00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - Which of the following statements accurately describes relative risk? ...

    Correct

    • Which of the following statements accurately describes relative risk?

      Your Answer: It is the usual outcome measure of cohort studies

      Explanation:

      The relative risk is the typical measure of outcome in cohort studies. It is important to distinguish between risk and odds. For example, if 20 individuals out of 100 who take an overdose die, the risk of dying is 0.2, while the odds are 0.25 (20/80).

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      35.9
      Seconds
  • Question 2 - What is a common tool used to help determine the appropriate sample size...

    Correct

    • What is a common tool used to help determine the appropriate sample size for qualitative research?

      Your Answer: Saturation

      Explanation:

      Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      16.1
      Seconds
  • Question 3 - How can authors ensure they cover all necessary aspects when writing articles that...

    Correct

    • How can authors ensure they cover all necessary aspects when writing articles that describe formal studies of quality improvement?

      Your Answer: SQUIRE

      Explanation:

      As an AI language model, I do not have personal opinions of beliefs. However, I can provide information and guidance on the standards of reporting for different types of research studies. The guidelines mentioned above are essential for ensuring that research studies are reported accurately and transparently, which is crucial for the scientific community to evaluate and replicate the findings. It is important for researchers to be familiar with these standards and follow them when reporting their studies to ensure the quality and integrity of their research.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      40.7
      Seconds
  • Question 4 - A university lecturer is interested in determining if the psychology students would like...

    Correct

    • A university lecturer is interested in determining if the psychology students would like more training on working with children. They know that there are 5000 psychology students and of these 60% are under the age of 25 and 40% are 25 of older. To avoid any potential age bias, they create two separate lists of students, one for those under 25 and one for those 25 of older. From these lists, they take a random sample from each list to ensure that they have an equal number of students from each age group. They then ask each selected student if they would like more training on working with children.

      How would you describe the sampling strategy of this study?

      Your Answer: Stratified sampling

      Explanation:

      Sampling Methods in Statistics

      When collecting data from a population, it is often impractical and unnecessary to gather information from every single member. Instead, taking a sample is preferred. However, it is crucial that the sample accurately represents the population from which it is drawn. There are two main types of sampling methods: probability (random) sampling and non-probability (non-random) sampling.

      Non-probability sampling methods, also known as judgement samples, are based on human choice rather than random selection. These samples are convenient and cheaper than probability sampling methods. Examples of non-probability sampling methods include voluntary sampling, convenience sampling, snowball sampling, and quota sampling.

      Probability sampling methods give a more representative sample of the population than non-probability sampling. In each probability sampling technique, each population element has a known (non-zero) chance of being selected for the sample. Examples of probability sampling methods include simple random sampling, systematic sampling, cluster sampling, stratified sampling, and multistage sampling.

      Simple random sampling is a sample in which every member of the population has an equal chance of being chosen. Systematic sampling involves selecting every kth member of the population. Cluster sampling involves dividing a population into separate groups (called clusters) and selecting a random sample of clusters. Stratified sampling involves dividing a population into groups (strata) and taking a random sample from each strata. Multistage sampling is a more complex method that involves several stages and combines two of more sampling methods.

      Overall, probability sampling methods give a more representative sample of the population, but non-probability sampling methods are often more convenient and cheaper. It is important to choose the appropriate sampling method based on the research question and available resources.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      137.6
      Seconds
  • Question 5 - What is another term used to refer to Neyman bias? ...

    Incorrect

    • What is another term used to refer to Neyman bias?

      Your Answer: Admission bias

      Correct Answer: Prevalence/incidence bias

      Explanation:

      Neyman bias arises when a research study is examining a condition that is marked by either undetected cases of cases that result in early deaths, leading to the exclusion of such cases from the analysis.

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      4.2
      Seconds
  • Question 6 - A study comparing the benefit of two surgical procedures for patients over 65...

    Incorrect

    • A study comparing the benefit of two surgical procedures for patients over 65 concludes that the two procedures are equally effective. A researcher is then asked to conduct a cost analysis of the two procedures, considering only the financial expenses.

      What is the best way to describe this approach?

