00
Correct
00
Incorrect
00 : 00 : 0 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - Sarah is a 15-year-old female who presented to the clinic with concerns about...

    Incorrect

    • Sarah is a 15-year-old female who presented to the clinic with concerns about her development. She has not grown as expected and remains shorter than most of the girls in her class. She also notes that she has not started her period yet, which is affecting her confidence.

      On examination, she is 150cm tall and has no breast development. Pubic hair is sparse and axillary hair is absent. The uterus and ovaries are not palpable. A cleft palate is noted on examination of the mouth. When cranial nerve I was examined, she was unable to detect the smell of the odours sampled.

      Blood tests show low levels of estrogen, follicular stimulating hormone (FSH) and luteinizing hormone (LH). Liver function tests were normal. Blood glucose reading was 5.6mmol/L. Iron studies were unremarkable.

      What is the likely cause for her symptoms?

      Your Answer: Turner syndrome

      Correct Answer: Kallmann syndrome

      Explanation:

      The patient’s symptoms of delayed puberty and underdeveloped secondary sexual characteristics, along with a cleft palate and anosmia, suggest Kallmann syndrome. This condition is characterized by hypogonadotropic hypogonadism, as evidenced by low-normal levels of LH and FSH, as well as low testosterone levels. Kallmann syndrome is an X-linked inherited disorder caused by the failure of gonadotrophin-releasing hormone-producing neurons to migrate properly during fetal development.

      While Klinefelter syndrome can also cause delayed puberty and small testes, it is associated with hypergonadotropic hypogonadism, which is characterized by elevated levels of FSH and LH but low testosterone levels. Anosmia is not typically a symptom of Klinefelter syndrome.

      Hemochromatosis, a condition in which iron accumulates in the body, can also cause hypogonadotropic hypogonadism by affecting the hypothalamus. However, this is unlikely in this case as the patient’s iron studies were normal and anosmia is not a common symptom of hemochromatosis.

      Kallmann’s syndrome is a condition that can cause delayed puberty due to hypogonadotropic hypogonadism. It is often inherited as an X-linked recessive trait and is believed to be caused by a failure of GnRH-secreting neurons to migrate to the hypothalamus. One of the key indicators of Kallmann’s syndrome is anosmia, or a lack of smell, in boys with delayed puberty. Other features may include hypogonadism, cryptorchidism, low sex hormone levels, and normal or above-average height. Some patients may also have cleft lip/palate and visual/hearing defects.

      Management of Kallmann’s syndrome typically involves testosterone supplementation. Gonadotrophin supplementation may also be used to stimulate sperm production if fertility is desired later in life. It is important for individuals with Kallmann’s syndrome to receive appropriate medical care and monitoring to manage their symptoms and ensure optimal health outcomes.

    • This question is part of the following fields:

      • Endocrine System
      57.5
      Seconds
  • Question 2 - A 60-year-old woman complains of persistent diarrhoea, wheezing, and flushing. During the physical...

    Incorrect

    • A 60-year-old woman complains of persistent diarrhoea, wheezing, and flushing. During the physical examination, an irregular pulsatile hepatomegaly and a pansystolic murmur that is most pronounced during inspiration are detected. What diagnostic test could provide insight into the probable underlying condition?

      Your Answer: Abdominal thoracic CT

      Correct Answer: Urinary 5-HIAA (5-hydroxyindole acetic acid)

      Explanation:

      Carcinoid Syndrome and its Diagnosis

      Carcinoid syndrome is characterized by the presence of vasoactive amines such as serotonin in the bloodstream, leading to various clinical features. The primary carcinoid tumor is usually found in the small intestine or appendix, but it may not cause significant symptoms as the liver detoxifies the blood of these amines. However, systemic effects occur when malignant cells spread to other organs, such as the lungs, which are not part of the portal circulation. One of the complications of carcinoid syndrome is damage to the right heart valves, which can cause tricuspid regurgitation, as evidenced by a pulsatile liver and pansystolic murmur.

