00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - What are the clinical consequences of a lack of vitamin A? ...

    Incorrect

    • What are the clinical consequences of a lack of vitamin A?

      Your Answer: Bleeding gums

      Correct Answer: Dry conjunctiva

      Explanation:

      The Devastating Effects of Vitamin A Deficiency

      Vitamin A deficiency is a serious health concern that can lead to a range of devastating effects. One of the most common consequences is blindness, particularly in children. Poor night vision is often an early sign of this deficiency, which can progress to complete blindness if left untreated.

      In addition to blindness, vitamin A deficiency can also cause dry conjunctiva, a condition known as conjunctival xerosis. This occurs when the normally moist and fine conjunctiva becomes thickened and dysfunctional, leading to the formation of white plaques known as Bitot’s spots. Corneal ulceration can also occur as a result of this condition.

      The respiratory and gastrointestinal epithelia can also be affected by vitamin A deficiency, leading to reduced resistance to infection. This deficiency is a major public health issue in some parts of the world and is the single most common preventable cause of blindness. It is crucial to address this issue through education and access to vitamin A-rich foods and supplements.

      Overall, the devastating effects of vitamin A deficiency highlight the importance of proper nutrition and access to essential vitamins and minerals. By addressing this issue, we can help prevent blindness and improve overall health outcomes for individuals and communities around the world.

    • This question is part of the following fields:

      • Basic Sciences
      13.5
      Seconds
  • Question 2 - Which statement regarding microtubules is accurate in relation to Chediak-Higashi syndrome? ...

    Incorrect

    • Which statement regarding microtubules is accurate in relation to Chediak-Higashi syndrome?

      Your Answer: They have a fixed length

      Correct Answer: They are arranged in a 9+2 formation in cilia

      Explanation:

      Microtubules and Chediak-Higashi Syndrome

      Microtubules are structures composed of alpha and beta tubulin dimers that are arranged in a helix and can be added or removed to vary the length. They are found in flagella, mitotic spindles, and cilia, where they have a 9+2 arrangement. Chemotherapy agents, such as taxanes, target microtubules in breast cancer treatment.

      Chediak-Higashi syndrome is an autosomal recessive condition that presents with albinism, bleeding and bruising due to platelet dysfunction, and susceptibility to infections due to abnormal neutrophils. The LYST gene is responsible for lysosomal trafficking proteins and is affected in this syndrome.

      In summary, microtubules are important structures in various cellular processes and are targeted in cancer treatment. Chediak-Higashi syndrome is a rare genetic disorder that affects lysosomal trafficking proteins and presents with various symptoms.

    • This question is part of the following fields:

      • Basic Sciences
      8.7
      Seconds
  • Question 3 - A premature baby is born and the anaesthetists are struggling to ventilate the...

    Correct

    • A premature baby is born and the anaesthetists are struggling to ventilate the lungs because of insufficient surfactant. How does Laplace's law explain the force pushing inwards on the walls of the alveolus caused by surface tension between two static fluids, such as air and water in the alveolus?

      Your Answer: Inversely proportional to the radius of the alveolus

      Explanation:

      The Relationship between Alveolar Size and Surface Tension in Respiratory Physiology

      In respiratory physiology, the alveolus is often represented as a perfect sphere to apply Laplace’s law. According to this law, there is an inverse relationship between the size of the alveolus and the surface tension. This means that smaller alveoli experience greater force than larger alveoli for a given surface tension, causing them to collapse first. This phenomenon is similar to what happens when two balloons of different sizes are attached together, with the smaller balloon emptying into the larger one.

      In the lungs, this collapse of smaller alveoli can lead to atelectasis and collapse if surfactant is not present. Surfactant is a substance that reduces surface tension, making it easier to expand the alveoli and preventing smaller alveoli from collapsing. this relationship between alveolar size and surface tension is crucial in respiratory physiology, as it helps explain the importance of surfactant in maintaining proper lung function.

    • This question is part of the following fields:

      • Basic Sciences
      21
      Seconds
  • Question 4 - What function does vitamin E serve in the body? ...

    Incorrect

    • What function does vitamin E serve in the body?

