-
Question 1
Correct
-
What factors affect the statistical power of a study?
Your Answer: Sample size
Explanation:A study that has a greater sample size is considered to have higher power, meaning it is capable of detecting a significant difference of effect that is clinically relevant.
The Importance of Power in Statistical Analysis
Power is a crucial concept in statistical analysis as it helps researchers determine the number of participants needed in a study to detect a clinically significant difference of effect. It represents the probability of correctly rejecting the null hypothesis when it is false, which means avoiding a Type II error. Power values range from 0 to 1, with 0 indicating 0% and 1 indicating 100%. A power of 0.80 is generally considered the minimum acceptable level.
Several factors influence the power of a study, including sample size, effect size, and significance level. Larger sample sizes lead to more precise parameter estimations and increase the study’s ability to detect a significant effect. Effect size, which is determined at the beginning of a study, refers to the size of the difference between two means that leads to rejecting the null hypothesis. Finally, the significance level, also known as the alpha level, represents the probability of a Type I error. By considering these factors, researchers can optimize the power of their studies and increase the likelihood of detecting meaningful effects.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 2
Correct
-
A study looks into the effects of alcohol consumption on female psychiatrists. A group are selected and separated by the amount they drink into four groups. The first group drinks no alcohol, the second occasionally, the third often, and the fourth large and regular amounts. The group is followed up over the next ten years and the rates of cirrhosis are recorded.
What is the dependent variable in the study?Your Answer: Rates of liver cirrhosis
Explanation:Understanding Stats Variables
Variables are characteristics, numbers, of quantities that can be measured of counted. They are also known as data items. Examples of variables include age, sex, business income and expenses, country of birth, capital expenditure, class grades, eye colour, and vehicle type. The value of a variable may vary between data units in a population. In a typical study, there are three main variables: independent, dependent, and controlled variables.
The independent variable is something that the researcher purposely changes during the investigation. The dependent variable is the one that is observed and changes in response to the independent variable. Controlled variables are those that are not changed during the experiment. Dependent variables are affected by independent variables but not by controlled variables, as these do not vary throughout the study.
For instance, a researcher wants to test the effectiveness of a new weight loss medication. Participants are divided into three groups, with the first group receiving a placebo (0mg dosage), the second group a 10 mg dose, and the third group a 40 mg dose. After six months, the participants’ weights are measured. In this case, the independent variable is the dosage of the medication, as that is what is being manipulated. The dependent variable is the weight, as that is what is being measured.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 3
Incorrect
-
Regarding inaccuracies in epidemiological research, which of the following statements is accurate?
Your Answer: Maximising precision ensures the minimisation of non-random error
Correct Answer: Precision may be optimised by the utilisation of an adequate sample size and maximisation of the accuracy of any measures
Explanation:In order to achieve accurate results, epidemiological studies strive to increase both precision and validity. Precision can be improved by using a sufficient sample size and ensuring that measurements are as accurate as possible, which helps to reduce random error caused by sampling and measurement errors. Validity, on the other hand, aims to minimize non-random error caused by bias and confounding. Overall, both precision and validity are crucial in producing reliable findings in epidemiological research. This information is based on Prince’s (2012) chapter on epidemiology in the book Core Psychiatry, edited by Wright, Stern, and Phelan.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 4
Incorrect
-
How can it be determined if the study on the effectiveness of a new oral treatment for schizophrenia patients in preventing hospital admissions has yielded statistically significant results?
Your Answer: p-value < 0.5
Correct Answer:
Explanation:Understanding Hypothesis Testing in Statistics
In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.
The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.
Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 5
Correct
-
What is the term used to describe a test that initially appears to measure what it is intended to measure?
Your Answer: Good face validity
Explanation:A test that seems to measure what it is intended to measure has strong face validity.
Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 6
Correct
-
What statistical test would be appropriate to compare the mean blood pressure measurements of a group of individuals before and after exercise?
Your Answer: Paired t-test
Explanation:Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 7
Correct
-
Six men in a study on the sleep inducing effects of melatonin are aged 52, 55, 56, 58, 59, and 92. What is the median age of the men included in the study?