      To diagnose carcinoid syndrome, the 5-HIAA test is usually performed, which measures the breakdown product of serotonin in a 24-hour urine collection. If the test is positive, imaging and histology are necessary to confirm malignancy.

    • This question is part of the following fields:

      • Endocrine System
      36.6
      Seconds
  • Question 3 - A 64-year-old man comes in for a follow-up of his type 2 diabetes....

    Incorrect

    • A 64-year-old man comes in for a follow-up of his type 2 diabetes. Despite being on metformin therapy, his HbA1c levels are at 62mmol/mol. To address this, you plan to initiate sitagliptin for dual hypoglycemic therapy.

      What is the mechanism of action of sitagliptin?

      Your Answer:

      Correct Answer: Decreases GLP-1 breakdown

      Explanation:

      Sitagliptin, a DPP-4 inhibitor, reduces the breakdown of GLP-1 and GIP incretins, leading to increased levels of these hormones and potentiation of the incretin effect, which is typically reduced in diabetes.

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 4 - A 26-year-old male patient comes to the follow-up clinic after undergoing surgery to...

    Incorrect

    • A 26-year-old male patient comes to the follow-up clinic after undergoing surgery to remove an endocrine gland. He had been experiencing symptoms such as profuse sweating, headaches, palpitations, and high blood pressure (200/120mmHg) prior to the decision for surgery. What type of cells would be revealed through histological staining of the removed organ?

      Your Answer:

      Correct Answer: Chromaffin cells

      Explanation:

      The man’s initial symptoms are consistent with a diagnosis of phaeochromocytoma, a type of neuroendocrine tumor that affects the chromaffin cells in the adrenal medulla. This condition leads to an overproduction of adrenaline and noradrenaline, resulting in an excessive sympathetic response.

      Calcitonin is secreted by the parafollicular C cells in the thyroid gland.

      The anterior pituitary gland contains gonadotropes, lactotropes, and thyrotropes, which secrete gonadotropins (FSH, LH), prolactin, and TSH, respectively.

      Phaeochromocytoma: A Rare Tumor that Secretes Catecholamines

      Phaeochromocytoma is a type of tumor that secretes catecholamines and is considered rare. It is familial in about 10% of cases and may be associated with certain syndromes such as MEN type II, neurofibromatosis, and von Hippel-Lindau syndrome. This tumor can be bilateral in 10% of cases and malignant in 10%. It can also occur outside of the adrenal gland, with the most common site being the organ of Zuckerkandl, which is adjacent to the bifurcation of the aorta.

      The symptoms of phaeochromocytoma are typically episodic and include hypertension (which is present in around 90% of cases and may be sustained), headaches, palpitations, sweating, and anxiety. To diagnose this condition, a 24-hour urinary collection of metanephrines is preferred over a 24-hour urinary collection of catecholamines due to its higher sensitivity (97%).

      Surgery is the definitive management for phaeochromocytoma. However, before surgery, the patient must first be stabilized with medical management, which includes an alpha-blocker (such as phenoxybenzamine) given before a beta-blocker (such as propranolol).

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 5 - For individuals with multiple endocrine neoplasia type IIb, what is the most probable...

    Incorrect

    • For individuals with multiple endocrine neoplasia type IIb, what is the most probable clinical presentation they will exhibit?

      Your Answer:

      Correct Answer: Marfanoid features

      Explanation:

      Understanding Multiple Endocrine Neoplasia

      Multiple endocrine neoplasia (MEN) is an autosomal dominant disorder that affects the endocrine system. There are three main types of MEN, each with its own set of associated features. MEN type I is characterized by the 3 P’s: parathyroid hyperplasia leading to hyperparathyroidism, pituitary tumors, and pancreatic tumors such as insulinomas and gastrinomas. MEN type IIa is associated with the 2 P’s: parathyroid hyperplasia leading to hyperparathyroidism and phaeochromocytoma, as well as medullary thyroid cancer. MEN type IIb is characterized by phaeochromocytoma, medullary thyroid cancer, and a marfanoid body habitus.