      Your Answer: Enhances blood clotting (pro-coagulant)

      Correct Answer: Antioxidant

      Explanation:

      Vitamin E and its Functions

      Several substances are classified as vitamin E, with alpha-tocopherol being the most common, accounting for 90% of human vitamin E. Alpha-tocopherol is composed of two carbon rings and a long saturated hydrocarbon chain, making it hydrophobic. It has an aromatic ring with an OH- group attached to it. Other substances with vitamin E activity include other tocopherols and tocotrienols, all of which act as antioxidants. Alpha-tocopherol is particularly important in cell membranes, preventing the peroxidation of unsaturated fatty acids by free radicals. It also has other functions, such as regulating gene transcription, inhibiting clotting formation, reducing proliferation of vascular smooth muscle, and playing a role in immunity.

      Despite claims that taking vitamin E can reduce the risk of heart disease, cancer, and enhance sexual performance, there is currently no strong evidence to support these claims.

    • This question is part of the following fields:

      • Basic Sciences
      8.1
      Seconds
  • Question 5 - What are the clinical effects that can occur due to acute or chronic...

    Incorrect

    • What are the clinical effects that can occur due to acute or chronic over-administration of multivitamins leading to Vitamin A toxicity?

      Your Answer: Bone overgrowth with deformity

      Correct Answer: Nausea, vomiting and headaches

      Explanation:

      The Importance and Risks of Vitamin A

      Vitamin A is an essential nutrient that plays a crucial role in various bodily functions such as growth and development, vision, enzyme signalling pathways, and the maintenance of epithelial membranes. However, excessive intake of vitamin A can lead to toxicity, which can cause several adverse effects. These include raised intracranial pressure resulting in headaches, nausea, vomiting, and visual loss, increased bone resorption leading to osteoporosis and hypercalcaemia, liver damage, hair loss, and skin changes. Moreover, there is a possible increased risk of malignancy, particularly among smokers. Pregnant women are also advised to avoid foods rich in vitamin A, such as liver and fish oils, due to the teratogenicity of vitamin A-derived drugs. Therefore, it is crucial to maintain a balanced intake of vitamin A to avoid the risks associated with its toxicity.

    • This question is part of the following fields:

      • Basic Sciences
      22.2
      Seconds
  • Question 6 - A couple in their late 20s comes to your clinic seeking advice regarding...

    Incorrect

    • A couple in their late 20s comes to your clinic seeking advice regarding the possibility of their children inheriting cystic fibrosis. The husband has a confirmed diagnosis of the condition, but the carrier status of the wife is unknown.

      What is the likelihood of any of their offspring being affected by cystic fibrosis?

      Your Answer: 50%

      Correct Answer: 2.50%

      Explanation:

      Cystic Fibrosis Inheritance

      Cystic fibrosis (CF) is a genetic disorder that affects the chloride ion channels, leading to the thickening of respiratory and other secretions. It is an autosomal recessive condition, which means that a person must inherit two copies of the defective gene, one from each parent, to develop the disease. The most common defective allele is carried by approximately 1 in 20 people.

      If a man with CF has children with a woman who does not carry the recessive gene, then none of their children will be affected by the disease. However, they will all be carriers of the CF gene. On the other hand, if the woman is a carrier of the CF gene, there is a 50% chance that each child will inherit one copy of the defective gene from each parent and be affected by the disease. The remaining 50% of the children will inherit one copy of the defective gene and one normal gene, making them carriers of the CF gene but not affected by the disease.

      In summary, the probability of any child being affected by CF is 2.5% if one parent has the defective gene and the other does not. It is important for individuals who are carriers of the CF gene to be aware of their status and seek genetic counseling before planning to have children.

    • This question is part of the following fields:

      • Basic Sciences
      27.8
      Seconds
  • Question 7 - During which stage of the cell cycle does the replication of DNA occur?...

    Incorrect

    • During which stage of the cell cycle does the replication of DNA occur?

      Your Answer: G1 phase

      Correct Answer: S phase

      Explanation:

      The Five Phases of the Cell Cycle

      The cell cycle is a complex process that is divided into five main phases, each with its unique cellular events. The first phase is the G0 phase, which is a resting phase where the cell has stopped dividing and is out of the cell cycle. The second phase is the G1 phase, also known as interphase Gap 1, where cells increase in size, and a checkpoint control mechanism prepares the cell for DNA synthesis.