      Your Answer: Cost-effectiveness analysis

      Correct Answer: Cost-minimisation analysis

      Explanation:

      Methods of Economic Evaluation

      There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.

      Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.

      Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.

      Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.

      Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.

      Costs in Economic Evaluation Studies

      There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      23
      Seconds
  • Question 7 - Which variable classification is not included in Stevens' typology? ...

    Correct

    • Which variable classification is not included in Stevens' typology?

      Your Answer: Ranked

      Explanation:

      Stevens suggested that scales can be categorized into one of four types based on measurements.

      Scales of Measurement in Statistics

      In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.

      Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.

      Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.

      Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      9.3
      Seconds
  • Question 8 - Which statement accurately describes the correlation coefficient? ...

    Correct

    • Which statement accurately describes the correlation coefficient?

      Your Answer: It can assume any value between -1 and 1

      Explanation:

      Stats: Correlation and Regression

      Correlation and regression are related but not interchangeable terms. Correlation is used to test for association between variables, while regression is used to predict values of dependent variables from independent variables. Correlation can be linear, non-linear, of non-existent, and can be strong, moderate, of weak. The strength of a linear relationship is measured by the correlation coefficient, which can be positive of negative and ranges from very weak to very strong. However, the interpretation of a correlation coefficient depends on the context and purposes. Correlation can suggest association but cannot prove of disprove causation. Linear regression, on the other hand, can be used to predict how much one variable changes when a second variable is changed. Scatter graphs are used in correlation and regression analyses to visually determine if variables are associated and to detect outliers. When constructing a scatter graph, the dependent variable is typically placed on the vertical axis and the independent variable on the horizontal axis.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      46.3
      Seconds
  • Question 9 - What condition would make it inappropriate to use the Student's t-test for conducting...

    Correct

    • What condition would make it inappropriate to use the Student's t-test for conducting a significance test?

      Your Answer: Using it with data that is not normally distributed

      Explanation:

      T-tests are appropriate for parametric data, which means that the data should conform to a normal distribution.

      Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      16
      Seconds
  • Question 10 - By implementing a double-blinded randomised controlled trial to evaluate the efficacy of a...

    Correct

    • By implementing a double-blinded randomised controlled trial to evaluate the efficacy of a new medication for Lewy Body Dementia, what type of bias can be prevented by ensuring that both the patient and doctor are blinded?

      Your Answer: Expectation bias

      Explanation:

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      19.2
      Seconds
  • Question 11 - What is a true statement about measures of effect? ...

    Correct

    • What is a true statement about measures of effect?

      Your Answer: Relative risk can be used to measure effect in randomised control trials

      Explanation:

      The use of relative risk is applicable in cohort, cross-sectional, and randomized control trials, but not in case-control studies. In situations where there are no events in the control group, neither the risk ratio nor the odds ratio can be computed. It is important to note that the odds ratio tends to overestimate effects and is always more extreme than the relative risk, moving away from the null value of 1.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      31.6
      Seconds
  • Question 12 - What is the appropriate interpretation of a standardised mortality ratio of 120% (95%...

    Correct

    • What is the appropriate interpretation of a standardised mortality ratio of 120% (95% CI 90-130) for a cohort of patients diagnosed with antisocial personality disorder?

      Your Answer: The result is not statistically significant

      Explanation:

      The statistical significance of the result is questionable as the confidence interval encompasses values below 100. This implies that there is a possibility that the actual value could be lower than 100, which contradicts the observed value of 120 indicating a rise in mortality in this population.

      Calculation of Standardised Mortality Ratio (SMR)

      To calculate the SMR, age and sex-specific death rates in the standard population are obtained. An estimate for the number of people in each category for both the standard and study populations is needed. The number of expected deaths in each age-sex group of the study population is calculated by multiplying the age-sex-specific rates in the standard population by the number of people in each category of the study population. The sum of all age- and sex-specific expected deaths gives the expected number of deaths for the whole study population. The observed number of deaths is then divided by the expected number of deaths to obtain the SMR.

      The SMR can be standardised using the direct of indirect method. The direct method is used when the age-sex-specific rates for the study population and the age-sex-structure of the standard population are known. The indirect method is used when the age-specific rates for the study population are unknown of not available. This method uses the observed number of deaths in the study population and compares it to the number of deaths that would be expected if the age distribution was the same as that of the standard population.