Your Answer: 57
Explanation:– The median is the point with half the values above and half below.
– In the given data set, there are an even number of values.
– The median value is halfway between the two middle values.
– The middle values are 56 and 58.
– Therefore, the median is (56 + 58) / 2.Measures of Central Tendency
Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.
The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.
The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.
In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 8
Incorrect
-
Which type of bias is the second phase of the study intended to address if the second phase involved home visits to those people who did not reply to the mailed questionnaire on levels of physical activity in adults aged 50 and above?
Your Answer: Loss to follow up bias
Correct Answer: Participation bias
Explanation:Types of Bias in Statistics
Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.
There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 9
Correct
-
What methods are most effective in determining interobserver agreement?
Your Answer: Kappa
Explanation:Kappa is used to assess the consistency of reliability between different raters.
Understanding the Kappa Statistic for Measuring Interobserver Variation
The kappa statistic, also known as Cohen’s kappa coefficient, is a useful tool for quantifying the level of agreement between independent observers. This measure can be applied in any situation where multiple observers are evaluating the same thing, such as in medical diagnoses of research studies. The kappa coefficient ranges from 0 to 1, with 0 indicating complete disagreement and 1 indicating perfect agreement. By using the kappa statistic, researchers and practitioners can gain insight into the level of interobserver variation present in their data, which can help to improve the accuracy and reliability of their findings. Overall, the kappa statistic is a valuable tool for understanding and measuring interobserver variation in a variety of contexts.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 10
Correct
-
Which of the following is not a valid type of validity?
Your Answer: Inter-rater
Explanation:Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 11
Incorrect
-
What is the GRADE approach used in evidence based medicine and what are its characteristics?
Your Answer: It offers five levels of evidence quality
Correct Answer: The system can be applied to observational studies
Explanation:Levels and Grades of Evidence in Evidence-Based Medicine
To evaluate the quality of evidence on a subject of question, levels of grades are used. The traditional hierarchy approach places systematic reviews of randomized control trials at the top and case-series/report at the bottom. However, this approach is overly simplistic as certain research questions cannot be answered using RCTs. To address this, the Oxford Centre for Evidence-Based Medicine introduced their 2011 Levels of Evidence system, which separates the type of study questions and gives a hierarchy for each.
The grading approach to be aware of is the GRADE system, which classifies the quality of evidence as high, moderate, low, of very low. The process begins by formulating a study question and identifying specific outcomes. Outcomes are then graded as critical of important. The evidence is then gathered and criteria are used to grade the evidence, with the type of evidence being a significant factor. Evidence can be promoted of downgraded based on certain criteria, such as limitations to study quality, inconsistency, uncertainty about directness, imprecise of sparse data, and reporting bias. The GRADE system allows for the promotion of observational studies to high-quality evidence under the right circumstances.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 12
Correct
-
Which of the following variables is most appropriately classified as nominal?
Your Answer: Ethnic group
Explanation:Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 13
Correct
-
What is the conventional cutoff for a p-value of 0.05 and what does it mean in terms of the likelihood of detecting a difference by chance?
Your Answer: 1 in 14 times
Explanation:The probability of detecting a difference by chance is 1 in 20 times when the p-value is 0.05, which is the conventional cutoff. In this case, the answer is 1 in 14 times, which is equivalent to a p-value of 0.07.
Understanding Hypothesis Testing in Statistics
In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.
The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.
Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 14
Incorrect
-
Which statement accurately describes research variables?
Your Answer: Independent variables are not under of the experimenter's control
Correct Answer: Changes in a dependent variable may result from changes in the independent variable
Explanation:Understanding Stats Variables
Variables are characteristics, numbers, of quantities that can be measured of counted. They are also known as data items. Examples of variables include age, sex, business income and expenses, country of birth, capital expenditure, class grades, eye colour, and vehicle type. The value of a variable may vary between data units in a population. In a typical study, there are three main variables: independent, dependent, and controlled variables.
The independent variable is something that the researcher purposely changes during the investigation. The dependent variable is the one that is observed and changes in response to the independent variable. Controlled variables are those that are not changed during the experiment. Dependent variables are affected by independent variables but not by controlled variables, as these do not vary throughout the study.
