies with negative findings, leading to incomplete data sets in meta-analyses and erroneous conclusions. Graphical methods such as funnel plots, Galbraith plots, ordered forest plots, and normal quantile plots can be used to detect publication bias. Funnel plots are the most commonly used and offer an easy visual way to ensure that published literature is evenly weighted. The x-axis represents the effect size, and the y-axis represents the study size. A symmetrical, inverted funnel shape indicates that publication bias is unlikely, while an asymmetrical funnel indicates a relationship between treatment effect and study size, indicating either publication bias of small study effects.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 22
Correct
-
In a randomised controlled trial investigating the initial management of sexual dysfunction with two drugs, some patients withdraw from the study due to medication-related adverse effects. What is the appropriate method for analysing the resulting data?
Your Answer: Include the patients who drop out in the final data set
Explanation:Intention to Treat Analysis in Randomized Controlled Trials
Intention to treat analysis is a statistical method used in randomized controlled trials to analyze all patients who were randomly assigned to a treatment group, regardless of whether they completed of received the treatment. This approach is used to avoid the potential biases that may arise from patients dropping out of switching between treatment groups. By analyzing all patients according to their original treatment assignment, intention to treat analysis provides a more accurate representation of the true treatment effects. This method is widely used in clinical trials to ensure that the results are reliable and unbiased.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 23
Correct
-
Which of the following statements accurately describes the standard error of the mean?
Your Answer: Gets smaller as the sample size increases
Explanation:As the sample size (n) increases, the standard error of the mean (SEM) decreases. This is because the SEM is inversely proportional to the square root of the sample size (n). As n gets larger, the denominator of the SEM equation gets larger, causing the overall value of the SEM to decrease. This means that larger sample sizes provide more accurate estimates of the population mean, as the calculated sample mean is expected to be closer to the true population mean.
Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 24
Incorrect
-
What is the meaning of the C in the PICO model utilized in evidence-based medicine?
Your Answer: Collection
Correct Answer: Comparison
Explanation:Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 25
Correct
-
A consultant psychiatrist presents a case of a depressed patient with cancer who they had reviewed on a hospital ward. She rated the patient's cancer as 'severe'. Her description of the patient's cancer conforms to which of the following data types?
Your Answer: Ordinal
Explanation:The use of a scale that categorizes data as mild, moderate, and severe is an example of ordinal data. The data can be arranged in a specific order, where severe cancer is considered worse than moderate, which is worse than mild. However, the difference between mild and moderate may not be the same as the difference between moderate and severe, indicating that this type of data does not follow an interval scale.
Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 26
Correct
-
What is the most suitable statistical test to compare the calcium levels of males and females who developed inflammatory bowel disease in childhood, considering that calcium levels in this population are normally distributed?
Your Answer: Unpaired t-test
Explanation:The appropriate statistical test for the research question of comparing calcium levels between two unrelated groups is an unpaired/independent t-test, as the data is parametric and the samples are independent. This means that the scores of one group do not affect the other, and there is no meaningful way to pair them.
Dependent samples, on the other hand, are related to each other and can occur in two scenarios. One scenario is when a group is measured twice, such as in a pretest-posttest situation. The other scenario is when an observation in one sample is matched with an observation in the second sample.
For example, if quality inspectors want to compare two laboratories to determine whether their blood tests give similar results, they would need to use a paired t-test. This is because both labs tested blood specimens from the same 10 children, making the test results dependent. The paired t-test is based on the assumption that samples are dependent.
Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 27
Incorrect
-
One of the following statements that describes a type I error is the rejection of a true null hypothesis.
Your Answer: The null hypothesis is accepted when it is false
Correct Answer: The null hypothesis is rejected when it is true
Explanation:Making a false positive conclusion by rejecting the null hypothesis.
Understanding Hypothesis Testing in Statistics
In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.
The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.
Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 28
Correct
-
How would you describe the typical of ongoing prevalence of a disease within a specific population?
Your Answer: Endemic
Explanation:Epidemiology Key Terms
– Epidemic (Outbreak): A rise in disease cases above the anticipated level in a specific population during a particular time frame.
– Endemic: The regular of anticipated level of disease in a particular population.
– Pandemic: Epidemics that affect a significant number of individuals across multiple countries, regions, of continents. -
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 29
Incorrect
-
Which p-value would provide the strongest evidence in favor of the alternative hypothesis?
Your Answer: p < 0.01
Correct Answer:
Explanation:Understanding Hypothesis Testing in Statistics
In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.
The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.
Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 30
Correct
-
Which of the following is an example of a non-random sampling method?
Your Answer: Quota sampling
Explanation:Sampling Methods in Statistics
When collecting data from a population, it is often impractical and unnecessary to gather information from every single member. Instead, taking a sample is preferred. However, it is crucial that the sample accurately represents the population from which it is drawn. There are two main types of sampling methods: probability (random) sampling and non-probability (non-random) sampling.
Non-probability sampling methods, also known as judgement samples, are based on human choice rather than random selection. These samples are convenient and cheaper than probability sampling methods. Examples of non-probability sampling methods include voluntary sampling, convenience sampling, snowball sampling, and quota sampling.
Probability sampling methods give a more representative sample of the population than non-probability sampling. In each probability sampling technique, each population element has a known (non-zero) chance of being selected for the sample. Examples of probability sampling methods include simple random sampling, systematic sampling, cluster sampling, stratified sampling, and multistage sampling.
Simple random sampling is a sample in which every member of the population has an equal chance of being chosen. Systematic sampling involves selecting every kth member of the population. Cluster sampling involves dividing a population into separate groups (called clusters) and selecting a random sample of clusters. Stratified sampling involves dividing a population into groups (strata) and taking a random sample from each strata. Multistage sampling is a more complex method that involves several stages and combines two of more sampling methods.
Overall, probability sampling methods give a more representative sample of the population, but non-probability sampling methods are often more convenient and cheaper. It is important to choose the appropriate sampling method based on the research question and available resources.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 31
Incorrect
-
Which statistical test is appropriate for analyzing normally distributed data that is measured?
Your Answer: Chi-squared test
Correct Answer: Independent t-test
Explanation:The t-test is appropriate for analyzing data that meets parametric assumptions, while other tests are more suitable for non-parametric data.
Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 32
Correct
-
A new test is developed to screen for dementia in elderly patients. Trials have shown it has a sensitivity for detecting clinically significant dementia of 80% but a specificity of 60%. What is the likelihood ratio for a positive test result?
Your Answer: 2
Explanation:The likelihood ratio for a positive test result is 2, which means that the probability of a positive test result in a person with the condition is twice as high as the probability of a positive test result in a person without the condition.
Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 33
Correct
-
One possible method for determining the number needed to treat is:
Your Answer: 1 / (Absolute risk reduction)
Explanation:Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 34
Correct
-
A team of scientists aims to conduct a systematic review on the effectiveness of a new medication for elderly patients with dementia. They decide to search for studies published in languages other than English, as they know that positive results are more likely to be published in English-language journals, while negative results are more likely to be published in non-English language journals. What type of bias are they trying to prevent?
Your Answer: Tower of Babel bias
Explanation:When conducting a systematic review, restricting the selection of studies to those published only in English may introduce a bias known as the Tower of Babel effect. This occurs because studies conducted in non-English speaking countries that report positive results are more likely to be published in English language journals, while those with negative results are more likely to be published in non-English language journals.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 35
Incorrect
-
What database is most suitable for finding scholarly material that has not undergone official publication?
Your Answer: Cochrane Library
Correct Answer: SIGLE
Explanation:SIGLE is a database that contains unpublished of ‘grey’ literature, while CINAHL is a database that focuses on healthcare and biomedical journal articles. The Cochrane Library is a collection of databases that includes the Cochrane Reviews, which are systematic reviews and meta-analyses of medical research. EMBASE is a pharmacological and biomedical database, and PsycINFO is a database of abstracts from psychological literature that is created by the American Psychological Association.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 36
Correct
-
Which type of variable does the measurement of temperature on the Kelvin scale represent?
Your Answer: Ratio
Explanation:The distinction between interval and ratio scales is illustrated by the fact that ratio scales have a non-arbitrary zero point and meaningful ratios between values. Celsius and Fahrenheit temperature measurements are examples of interval scales, while the Kelvin scale is a ratio scale due to its zero point representing the complete absence of heat and the meaningful ratios between its values.
Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 37
Correct
-
Calculate the median value from the following values:
1, 3, 3, 3, 4, 5, 5, 6, 6, 6, 6Your Answer: 5
Explanation:Measures of Central Tendency
Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.
The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.
The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.
In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 38
Correct
-
Which statement accurately reflects the standard mortality ratio of a disease in a sampled population that is determined to be 1.4?