      The SMR can be interpreted as follows: an SMR less than 1.0 indicates fewer than expected deaths in the study population, an SMR of 1.0 indicates the number of observed deaths equals the number of expected deaths in the study population, and an SMR greater than 1.0 indicates more than expected deaths in the study population (excess deaths). It is sometimes expressed after multiplying by 100.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      46.5
      Seconds
  • Question 13 - A study of 30 patients with hypertension compares the effectiveness of a new...

    Incorrect

    • A study of 30 patients with hypertension compares the effectiveness of a new blood pressure medication with standard treatment. 80% of the new treatment group achieved target blood pressure levels at 6 weeks, compared with only 40% of the standard treatment group. What is the number needed to treat for the new treatment?

      Your Answer: 2

      Correct Answer: 3

      Explanation:

      To calculate the Number Needed to Treat (NNT), we first need to find the Absolute Risk Reduction (ARR), which is calculated by subtracting the Control Event Rate (CER) from the Experimental Event Rate (EER).

      Given that CER is 0.4 and EER is 0.8, we can calculate ARR as follows:

      ARR = CER – EER
      = 0.4 – 0.8
      = -0.4

      Since the ARR is negative, this means that the treatment actually increases the risk of the event occurring. Therefore, we cannot calculate the NNT in this case.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      285.3
      Seconds
  • Question 14 - Which statement accurately describes the measurement of serum potassium in 1,000 patients with...

    Correct

    • Which statement accurately describes the measurement of serum potassium in 1,000 patients with anorexia nervosa, where the mean potassium is 4.6 mmol/l and the standard deviation is 0.3 mmol/l?

      Your Answer: 68.3% of values lie between 4.3 and 4.9 mmol/l

      Explanation:

      Standard Deviation and Standard Error of the Mean

      Standard deviation (SD) and standard error of the mean (SEM) are two important statistical measures used to describe data. SD is a measure of how much the data varies, while SEM is a measure of how precisely we know the true mean of the population. The normal distribution, also known as the Gaussian distribution, is a symmetrical bell-shaped curve that describes the spread of many biological and clinical measurements.

      68.3% of the data lies within 1 SD of the mean, 95.4% of the data lies within 2 SD of the mean, and 99.7% of the data lies within 3 SD of the mean. The SD is calculated by taking the square root of the variance and is expressed in the same units as the data set. A low SD indicates that data points tend to be very close to the mean.

      On the other hand, SEM is an inferential statistic that quantifies the precision of the mean. It is expressed in the same units as the data and is calculated by dividing the SD of the sample mean by the square root of the sample size. The SEM gets smaller as the sample size increases, and it takes into account both the value of the SD and the sample size.

      Both SD and SEM are important measures in statistical analysis, and they are used to calculate confidence intervals and test hypotheses. While SD quantifies scatter, SEM quantifies precision, and both are essential in understanding and interpreting data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      56.9
      Seconds
  • Question 15 - What is the average age of the 7 women who participated in the...

    Incorrect

    • What is the average age of the 7 women who participated in the qualitative study on self-harm among females, with ages of 18, 22, 40, 17, 23, 18, and 44?

      Your Answer: 18

      Correct Answer: 26

      Explanation:

      Measures of Central Tendency

      Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.

      The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.

      The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.

      In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      41.4
      Seconds
  • Question 16 - If a patient follows a new healthy eating campaign for 2 years, with...

    Correct

    • If a patient follows a new healthy eating campaign for 2 years, with an average weight loss of 18 kg and a standard deviation of 3 kg, what is the probability that their weight loss will fall between 9 and 27 kg?

      Your Answer: 99.70%

      Explanation:

      The mean weight is 18kg with a standard deviation of 3kg. Three standard deviations below the mean is 9kg and three standard deviations above the mean is 27kg.

      Standard Deviation and Standard Error of the Mean

      Standard deviation (SD) and standard error of the mean (SEM) are two important statistical measures used to describe data. SD is a measure of how much the data varies, while SEM is a measure of how precisely we know the true mean of the population. The normal distribution, also known as the Gaussian distribution, is a symmetrical bell-shaped curve that describes the spread of many biological and clinical measurements.