For instance, a researcher wants to test the effectiveness of a new weight loss medication. Participants are divided into three groups, with the first group receiving a placebo (0mg dosage), the second group a 10 mg dose, and the third group a 40 mg dose. After six months, the participants’ weights are measured. In this case, the independent variable is the dosage of the medication, as that is what is being manipulated. The dependent variable is the weight, as that is what is being measured.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 15
Correct
-
What is the purpose of using the Kolmogorov-Smirnov and Jarque-Bera tests?
Your Answer: Normality
Explanation:Normality Testing in Statistics
In statistics, parametric tests are based on the assumption that the data set follows a normal distribution. On the other hand, non-parametric tests do not require this assumption but are less powerful. To check if a distribution is normally distributed, there are several tests available, including the Kolmogorov-Smirnov (Goodness-of-Fit) Test, Jarque-Bera test, Wilk-Shapiro test, P-plot, and Q-plot. However, it is important to note that if a data set is not normally distributed, it may be possible to transform it to make it follow a normal distribution, such as by taking the logarithm of the values.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 16
Incorrect
-
What is necessary for a study to confidently assert causation?
Your Answer: Good criterion validity
Correct Answer: Good internal validity
Explanation:In order to make assertions about causation, strong internal validity is necessary.
Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 17
Correct
-
What is the primary benefit of conducting non-inferiority trials in the evaluation of a new medication?
Your Answer: Small sample size is required
Explanation:Study Designs for New Drugs: Options and Considerations
When launching a new drug, there are various study design options available. One common approach is a placebo-controlled trial, which can provide strong evidence but may be deemed unethical if established treatments are available. Additionally, it does not allow for a comparison with standard treatments. Therefore, statisticians must decide whether the trial aims to demonstrate superiority, equivalence, of non-inferiority to an existing treatment.
Superiority trials may seem like the obvious choice, but they require a large sample size to show a significant benefit over an existing treatment. Equivalence trials define an equivalence margin on a specified outcome, and if the confidence interval of the difference between the two drugs falls within this margin, the drugs are assumed to have a similar effect. Non-inferiority trials are similar to equivalence trials, but only the lower confidence interval needs to fall within the equivalence margin. These trials require smaller sample sizes, and once a drug has been shown to be non-inferior, larger studies may be conducted to demonstrate superiority.
It is important to note that drug companies may not necessarily aim to show superiority over an existing product. If they can demonstrate that their product is equivalent of even non-inferior, they may compete on price of convenience. Overall, the choice of study design depends on various factors, including ethical considerations, sample size, and the desired outcome.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 18
Incorrect
-
What test would be the most effective in verifying the suitability of using a parametric test on a given dataset?
Your Answer: Wilcoxon rank test
Correct Answer: Lilliefors test
Explanation:Normality Testing in Statistics
In statistics, parametric tests are based on the assumption that the data set follows a normal distribution. On the other hand, non-parametric tests do not require this assumption but are less powerful. To check if a distribution is normally distributed, there are several tests available, including the Kolmogorov-Smirnov (Goodness-of-Fit) Test, Jarque-Bera test, Wilk-Shapiro test, P-plot, and Q-plot. However, it is important to note that if a data set is not normally distributed, it may be possible to transform it to make it follow a normal distribution, such as by taking the logarithm of the values.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 19
Correct
-
What is the standard deviation of the sample mean weight of 64 patients diagnosed with paranoid schizophrenia, given that the average weight is 81 kg and the standard deviation is 12 kg?
Your Answer: 1.5
Explanation:– The standard error of the mean is calculated using the formula: standard deviation / square root (number of patients).
– In this case, the standard error of the mean is 12 / square root (64).
– Simplifying this equation gives a standard error of the mean of 12 / 8.Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 20
Correct
-
What statement accurately describes percentiles?
Your Answer: Q1 is the 25th percentile
Explanation:Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 21
Incorrect
-
Which statement about confounding is incorrect?