      The third phase is the S phase, where DNA replication occurs. The fourth phase is the G2 phase, also known as Gap 2, which is a gap between DNA synthesis and the onset of mitosis. During this phase, the cell continues to grow until it is ready to enter mitosis. Finally, the fifth phase is the M phase, also known as mitosis, where cell growth stops, and the cell focuses its energy to divide into two daughter cells.

      A checkpoint in the middle of mitosis, known as the metaphase checkpoint, ensures that the cell is prepared to complete division. the five phases of the cell cycle is crucial in how cells divide and grow.

    • This question is part of the following fields:

      • Basic Sciences
      10
      Seconds
  • Question 8 - What is the fundamental meaning of carbohydrate? ...

    Incorrect

    • What is the fundamental meaning of carbohydrate?

      Your Answer: A compound containing carbon, hydrogen and oxygen in any proportion.

      Correct Answer: A compound following the formula Cx(H2O)y

      Explanation:

      Carbohydrates: Building Blocks of Energy and Storage

      Carbohydrates are organic compounds made up of carbon, hydrogen, and oxygen, with a general formula of Cx(H2O)y. They can be classified as either aldehydes or ketones and contain multiple hydroxyl groups. Monosaccharides are the simplest form of carbohydrates, consisting of a single unit. They are categorized based on the number of carbon atoms they contain, with trioses having three, pentoses having five, and hexoses having six carbon atoms. These monosaccharides are essential for energy production and building larger carbohydrate structures.

      Disaccharides are formed when two monosaccharides are joined together through a condensation reaction, releasing a water molecule. The most common disaccharides are lactose, maltose, and sucrose. Polysaccharides, on the other hand, are long, branched polymers made up of multiple single units. They serve as convenient storage molecules for energy reserves, such as glycogen in humans and starch in plants.

      In summary, carbohydrates are vital building blocks for energy production and storage in living organisms. Monosaccharides, disaccharides, and polysaccharides all play important roles in maintaining the body’s energy balance and overall health.

    • This question is part of the following fields:

      • Basic Sciences
      8
      Seconds
  • Question 9 - What stage of cellular respiration is responsible for the production of pyruvic acid?...

    Correct

    • What stage of cellular respiration is responsible for the production of pyruvic acid?

      Your Answer: Glycolysis

      Explanation:

      The Versatility of Pyruvic Acid in Cellular Metabolism

      Pyruvic acid is a simple alpha-keto acid that plays a crucial role in several metabolic pathways within the cell. It serves as a central intersection where different pathways converge and diverge. One of the primary ways pyruvic acid is produced is through glycolysis, where glucose is broken down into pyruvic acid. Depending on the cell’s needs, pyruvic acid can be converted back into glucose through gluconeogenesis or used to synthesize fatty acids through the acetyl-CoA pathway. Additionally, pyruvic acid can be used to produce the amino acid alanine.

      Pyruvic acid is also involved in respiration, where it enters the Krebs cycle under aerobic conditions. This cycle produces energy in the form of ATP, which is used by the cell for various functions. Under anaerobic conditions, pyruvic acid can ferment into lactic acid, which is used by some organisms as a source of energy.

      In summary, pyruvic acid is a versatile molecule that plays a critical role in cellular metabolism. Its ability to be converted into different molecules depending on the cell’s needs makes it an essential component of many metabolic pathways.

    • This question is part of the following fields:

      • Basic Sciences
      7.5
      Seconds
  • Question 10 - What significance do linoleic and alpha-linolenic acids hold? ...

    Incorrect

    • What significance do linoleic and alpha-linolenic acids hold?

      Your Answer: They are omega-3 fatty acids

      Correct Answer: They are essential fatty acids

      Explanation:

      The Importance of Essential Fatty Acids in the Diet

      Essential fatty acids, such as linoleic and alpha-linolenic acids, are crucial components of a healthy diet. Although they are only required in small amounts, they play several important roles in the body. These fatty acids are necessary for the synthesis of phospholipids, which are essential components of cell membranes. They also help regulate cholesterol transport and synthesis, and serve as precursors for omega-3 fatty acids and arachidonic acid. Additionally, essential fatty acids are important for the synthesis of prostaglandins, leukotrienes, and thromboxanes.