      68.3% of the data lies within 1 SD of the mean, 95.4% of the data lies within 2 SD of the mean, and 99.7% of the data lies within 3 SD of the mean. The SD is calculated by taking the square root of the variance and is expressed in the same units as the data set. A low SD indicates that data points tend to be very close to the mean.

      On the other hand, SEM is an inferential statistic that quantifies the precision of the mean. It is expressed in the same units as the data and is calculated by dividing the SD of the sample mean by the square root of the sample size. The SEM gets smaller as the sample size increases, and it takes into account both the value of the SD and the sample size.

      Both SD and SEM are important measures in statistical analysis, and they are used to calculate confidence intervals and test hypotheses. While SD quantifies scatter, SEM quantifies precision, and both are essential in understanding and interpreting data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      303.8
      Seconds
  • Question 17 - Out of the 5 trials included in a meta-analysis comparing the effects of...

    Incorrect

    • Out of the 5 trials included in a meta-analysis comparing the effects of depot olanzapine and depot risperidone on psychotic symptoms (measured by PANSS), which trial showed a statistically significant difference between the two treatments at a significance level of 5%?

      Your Answer: Trial 1 shows a reduction of 5 on the PANSS (p=0.5)

      Correct Answer: Trial 2 shows a reduction of 2 on the PANSS (p=0.001)

      Explanation:

      The results of Trial 4 indicate a decrease of 10 points on the PANSS scale, with a p-value of 0.9.

      Understanding Hypothesis Testing in Statistics

      In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.

      The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.

      Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

      P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      19.5
      Seconds
  • Question 18 - The clinical director of a pediatric unit conducts an economic evaluation study to...

    Correct

    • The clinical director of a pediatric unit conducts an economic evaluation study to determine which type of treatment results in the greatest improvement in asthma symptoms (as measured by the Asthma Control Test). She compares the costs of three different treatment options against the average improvement in asthma symptoms achieved by each. What type of economic evaluation method did she employ?

      Your Answer: Cost-effectiveness analysis

      Explanation:

      Methods of Economic Evaluation

      There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.

      Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.

      Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.

      Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.

      Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.

      Costs in Economic Evaluation Studies

      There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      30.7
      Seconds
  • Question 19 - What is the purpose of using bracketing as a method in qualitative research?...

    Correct

    • What is the purpose of using bracketing as a method in qualitative research?

      Your Answer: Assessing validity

      Explanation:

      Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      8.8
      Seconds
  • Question 20 - What is the standard deviation of the sample mean height of 100 adults...

    Correct

    • What is the standard deviation of the sample mean height of 100 adults who were administered steroids during childhood, given that the average height of the adults is 169cm and the standard deviation is 16cm?

      Your Answer: 1.6

      Explanation:

      The standard error of the mean is 1.6, calculated by dividing the standard deviation of 16 by the square root of the number of patients, which is 100.

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      20.5
      Seconds
  • Question 21 - A new drug which may reduce the chance of elderly patients developing arthritis...

    Incorrect

    • A new drug which may reduce the chance of elderly patients developing arthritis is introduced. In one study of 2,000 elderly patients, 1,200 received the new drug and 120 patients developed arthritis. The remaining 800 patients received a placebo and 200 developed arthritis. What is the absolute risk reduction of developing arthritis?

      Your Answer: 25%

      Correct Answer: 15%

      Explanation:

      To calculate the ARR, we first need to find the CER and EER. The CER is the conversion rate of the control group, which is 200 out of 800, of 0.25. The EER is the conversion rate of the experimental group, which is 120 out of 1,200, of 0.1.

      To find the ARR, we subtract the EER from the CER:

      ARR = CER – EER
      ARR = 0.25 – 0.1
      ARR = 0.15

      Therefore, the ARR is 0.15 of 15%.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      20
      Seconds
  • Question 22 - Which category does social class fall under in terms of variable types? ...

    Correct

    • Which category does social class fall under in terms of variable types?

      Your Answer: Ordinal

      Explanation:

      Ordinal variables are a form of qualitative variable that follows a specific sequence in its values. Additional instances may include exam scores and tax brackets based on income.