Your Answer: There were 40% more fatalities from the disease in this population compared to the reference population
Explanation:Calculation of Standardised Mortality Ratio (SMR)
To calculate the SMR, age and sex-specific death rates in the standard population are obtained. An estimate for the number of people in each category for both the standard and study populations is needed. The number of expected deaths in each age-sex group of the study population is calculated by multiplying the age-sex-specific rates in the standard population by the number of people in each category of the study population. The sum of all age- and sex-specific expected deaths gives the expected number of deaths for the whole study population. The observed number of deaths is then divided by the expected number of deaths to obtain the SMR.
The SMR can be standardised using the direct of indirect method. The direct method is used when the age-sex-specific rates for the study population and the age-sex-structure of the standard population are known. The indirect method is used when the age-specific rates for the study population are unknown of not available. This method uses the observed number of deaths in the study population and compares it to the number of deaths that would be expected if the age distribution was the same as that of the standard population.
The SMR can be interpreted as follows: an SMR less than 1.0 indicates fewer than expected deaths in the study population, an SMR of 1.0 indicates the number of observed deaths equals the number of expected deaths in the study population, and an SMR greater than 1.0 indicates more than expected deaths in the study population (excess deaths). It is sometimes expressed after multiplying by 100.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 39
Correct
-
Arrange the following research studies in the correct order based on their level of evidence.
Your Answer: Systematic review of RCTs, RCTs, cohort, case-control, cross-sectional, case-series
Explanation:While many individuals can readily remember that the systematic review is at the highest level and case-series at the lowest, it can be difficult to correctly sequence the intermediate levels.
Levels and Grades of Evidence in Evidence-Based Medicine
To evaluate the quality of evidence on a subject of question, levels of grades are used. The traditional hierarchy approach places systematic reviews of randomized control trials at the top and case-series/report at the bottom. However, this approach is overly simplistic as certain research questions cannot be answered using RCTs. To address this, the Oxford Centre for Evidence-Based Medicine introduced their 2011 Levels of Evidence system, which separates the type of study questions and gives a hierarchy for each.
The grading approach to be aware of is the GRADE system, which classifies the quality of evidence as high, moderate, low, of very low. The process begins by formulating a study question and identifying specific outcomes. Outcomes are then graded as critical of important. The evidence is then gathered and criteria are used to grade the evidence, with the type of evidence being a significant factor. Evidence can be promoted of downgraded based on certain criteria, such as limitations to study quality, inconsistency, uncertainty about directness, imprecise of sparse data, and reporting bias. The GRADE system allows for the promotion of observational studies to high-quality evidence under the right circumstances.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 40
Correct
-
In an economic evaluation study, which of the options below would be considered a direct cost?
Your Answer: Costs of training staff to provide an intervention
Explanation:Methods of Economic Evaluation
There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.
Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.
Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.
Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.
Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.
Costs in Economic Evaluation Studies
There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 41
Correct
-
How does the prevalence of a condition impact a particular aspect?
Your Answer: Positive predictive value
Explanation:The characteristics of precision, sensitivity, accuracy, and specificity are not influenced by the prevalence of the condition and remain stable. However, the positive predictive value is affected by the prevalence of the condition, particularly in cases where the prevalence is low. This is because a decrease in the prevalence of the condition leads to a decrease in the number of true positives, which in turn reduces the numerator of the PPV equation, resulting in a lower PPV. The formula for PPV is TP/(TP+FP).
Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 42
Incorrect
-
What benefit does conducting a cost-effectiveness analysis offer?
Your Answer: Health outcomes are translated into generic measures of health that combine morbidity and mortality
Correct Answer: Outcomes are expressed in natural units that are clinically meaningful
Explanation:A major benefit of using cost-effectiveness analysis is that the results are immediately understandable, such as the cost per year of remission from depression. When conducting economic evaluations, costs are typically estimated in a standardized manner across different types of studies, taking into account direct costs (e.g. physician time), indirect costs (e.g. lost productivity from being absent from work), and future costs (e.g. developing diabetes as a result of treatment with clozapine). The primary variation between economic evaluations lies in how outcomes are evaluated.
Methods of Economic Evaluation
There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.
Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.
Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.
Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.
Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.
Costs in Economic Evaluation Studies
There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 43
Correct
-
What is the term used to describe how a person's age affects their likelihood of reporting past exposure to a certain risk factor?