      A lack of adequate essential fatty acids in the diet can have negative consequences, particularly for brain growth in infancy. It can also lead to alopecia, dermatitis, and fatty liver. Therefore, it is important to ensure that the diet includes sources of these essential fatty acids, such as certain types of fish, nuts, and seeds. By doing so, individuals can support their overall health and well-being.

    • This question is part of the following fields:

      • Basic Sciences
      7.8
      Seconds
  • Question 11 - Over the last five years, the total number of patients admitted and deaths...

    Incorrect

    • Over the last five years, the total number of patients admitted and deaths in the East and North Hertfordshire NHS Trust have been recorded. In the year 2010/2011, there were 95,071 patients admitted and 1,912 deaths. What is the crude mortality ratio for this group in that year (per 100 admissions)?

      Your Answer: 1.7

      Correct Answer: 2

      Explanation:

      In this scenario, the crude mortality ratio is established by comparing the number of deaths occurring within the hospital in a given year to the total number of admissions, disregarding age or gender-specific mortality rates. For instance, with 1,912 deaths out of 95,071 admissions, the ratio computes to 0.02, or 2.0% when calculated per 100 admissions (1,912/95,071 = 0.02/100= 2.0%. When recalculated per 1,000 admissions, the crude admission rate would be 20 per 1,000.

    • This question is part of the following fields:

      • Basic Sciences
      37.4
      Seconds
  • Question 12 - A man in his forties comes in with chest pain resembling a heart...

    Correct

    • A man in his forties comes in with chest pain resembling a heart attack and is diagnosed with a myocardial infarction. During his hospitalization, it is discovered that he has familial hypercholesterolemia but his triglyceride levels are normal. What is the underlying biochemical abnormality?

      Your Answer: Defective LDL receptors

      Explanation:

      Lipid Metabolism and Transport in the Body

      The breakdown of triglycerides in the small intestine is facilitated by pancreatic lipase. These triglycerides are then transported to the liver and other parts of the body through chylomicrons.

      Very low-density lipoprotein (VLDL) is responsible for carrying triglycerides from the liver to peripheral tissues. When there is an overproduction of VLDL in the liver, it can lead to high levels of triglycerides in the body.

      Pure hypercholesterolaemia is a condition that arises due to a defect in the process of cholesterol uptake into cells. This process relies on apolipoprotein B-100 binding to LDL receptors and facilitating endocytosis. When this process is disrupted, it can lead to high levels of cholesterol in the body.

    • This question is part of the following fields:

      • Basic Sciences
      24.7
      Seconds
  • Question 13 - What occurs in eukaryotic prophase? ...

    Incorrect

    • What occurs in eukaryotic prophase?

      Your Answer: The cell duplicates its DNA and centrosome

      Correct Answer: Chromatin condenses into chromosomes

      Explanation:

      The Stages of Prophase in Eukaryotic Mitosis

      Prophase is the first stage of eukaryotic mitosis, except for plant cells which have a preprophase stage. During prophase, the cell’s chromatin, which is made up of DNA and associated proteins, condenses into double rod-shaped structures called chromosomes. This process is facilitated by the condensin protein I and/or II complexes. As the chromosomes form, the nuclear membrane and nucleoli disintegrate and disappear, making the chromatin visible.

      Before prophase, the cell’s DNA is replicated during interphase, resulting in identical pairs of chromosomes called chromatids. These chromatids attach to each other at a DNA element called the centromere. DNA and centrosome duplication occur during interphase, while chromosome alignment takes place during metaphase. The nuclear membrane and nucleoli re-form during telophase, and the sister chromatids separate during anaphase.

      In summary, prophase is the initial stage of eukaryotic mitosis where chromatin condenses into chromosomes, and the nuclear membrane and nucleoli disappear. Chromosome alignment, DNA and centrosome duplication, and re-formation of the nuclear membrane and nucleoli occur in subsequent stages.

    • This question is part of the following fields:

      • Basic Sciences
      8.4
      Seconds
  • Question 14 - What are the potential clinical consequences of a lack of vitamin E? ...

    Incorrect

    • What are the potential clinical consequences of a lack of vitamin E?

      Your Answer: Bleeding gums

      Correct Answer: Ataxia

      Explanation:

      Vitamin E Deficiency

      Vitamin E deficiency is a rare condition that is more likely to occur in individuals with problems affecting the absorption of dietary fats. This includes those with a history of bowel surgery, pancreatic insufficiency, and cystic fibrosis. Premature infants are also at a higher risk of developing this deficiency as vitamin E does not easily cross the placenta. However, supplementation with vitamin E can reverse the damage in some cases.