Your Answer: Stratification is a technique used to control for confounding
Correct Answer: In the analytic stage of a study confounding can be controlled for by randomisation
Explanation:In the analytic stage of a study, confounding cannot be controlled for by the technique of stratification. (This is false, as stratification is a technique commonly used to control for confounding in observational studies.)
Stats Confounding
A confounding factor is a factor that can obscure the relationship between an exposure and an outcome in a study. This factor is associated with both the exposure and the disease. For example, in a study that finds a link between coffee consumption and heart disease, smoking could be a confounding factor because it is associated with both drinking coffee and heart disease. Confounding occurs when there is a non-random distribution of risk factors in the population, such as age, sex, and social class.
To control for confounding in the design stage of an experiment, researchers can use randomization, restriction, of matching. Randomization aims to produce an even distribution of potential risk factors in two populations. Restriction involves limiting the study population to a specific group to ensure similar age distributions. Matching involves finding and enrolling participants who are similar in terms of potential confounding factors.
In the analysis stage of an experiment, researchers can control for confounding by using stratification of multivariate models such as logistic regression, linear regression, of analysis of covariance (ANCOVA). Stratification involves creating categories of strata in which the confounding variable does not vary of varies minimally.
Overall, controlling for confounding is important in ensuring that the relationship between an exposure and an outcome is accurately assessed in a study.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 22
Correct
-
What is the middle value in the set of numbers 2, 9, 4, 1, 23?
Your Answer: 4
Explanation:Measures of Central Tendency
Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.
The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.
The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.
In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 23
Correct
-
Which of the following is an example of primary evidence?
Your Answer: A case-series of chronic leukocytosis associated with clozapine
Explanation:Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 24
Incorrect
-
What is the statistical test that is represented by the F statistic?
Your Answer: Chi squared test
Correct Answer: ANOVA
Explanation:Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 25
Incorrect
-
Which of the following scenarios demonstrates information bias?
Your Answer: Neyman bias
Correct Answer: Lead Time bias
Explanation:Types of Bias in Statistics
Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.
There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 26
Incorrect
-
A study examines the effectiveness of adding a new antiplatelet drug to aspirin for patients over the age of 60 who have had a stroke. A total of 170 patients are enrolled, with 120 receiving the new drug in addition to aspirin and the remaining 50 receiving only aspirin. After 5 years, it is found that 18 patients who received the new drug experienced a subsequent stroke, while only 10 patients who received aspirin alone had a further stroke. What is the number needed to treat?
Your Answer: 1.8
Correct Answer: 20
Explanation:Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 27
Incorrect
-
The regional Health Authority has requested your expertise in determining whether to establish a new 12 bed pediatric ward of a six bed adolescent psychiatric unit. Your task is to conduct an economic analysis that evaluates the financial advantages and disadvantages of both proposals.
Your Answer: Cost effectiveness analysis
Correct Answer: Cost benefit analysis
Explanation:A cost benefit analysis is a method of evaluating whether the benefits of an intervention outweigh its costs, using monetary units as the common measurement. Typically, this type of analysis is employed by funding bodies to make decisions about financing, such as whether to allocate resources for a new delivery suite of electroconvulsive therapy suite.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 28
Correct
-
How is validity assessed in qualitative research?
Your Answer: Triangulation
Explanation:To examine differences between various groups, researchers may conduct subgroup analyses by dividing participant data into subsets. These subsets may include specific demographics (e.g. gender) of study characteristics (e.g. location). Subgroup analyses can help explain inconsistent findings of provide insights into particular patient populations, interventions, of study types.
Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 29
Incorrect
-
What measure of deprivation was created specifically to assess the workload of General Practice?
Your Answer: Townsend Index
Correct Answer: Jarman Score
Explanation:It is advisable not to focus too much on this unusual question in the college exams. It is important to keep in mind that the Jarman Score is the commonly used score in general practice.
Measuring Deprivation: Common Indices
Deprivation indices are used to measure the proportion of households in a small geographical area that have low living standards of a high need for services, of both. Several measures of deprivation are commonly used, including the Jarman Score, Townsend Index, Carstairs Index, Index of Multiple Deprivation, and Index of Local Conditions. The Townsend and Carstairs indices were developed to measure material deprivation, while the Jarman Underprivileged Area Score was initially designed to measure General Practice workload.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 30
Correct
-
Which statement accurately describes bar charts?