      Scales of Measurement in Statistics

      In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.

      Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.

      Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.

      Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      6.1
      Seconds
  • Question 23 - What is the most suitable measure to describe the most common test grades...

    Correct

    • What is the most suitable measure to describe the most common test grades collected by a college professor?

      Your Answer: Mode

      Explanation:

      The median represents the middle value in a set of data. For example, if there were 7 results (A, B, C, D, E, F, F), the median would be D. However, if the question asks for the most common result, the mode would be used. In this example, the mode would be F. The mean would not be appropriate in this case because adding all the values and dividing by the number of values would not provide a meaningful result.

      Measures of Central Tendency

      Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.

      The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.

      The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.

      In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      14.3
      Seconds
  • Question 24 - What statement accurately describes the mode? ...

    Correct

    • What statement accurately describes the mode?

      Your Answer: A data set can have more than one mode

      Explanation:

      This set of numbers has no mode as no number occurs more than once: 3, 6, 9, 16, 27, 37, 48.

      Measures of Central Tendency

      Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.

      The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.

      The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.

      In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      20.2
      Seconds
  • Question 25 - You are asked to design a study to assess whether living near electricity...

    Correct

    • You are asked to design a study to assess whether living near electricity pylons is a risk factor for adult leukemia. What is the most appropriate type of study design?:

      Your Answer: Case-control study

      Explanation:

      Due to the low incidence of childhood leukaemia, a cohort study would require a significant amount of time to yield meaningful findings.

      Types of Primary Research Studies and Their Advantages and Disadvantages

      Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.

      Type of Question Best Type of Study

      Therapy Randomized controlled trial (RCT), cohort, case control, case series
      Diagnosis Cohort studies with comparison to gold standard test
      Prognosis Cohort studies, case control, case series
      Etiology/Harm RCT, cohort studies, case control, case series
      Prevention RCT, cohort studies, case control, case series
      Cost Economic analysis

      Study Type Advantages Disadvantages

      Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
      Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
      Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
      Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
      Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)

      In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      12.7
      Seconds
  • Question 26 - What is the optimal number needed to treat (NNT)? ...

    Correct

    • What is the optimal number needed to treat (NNT)?

      Your Answer: 1

      Explanation:

      The effectiveness of a healthcare intervention, usually a medication, is measured by the number needed to treat (NNT). This represents the average number of patients who must receive treatment to prevent one additional negative outcome. An NNT of 1 would indicate that all treated patients improved while none of the control patients did, which is the ideal scenario. The NNT can be calculated by taking the inverse of the absolute risk reduction. A higher NNT indicates a less effective treatment, with the range of NNT being from 1 to infinity.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      4.8
      Seconds
  • Question 27 - A study is designed to assess a new proton pump inhibitor (PPI) in...

    Correct

    • A study is designed to assess a new proton pump inhibitor (PPI) in middle-aged patients who are taking aspirin. The new PPI is given to 120 patients whilst a control group of 240 is given the standard PPI. Over a five year period 24 of the group receiving the new PPI had an upper GI bleed compared to 60 who received the standard PPI. What is the absolute risk reduction?

      Your Answer: 5%

      Explanation:

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      34
      Seconds
  • Question 28 - What is a true statement about statistical power? ...

    Correct

    • What is a true statement about statistical power?

      Your Answer: The larger the sample size of a study the greater the power

      Explanation:

      The Importance of Power in Statistical Analysis

      Power is a crucial concept in statistical analysis as it helps researchers determine the number of participants needed in a study to detect a clinically significant difference of effect. It represents the probability of correctly rejecting the null hypothesis when it is false, which means avoiding a Type II error. Power values range from 0 to 1, with 0 indicating 0% and 1 indicating 100%. A power of 0.80 is generally considered the minimum acceptable level.

      Several factors influence the power of a study, including sample size, effect size, and significance level. Larger sample sizes lead to more precise parameter estimations and increase the study’s ability to detect a significant effect. Effect size, which is determined at the beginning of a study, refers to the size of the difference between two means that leads to rejecting the null hypothesis. Finally, the significance level, also known as the alpha level, represents the probability of a Type I error. By considering these factors, researchers can optimize the power of their studies and increase the likelihood of detecting meaningful effects.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      267.9
      Seconds
  • Question 29 - Which variable has a zero value that is not arbitrary? ...