      The effects of vitamin E deficiency can be severe and can cause spinocerebellar degeneration, which includes limb ataxia, loss of joint position sense, loss of sensation of vibration, and loss of deep tendon reflexes. Additionally, it can cause degeneration of retinal pigments, leading to blindness. In premature infants, it can cause haemolytic anaemia, thrombocytosis, and oedema.

      Overall, vitamin E deficiency is crucial in preventing and treating its effects. It is important to identify individuals who are at a higher risk of developing this deficiency and provide them with appropriate supplementation to prevent any long-term damage.

    • This question is part of the following fields:

      • Basic Sciences
      11.1
      Seconds
  • Question 15 - What could be a potential cause of metabolic acidosis? ...

    Incorrect

    • What could be a potential cause of metabolic acidosis?

      Your Answer: Chronic obstructive pulmonary disease (COPD)

      Correct Answer: Poorly controlled diabetes

      Explanation:

      Acid-Base Imbalances in Different Medical Conditions

      Poorly controlled diabetes can cause the breakdown of fatty acids, leading to the production of ketones as an alternative energy source. However, an excess of ketones can result in metabolic acidosis due to their acidic nature. On the other hand, chronic obstructive pulmonary disease (COPD) and suffocation can cause the retention of carbon dioxide, leading to respiratory acidosis. In COPD, there may be a compensatory metabolic alkalosis. Voluntary hyperventilation can cause respiratory alkalosis due to the reduction of carbon dioxide. Vomiting can also lead to metabolic alkalosis. Diabetic ketoacidosis is a complication of type 1 diabetes that results in high blood sugar levels, ketone production, and acidosis.

      In summary, different medical conditions can cause acid-base imbalances in the body. It is important to identify the underlying cause of the imbalance to provide appropriate treatment.

    • This question is part of the following fields:

      • Basic Sciences
      4.3
      Seconds
  • Question 16 - What is the statement of Henry's law? ...

    Incorrect

    • What is the statement of Henry's law?

      Your Answer: Equal volumes of gases at standardised temperature and pressure each contain the same number of molecules

      Correct Answer: The concentration of a gas when dissolved in liquid is proportional to its partial pressure

      Explanation:

      Gas Laws

      Gas laws are a set of scientific principles that describe the behavior of gases under different conditions. One of these laws is Avogadro’s law, which states that equal volumes of gases at a standardized temperature and pressure contain the same number of molecules. Another law is Boyle’s law, which explains that gases expand when the temperature is increased. Charles’ law, on the other hand, states that the pressure of a gas is inversely proportional to its volume at a standardized temperature. Lastly, Graham’s law explains that the rate of diffusion of a gas is in inverse proportion to its weight. The specific gas laws that you need to know may vary depending on your syllabus, but you should be able to recognize and apply them if given the formulae. It is unlikely that you will be expected to know the correct formula.

    • This question is part of the following fields:

      • Basic Sciences
      15.9
      Seconds
  • Question 17 - A 40-year-old male complains of a painful and swollen right calf. The possibility...

    Correct

    • A 40-year-old male complains of a painful and swollen right calf. The possibility of deep vein thrombosis (DVT) is being considered. What tests should be conducted to confirm the diagnosis?

      Your Answer: Dopplers of the leg veins

      Explanation:

      Diagnostic Methods for Deep Vein Thrombosis

      When it comes to diagnosing deep vein thrombosis (DVT), there are several methods available. The most common ones are Doppler studies and venography. Doppler studies use B mode ultrasonography to examine the venous system, while venography involves injecting a contrast dye into the veins and taking X-rays. CT scans are not typically used for DVT diagnosis because they require contrast and expose the patient to radiation. D-Dimer concentrations can help rule out DVT if they are negative, but they cannot diagnose it. MRI scans are useful for examining soft tissues and bones, but they are not the best option for visualizing the vasculature. Finally, oxygen saturation of the limbs is not a reliable diagnostic method because tissue perfusion can be the same even if there is arterial disease. Overall, Doppler studies and venography are the most effective methods for diagnosing DVT.

    • This question is part of the following fields:

      • Basic Sciences
      11
      Seconds
  • Question 18 - As part of your general practice placement, you have been tasked with conducting...