Your Answer: The height of the bar indicates the frequency
Explanation:The frequency of each category of characteristic is displayed through the height of the bars in a bar chart. When dealing with discrete data, it is typically organized into distinct categories and presented in a bar chart. On the other hand, continuous data covers a range and the categories are not separate but rather blend into one another. This type of data is best represented through a histogram, which is similar to a bar chart but with bars that are connected.
Differences between Bar Charts and Histograms
Bar charts and histograms are both used to represent data, but they differ in their application and design. Bar charts are used to summarize nominal of ordinal data, while histograms are used for quantitative data. In a bar chart, the x-axis represents categories without a scale, and the y-axis represents frequencies. The columns are of equal width, and the height of the bar indicates the frequency. On the other hand, histograms have a scale on both axes, with the y-axis representing the relative frequency of frequency density. The width of the columns in a histogram can vary, and the area of the column indicates the true frequency. Overall, bar charts and histograms are useful tools for visualizing data, but their differences in design and application make them better suited for different types of data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 31
Incorrect
-
What is the typical measure of outcome in a case-control study investigating the potential association between autism and a recently developed varicella vaccine?
Your Answer: Relative risk
Correct Answer: Odds ratio
Explanation:The odds ratio is used in case-control studies to measure the association between exposure and outcome, while the relative risk is used in cohort studies to measure the risk of developing an outcome in the exposed group compared to the unexposed group. To convert the odds ratio to a relative risk, one can use the formula: relative risk = odds ratio / (1 – incidence in the unexposed group x odds ratio).
Types of Primary Research Studies and Their Advantages and Disadvantages
Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.
Type of Question Best Type of Study
Therapy Randomized controlled trial (RCT), cohort, case control, case series
Diagnosis Cohort studies with comparison to gold standard test
Prognosis Cohort studies, case control, case series
Etiology/Harm RCT, cohort studies, case control, case series
Prevention RCT, cohort studies, case control, case series
Cost Economic analysisStudy Type Advantages Disadvantages
Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 32
Correct
-
What study method would be most suitable for a researcher tasked with comparing the cost-effectiveness of olanzapine and haloperidol in reducing symptom severity of schizophrenia, as measured by the Positive and Negative Syndrome Scale?
Your Answer: Cost-effectiveness analysis
Explanation:The task assigned to the researcher is to conduct a cost-effectiveness analysis, which involves comparing two interventions based on their costs and their impact on a single clinical measure of effectiveness, specifically the reduction in symptom severity as measured by the PANSS.
Methods of Economic Evaluation
There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.
Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.
Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.
Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.
Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.
Costs in Economic Evaluation Studies
There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 33
Correct
-
Which term is used to refer to the alternative hypothesis in hypothesis testing?
a) Research hypothesis
b) Statistical hypothesis
c) Simple hypothesis
d) Null hypothesis
e) Composite hypothesisYour Answer: Research hypothesis
Explanation:Understanding Hypothesis Testing in Statistics
In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.
The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.
Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 34
Incorrect
-
What type of data was collected for the outcome that utilized the Clinical Global Impressions Improvement scale in the randomized control trial?
Your Answer: Ordinal
Correct Answer: Dichotomous
Explanation:The study used the CGI scale, which produces ordinal data. However, the data was transformed into dichotomous data by dividing it into two categories. The CGI-I is a simple seven-point scale that compares a patient’s overall clinical condition to the one week period just prior to the initiation of medication use. The ratings range from very much improved to very much worse since the initiation of treatment.
Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 35
Correct
-
A nationwide study on mental health found that the incidence of depression is significantly higher among elderly individuals living in suburban areas compared to those residing in urban environments. What factors could explain this disparity?
Your Answer: Reduced incidence in urban areas
Explanation:The prevalence of schizophrenia may be higher in urban areas due to the social drift phenomenon, where individuals with severe and enduring mental illnesses tend to move towards urban areas. However, a reduced incidence of schizophrenia in urban areas could explain why there is an increased prevalence of the condition in rural settings. It is important to note that prevalence is influenced by both incidence and duration of illness, and can be reduced by increased recovery rates of death from any cause.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 36
Correct
-
Which study design is susceptible to making the erroneous assumption that relationships observed among groups also hold true for individuals?