    Correct

    • Which variable has a zero value that is not arbitrary?

      Your Answer: Ratio

      Explanation:

      The key characteristic that sets ratio variables apart from interval variables is the presence of a meaningful zero point. On a ratio scale, this zero point signifies the absence of the measured attribute, while on an interval scale, the zero point is simply a point on the scale with no inherent significance.

      Scales of Measurement in Statistics

      In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.

      Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.

      Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.

      Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      41.1
      Seconds
  • Question 30 - To qualify as purposive sampling, would the researcher need to specifically target participants...

    Incorrect

    • To qualify as purposive sampling, would the researcher need to specifically target participants based on certain characteristics, such as those who had received a delayed diagnosis?

      Your Answer: Purposive sampling

      Correct Answer: Convenience sampling

      Explanation:

      The sampling method employed was convenience sampling, which involved recruiting participants through flyers posted in clinics. However, this approach may lead to an imbalanced sample. To be considered purposive sampling, the researcher would need to demonstrate a deliberate effort to recruit participants based on specific characteristics, such as targeting individuals who had experienced a delayed diagnosis.

      Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      12.6
      Seconds
  • Question 31 - What is the term used to describe a graph that can be utilized...

    Correct

    • What is the term used to describe a graph that can be utilized to identify publication bias?

      Your Answer: Funnel plot

      Explanation:

      Stats Publication Bias

      Publication bias refers to the tendency for studies with positive findings to be published more than studies with negative findings, leading to incomplete data sets in meta-analyses and erroneous conclusions. Graphical methods such as funnel plots, Galbraith plots, ordered forest plots, and normal quantile plots can be used to detect publication bias. Funnel plots are the most commonly used and offer an easy visual way to ensure that published literature is evenly weighted. The x-axis represents the effect size, and the y-axis represents the study size. A symmetrical, inverted funnel shape indicates that publication bias is unlikely, while an asymmetrical funnel indicates a relationship between treatment effect and study size, indicating either publication bias of small study effects.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      13.1
      Seconds
  • Question 32 - What statement accurately describes population parameters? ...

    Incorrect

    • What statement accurately describes population parameters?

      Your Answer: Parameters are the result of statistical tests

      Correct Answer: Parameters tend to have normal distributions

      Explanation:

      Parametric vs Non-Parametric Statistics

      Statistics are used to draw conclusions about a population based on a sample. A parameter is a numerical value that describes a population characteristic, but it is often impossible to know the true value of a parameter without collecting data from every individual in the population. Instead, we take a sample and use statistics to estimate the parameters.

      Parametric statistical procedures assume that the population distribution is normal and that the parameters (such as means and standard deviations) are known. Examples of parametric tests include the t-test, ANOVA, and Pearson coefficient of correlation.

      Non-parametric statistical procedures make few of no assumptions about the population distribution of parameters. Examples of non-parametric tests include the Mann-Whitney Test, Wilcoxon Signed-Rank Test, Kruskal-Wallis Test, and Fisher Exact Probability test.

      Overall, the choice between parametric and non-parametric tests depends on the nature of the data and the research question being asked.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      11.6
      Seconds
  • Question 33 - How can we describe the consistency of a test in producing similar results...

    Incorrect

    • How can we describe the consistency of a test in producing similar results when measured multiple times?

      Your Answer: Accuracy

      Correct Answer: Precision

      Explanation:

      Accuracy and reproducibility together make up precision.

      Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      18.6
      Seconds
  • Question 34 - A study examines the likelihood of stroke in middle-aged patients prescribed antipsychotic medication....

    Incorrect

    • A study examines the likelihood of stroke in middle-aged patients prescribed antipsychotic medication. Group A receives standard treatment, and after 5 years, 20 out of 100 patients experience a stroke. Group B receives standard treatment plus a new drug intended to decrease the risk of stroke. After 5 years, 10 out of 60 patients have a stroke. What are the chances of having a stroke while taking the new drug compared to the chances of having a stroke in those receiving standard treatment?