    Incorrect

    • As part of your general practice placement, you have been tasked with conducting an audit on the duration of solid food introduction in the practice population. You review the data for the last six infants born within the practice:
      6 months, 7 months, 8 months, 9 months, 10 months, 11 months.

      What is the variance value for the duration of solid food introduction in the practice population?

      Your Answer: 8.6

      Correct Answer: 74.9

      Explanation:

      Variance and Standard Deviation in Breast Feeding Duration

      Variance is a statistical measure that indicates how spread out a set of data is. In the case of breast feeding duration, variance can help us understand how much the duration varies from the mean. The formula for variance involves squaring the difference between each data point and the mean, then dividing the sum by n-1, where n is the total number of data points. In a sample population, n-1 is a better estimate of variance than n because it accounts for the variability within the sample.

      For example, if the variance of breast feeding duration is 74.9 months, this indicates that the duration is widely distributed from the mean of 17.6 months. A smaller variance, such as 4.5 months, would indicate that the duration varies less and is closer to the mean. The standard deviation, which is the square root of the variance, is also important in the spread of data. In a normal distribution, 95% of observations will fall within two standard deviations of the mean.

      In the case of breast feeding duration, the mean is 17.6 months, indicating that babies are breast fed for an average of 15 and a half months. The median, which is the middle number in the data set, is 15 months, meaning that half of the babies were breast fed for 15 months. variance and standard deviation can help us better understand the distribution of breast feeding duration and other medical measurements.

    • This question is part of the following fields:

      • Basic Sciences
      38.7
      Seconds
  • Question 19 - A couple in their late 30s come to the clinic seeking information about...

    Incorrect

    • A couple in their late 30s come to the clinic seeking information about the risk of their three children inheriting Huntington's disease. The husband has recently been diagnosed with the disease, while the wife is not affected. What is the likelihood, expressed as a percentage, that their children will inherit the disease?

      Your Answer: 25%

      Correct Answer: 50%

      Explanation:

      Huntington’s Disease

      Huntington’s disease is a genetic disorder that typically appears later in life and is characterized by symptoms such as chorea, cognitive decline, and personality changes. It is an autosomal dominant disease, meaning that there is a 50% chance of passing it on to offspring. If the gene is inherited from an unaffected parent, the child will not be affected. This is different from autosomal recessive inheritance, where both parents must pass on the gene for it to affect their children.

      The disease is caused by an increase in the length of a repeating trinucleotide sequence (CAG) in the Huntington protein. This sequence can change in length through generations, and longer sequences are associated with earlier onset of symptoms (genetic anticipation). Since Huntington’s disease usually presents itself after people have already started their families, there are many issues associated with genetic testing.

    • This question is part of the following fields:

      • Basic Sciences
      46.5
      Seconds
  • Question 20 - Which form of vitamin D is the most active in the human body?...

    Incorrect

    • Which form of vitamin D is the most active in the human body?

      Your Answer: Ergocalciferol

      Correct Answer: 1, 25 (OH) 2 vitamin D

      Explanation:

      The Process of Vitamin D Production and Activation

      Vitamin D comes in two forms, D2 and D3. D3 can be produced in the skin through a reaction that requires UV light, while D2 cannot. Both forms can also be obtained through diet, with some foods now being supplemented with Vitamin D. However, the production of Vitamin D3 in the skin can be affected by various factors such as seasons, latitude, clothing, sun block, and skin tone, making it difficult for individuals to get adequate levels of Vitamin D through sunlight alone, especially in the UK during winter.

      Once absorbed into the lymph, Vitamin D2 and D3 circulate in the bloodstream and reach the liver. Here, the liver enzyme 25-hydroxylase adds an OH group to the Vitamin D molecule, resulting in 25(OH) Vitamin D. The compound then travels to the kidney, where the enzyme 1-alpha hydroxylase adds another OH group, creating the active form of Vitamin D, 1,25 (OH)2Vitamin D. When there is enough of this active form, an inactive metabolite called 24,25 (OH)2Vitamin D is produced instead. this process is important in ensuring adequate Vitamin D levels for overall health and well-being.

    • This question is part of the following fields:

      • Basic Sciences
      9.9
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Basic Sciences (4/20) 20%
Passmed