Your Answer: Ecological study
Explanation:An ecological fallacy is a potential error that can occur when generalizing relationships observed among groups to individuals. This is a concern when conducting analyses of ecological studies.
Types of Primary Research Studies and Their Advantages and Disadvantages
Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.
Type of Question Best Type of Study
Therapy Randomized controlled trial (RCT), cohort, case control, case series
Diagnosis Cohort studies with comparison to gold standard test
Prognosis Cohort studies, case control, case series
Etiology/Harm RCT, cohort studies, case control, case series
Prevention RCT, cohort studies, case control, case series
Cost Economic analysisStudy Type Advantages Disadvantages
Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 37
Correct
-
How can confounding be controlled during the analysis stage of a study?
Your Answer: Stratification
Explanation:Stratification is a method of managing confounding by dividing the data into two or more groups where the confounding variable remains constant of varies minimally.
Types of Bias in Statistics
Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.
There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 38
Incorrect
-
What tool of method would be most effective in examining the relationship between a potential risk factor and a particular condition?
Your Answer: Standardised mortality ratio
Correct Answer: Incidence rate
Explanation:Measures of Disease Frequency: Incidence and Prevalence
Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.
Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.
It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.
Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 39
Correct
-
A study reports that 76 percent of the subjects receiving fluvoxamine versus 29 percent of the placebo group were treatment responders. Based on this data, what is the number needed to treat?
Your Answer: 2.12
Explanation:To determine the number needed to treat (NNT), we first calculated the absolute risk reduction (ARR) using the formula ARR = CER – EER, where CER is the control event rate and EER is the experimental event rate. In this case, the ARR was 0.47, which is the reciprocal of the NNT. Therefore, the NNT was calculated as 2.12. This means that for every two patients treated with the active medication, at least one patient will have a better outcome compared to those treated with a placebo.
Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 40
Correct
-
What is necessary to compute the standard deviation?
Your Answer: Mean
Explanation:The standard deviation represents the typical amount that the data points deviate from the mean.
Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 41
Incorrect
-
The Delphi method is used to evaluate what?
Your Answer: Patient satisfaction
Correct Answer: Expert consensus
Explanation:The Delphi Method: A Widely Used Technique for Achieving Convergence of Opinion
The Delphi method is a well-established technique for soliciting expert opinions on real-world knowledge within specific topic areas. The process involves multiple rounds of questionnaires, with each round building on the previous one to achieve convergence of opinion among the participants. However, there are potential issues with the Delphi method, such as the time-consuming nature of the process, low response rates, and the potential for investigators to influence the opinions of the participants. Despite these challenges, the Delphi method remains a valuable tool for generating consensus among experts in various fields.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 42
Correct
-
Which studies are most susceptible to the Hawthorne effect?
Your Answer: Compliance with antipsychotic medication
Explanation:The Hawthorne effect is a phenomenon where individuals may alter their actions of responses when they are aware that they are being monitored of studied. Out of the given choices, the only one that pertains to a change in behavior is the adherence to medication. The remaining options related to outcomes that are not under conscious control.
Types of Bias in Statistics
Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.
There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 43
Correct
-
What statistical test would be appropriate to compare the mean cholesterol levels of individuals who were given antipsychotics versus those who were given a placebo in a study with a sample size of 100 participants divided into two groups?
Your Answer: Independent t-test
Explanation:Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 44
Incorrect
-
A study examines the benefits of adding an intensive package of dialectic behavioural therapy (DBT) to standard care following an episode of serious self-harm in adolescents. The following results are obtained:
Percentage of adolescents having a further episode
of serious self harm within 3 months
Standard care 4%
Standard care and intensive DBT 3%
What is the number needed to treat to prevent one adolescent having a further episode of serious self harm within 3 months?Your Answer: 1
Correct Answer: 100
Explanation:The number needed to treat (NNT) is equal to 100. This means that for every 100 patients treated, one patient will benefit from the treatment. The absolute risk reduction (ARR) is 0.01, which is the difference between the control event rate (CER) of 0.04 and the experimental event rate (EER) of 0.03.
Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 45
Correct
-
Which study design is considered to generate the most robust and reliable evidence?
Your Answer: Cohort study
Explanation:Levels and Grades of Evidence in Evidence-Based Medicine
To evaluate the quality of evidence on a subject of question, levels of grades are used. The traditional hierarchy approach places systematic reviews of randomized control trials at the top and case-series/report at the bottom. However, this approach is overly simplistic as certain research questions cannot be answered using RCTs. To address this, the Oxford Centre for Evidence-Based Medicine introduced their 2011 Levels of Evidence system, which separates the type of study questions and gives a hierarchy for each.
The grading approach to be aware of is the GRADE system, which classifies the quality of evidence as high, moderate, low, of very low. The process begins by formulating a study question and identifying specific outcomes. Outcomes are then graded as critical of important. The evidence is then gathered and criteria are used to grade the evidence, with the type of evidence being a significant factor. Evidence can be promoted of downgraded based on certain criteria, such as limitations to study quality, inconsistency, uncertainty about directness, imprecise of sparse data, and reporting bias. The GRADE system allows for the promotion of observational studies to high-quality evidence under the right circumstances.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 46
Incorrect
-
A study is conducted to investigate whether a new exercise program has any impact on weight loss. A total of 300 participants are enrolled from various locations and are randomly assigned to either the exercise group of the control group. Weight measurements are taken at the beginning of the study and at the end of a six-month period.
What is the most effective method of visually presenting the data?Your Answer: Dot-plot
Correct Answer: Kaplan-Meier plot
Explanation:The Kaplan-Meier plot is the most effective graphical representation of survival probability. It presents the overall likelihood of an individual’s survival over time from a baseline, and the comparison of two lines on the plot can indicate whether there is a survival advantage. To determine if the distinction between the two groups is significant, a log rank test can be employed.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 47
Incorrect
-
What percentage of the data set falls below the upper quartile when considering the interquartile range?
Your Answer: 100%
Correct Answer: 75%
Explanation:Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 48
Correct
-
Which of the following statements accurately describes significance tests?
Your Answer: The type I error level is not affected by sample size
Explanation:The α value, also known as the type I error, is the predetermined probability that is considered acceptable for making an error. If the P value is lower than the predetermined α value, then the null hypothesis (Ho) is rejected, and it is concluded that the observed difference, association, of correlation is statistically significant.
Understanding Hypothesis Testing in Statistics
In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.
The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.
Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 49
Correct
-
Which option is not a type of descriptive statistic?
Your Answer: Student's t-test
Explanation:A t-test is a statistical method used to determine if there is a significant difference between the means of two groups. It is a type of statistical inference.
Types of Statistics: Descriptive and Inferential
Statistics can be divided into two categories: descriptive and inferential. Descriptive statistics are used to describe and summarize data without making any generalizations beyond the data at hand. On the other hand, inferential statistics are used to make inferences about a population based on sample data.
Descriptive statistics are useful for identifying patterns and trends in data. Common measures used to describe a data set include measures of central tendency (such as the mean, median, and mode) and measures of variability of dispersion (such as the standard deviation of variance).
Inferential statistics, on the other hand, are used to make predictions of draw conclusions about a population based on sample data. These statistics are also used to determine the probability that observed differences between groups are reliable and not due to chance.
Overall, both descriptive and inferential statistics play important roles in analyzing and interpreting data. Descriptive statistics help us understand the characteristics of a data set, while inferential statistics allow us to make predictions and draw conclusions about larger populations.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 50
Incorrect
-
Which of the following resources has been filtered?
Your Answer: PubMed
Correct Answer: DARE
Explanation:The main focus of the Database of Abstracts of Reviews of Effect (DARE) is on systematic reviews that assess the impact of healthcare interventions and the management and provision of healthcare services. In order to be considered for inclusion, reviews must satisfy several requirements.
Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
00
Correct
00
Incorrect
00
:
00
:
0
00
Session Time
00
:
00
Average Question Time (
Secs)