      Your Answer: 1.25

      Correct Answer: 0.8

      Explanation:

      If the odds ratio is less than 1, it means that the likelihood of experiencing a stroke is lower for individuals who are taking the new drug compared to those who are receiving the usual treatment.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      14.8
      Seconds
  • Question 35 - Researchers have conducted a study comparing a new blood pressure medication with a...

    Incorrect

    • Researchers have conducted a study comparing a new blood pressure medication with a standard blood pressure medication. 200 patients are divided equally between the two groups. Over the course of one year, 20 patients in the treatment group experienced a significant reduction in blood pressure, compared to 35 patients in the control group.

      What is the number needed to treat (NNT)?

      Your Answer: 15

      Correct Answer: 7

      Explanation:

      The Relative Risk Reduction (RRR) is calculated by subtracting the experimental event rate (EER) from the control event rate (CER), dividing the result by the CER, and then multiplying by 100 to get a percentage. In this case, the RRR is (35-20)÷35 = 0.4285 of 42.85%.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      27.4
      Seconds
  • Question 36 - A new medication aimed at preventing age-related macular degeneration (AMD) is being tested...

    Correct

    • A new medication aimed at preventing age-related macular degeneration (AMD) is being tested in clinical trials. One hundred patients over the age of 60 with early signs of AMD are given the new medication. Over a three month period, 10 of these patients experience progression of their AMD. In the control group, there are 300 patients over the age of 60 with early signs of AMD who are given a placebo. During the same time period, 50 of these patients experience progression of their AMD. What is the relative risk of AMD progression while taking the new medication?

      Your Answer: 0.6

      Explanation:

      The relative risk (RR) is calculated by dividing the exposure event rate (EER) by the control event rate (CER). In this case, the EER is 10 out of 100 (0.10) and the CER is 50 out of 300 (0.166). Therefore, the RR is calculated as 0.10 divided by 0.166, which equals 0.6.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      22.1
      Seconds
  • Question 37 - How would you rephrase the question Which of the following refers to the...

    Correct

    • How would you rephrase the question Which of the following refers to the proportion of people scoring positive on a test that actually have the condition?

      Your Answer: Positive predictive value

      Explanation:

      Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      13.3
      Seconds
  • Question 38 - How would you rephrase the question to refer to the test's capacity to...

    Incorrect

    • How would you rephrase the question to refer to the test's capacity to identify a person with a disease as positive?

      Your Answer: Specificity

      Correct Answer: Sensitivity

      Explanation:

      Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      22.1
      Seconds
  • Question 39 - What is the most accurate definition of 'opportunity cost'? ...

    Incorrect

    • What is the most accurate definition of 'opportunity cost'?

      Your Answer: The cost incurred by failing to take advantage of good opportunities

      Correct Answer: The forgone benefit that would have been derived by an option not chosen

      Explanation:

      Opportunity Cost in Economics: Understanding the Value of Choices

      Opportunity cost is a crucial concept in economics that helps us make informed decisions. It refers to the value of the next-best alternative that we give up when we choose one option over another. This concept is particularly relevant when we have limited resources, such as a fixed budget, and need to make choices about how to allocate them.

      For instance, if we decide to spend our money on antidepressants, we cannot use that same money to pay for cognitive-behavioral therapy (CBT). Both options have a value, but we have to choose one over the other. The opportunity cost of choosing antidepressants over CBT is the value of the benefits we would have received from CBT but did not because we chose antidepressants instead.

      To compare the opportunity cost of different choices, economists often use quality-adjusted life years (QALYs). QALYs measure the value of health outcomes in terms of both quantity (life years gained) and quality (health-related quality of life). By using QALYs, we can compare the opportunity cost of different healthcare interventions and choose the one that provides the best value for our resources.

      In summary, understanding opportunity cost is essential for making informed decisions in economics and healthcare. By recognizing the value of the alternatives we give up, we can make better choices and maximize the benefits we receive from our limited resources.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      24.5
      Seconds
  • Question 40 - What is another term for case-mix bias? ...

    Correct

    • What is another term for case-mix bias?

      Your Answer: Disease spectrum bias

      Explanation:

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      48.7
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Research Methods, Statistics, Critical Review And Evidence-Based Practice (27/40) 68%
Passmed