Your Answer: Recall bias
Explanation:Recall bias pertains to how a person’s illness status can influence their tendency to report past exposure to a risk factor. Confounding arises when an additional variable is associated with both an independent and dependent variable. Observer bias refers to the possibility that researchers’ cognitive biases may unconsciously impact the results of a study. Publication bias refers to the tendency for studies with positive results to be more likely to be published. Selection bias occurs when certain individuals of groups are overrepresented, leading to inadequate randomization.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 44
Incorrect
-
The prevalence of depressive disease in a village with an adult population of 1000 was assessed using a new diagnostic score. The results showed that out of 1000 adults, 200 tested positive for the disease and 800 tested negative. What is the prevalence of depressive disease in this population?
Your Answer: 0.20%
Correct Answer: 20%
Explanation:The prevalence of the disease is 20% as there are currently 200 cases out of a total population of 1000.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 45
Incorrect
-
You design an experiment investigating whether 3 different exercise routines each with a different intensity level affect a person's heart rate to a different degree. Which of the following tests would you use to demonstrate a statistically significant difference between the exercise routines?:
Your Answer: Student's t-test
Correct Answer: ANOVA
Explanation:Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 46
Correct
-
What is the most appropriate way to describe the method of data collection used for the Likert scale questionnaire created by the psychiatrist and administered to 100 community patients to better understand their religious needs?
Your Answer: Ordinal
Explanation:Likert scales are a type of ordinal scale used in surveys to measure attitudes of opinions. Respondents are presented with a series of statements of questions and asked to rate their level of agreement of frequency of occurrence on a scale of options. For instance, a Likert scale question might ask how often someone prays, with response options ranging from never to daily. While the responses are ordered in terms of frequency, the intervals between each option are not necessarily equal of quantifiable. Therefore, Likert scales are considered ordinal rather than interval scales.
Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 47
Correct
-
Which of the following statements accurately describes significance tests?
Your Answer: Chi-squared test is used to compare non-parametric data
Explanation:The chi-squared test is a statistical test that does not rely on any assumptions about the underlying distribution of the data, making it a non-parametric test.
Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 48
Incorrect
-
For what purpose is the GRADE approach used in the field of evidence based medicine?
Your Answer: Suggesting suitable randomisation techniques
Correct Answer: Assessing the quality of evidence
Explanation:Levels and Grades of Evidence in Evidence-Based Medicine
To evaluate the quality of evidence on a subject of question, levels of grades are used. The traditional hierarchy approach places systematic reviews of randomized control trials at the top and case-series/report at the bottom. However, this approach is overly simplistic as certain research questions cannot be answered using RCTs. To address this, the Oxford Centre for Evidence-Based Medicine introduced their 2011 Levels of Evidence system, which separates the type of study questions and gives a hierarchy for each.
The grading approach to be aware of is the GRADE system, which classifies the quality of evidence as high, moderate, low, of very low. The process begins by formulating a study question and identifying specific outcomes. Outcomes are then graded as critical of important. The evidence is then gathered and criteria are used to grade the evidence, with the type of evidence being a significant factor. Evidence can be promoted of downgraded based on certain criteria, such as limitations to study quality, inconsistency, uncertainty about directness, imprecise of sparse data, and reporting bias. The GRADE system allows for the promotion of observational studies to high-quality evidence under the right circumstances.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 49
Incorrect
-
How are correlation and regression related?
Your Answer: Spearman's correlation coefficient is represented by a small r
Correct Answer: Regression allows one variable to be predicted from another variable
Explanation:Stats: Correlation and Regression
Correlation and regression are related but not interchangeable terms. Correlation is used to test for association between variables, while regression is used to predict values of dependent variables from independent variables. Correlation can be linear, non-linear, of non-existent, and can be strong, moderate, of weak. The strength of a linear relationship is measured by the correlation coefficient, which can be positive of negative and ranges from very weak to very strong. However, the interpretation of a correlation coefficient depends on the context and purposes. Correlation can suggest association but cannot prove of disprove causation. Linear regression, on the other hand, can be used to predict how much one variable changes when a second variable is changed. Scatter graphs are used in correlation and regression analyses to visually determine if variables are associated and to detect outliers. When constructing a scatter graph, the dependent variable is typically placed on the vertical axis and the independent variable on the horizontal axis.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 50
Incorrect
-
How can the prevalence of schizophrenia in the UK population be characterized by the consistent finding of approximately 1%?
Your Answer: Polydemic
Correct Answer: Endemic
Explanation:Epidemiology Key Terms
– Epidemic (Outbreak): A rise in disease cases above the anticipated level in a specific population during a particular time frame.
– Endemic: The regular of anticipated level of disease in a particular population.
– Pandemic: Epidemics that affect a significant number of individuals across multiple countries, regions, of continents. -
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)