      The most common presentation of MEN is hypercalcaemia, which is often seen in MEN type I due to parathyroid hyperplasia. MEN type IIa and IIb are both associated with medullary thyroid cancer, which is caused by mutations in the RET oncogene. MEN type I is caused by mutations in the MEN1 gene. Understanding the different types of MEN and their associated features is important for early diagnosis and management of this rare but potentially serious condition.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 6 - A 67-year-old man has visited the doctor with concerns about his blood glucose...

    Incorrect

    • A 67-year-old man has visited the doctor with concerns about his blood glucose levels. He has type 1 diabetes and also suffers from chronic obstructive pulmonary disease (COPD). Following a recent bout of pneumonia, he has been experiencing difficulty in managing his blood sugars. You suspect that one of his newly prescribed medications may be contributing to this issue. Which medication could be causing acute problems with diabetic control?

      Your Answer:

      Correct Answer: Prednisolone

      Explanation:

      The use of corticosteroids, such as prednisolone, can have a negative impact on diabetic control due to their anti-insulin effects. This can cause an increase in glucagon levels, leading to elevated blood sugar levels. While this effect is usually temporary and should resolve on its own, higher doses of insulin may be necessary during treatment. Prednisolone is often prescribed to manage exacerbations of COPD.

      Amoxicillin, a penicillin antibiotic, can be prescribed alongside prednisolone to treat infective asthma exacerbations. Its bactericidal effects are unlikely to affect diabetes control.

      Carbocisteine is a mucolytic medication commonly used for long-term management of COPD and bronchiectasis. It helps to thin sputum in the lungs, making it easier to cough up and preventing colonization. It is not known to worsen diabetes control.

      Doxycycline, a tetracycline antibiotic, is commonly used to treat COPD exacerbations. However, it does not typically affect blood sugar control and is unlikely to be a contributing factor in this case.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 7 - A 57-year-old woman presents to the physician with a recurring blistering rash on...

    Incorrect

    • A 57-year-old woman presents to the physician with a recurring blistering rash on her hands. The rash has also affected her legs, inguinal creases, and the corners of her mouth at different times. She was diagnosed with type 2 diabetes mellitus three months ago and has occasional loose stools. The patient denies experiencing palpitations, abdominal pain, or vomiting, but reports having occasional watery stools.

      During the physical examination, the physician observes coalescing erythematous plaques with crusting and scaling at the borders and central areas of brownish induration over the lower abdomen and in the perioral skin.

      What is the most likely diagnosis for this patient?

      Your Answer:

      Correct Answer: Glucagonoma

      Explanation:

      The patient is likely suffering from a glucagonoma, a rare tumor that originates from the alpha cells of the pancreas. This condition causes the excessive secretion of glucagon, resulting in hyperglycemia or diabetes mellitus. One of the characteristic symptoms of glucagonoma is necrolytic migratory erythema, a painful and itchy rash that appears on the face, groin, and limbs.

      Gastrinoma, on the other hand, does not cause a blistering rash or diabetes mellitus. However, it is often associated with abdominal pain, diarrhea, and ulceration.

      Somatostatinoma typically presents with abdominal pain, constipation, hyperglycemia, and steatorrhea, which are not present in this patient.

      VIPoma is unlikely as it usually causes intractable diarrhea, hypokalemia, and achlorhydria.

      Although zinc deficiency can cause skin lesions that resemble necrolytic migratory erythema, the patient’s recent diabetes mellitus diagnosis and lack of other symptoms make glucagonoma the more likely diagnosis.

      Glucagonoma: A Rare Pancreatic Tumor

      Glucagonoma is a rare type of pancreatic tumor that usually originates from the alpha cells of the pancreas. These tumors are typically small and malignant, and they can cause a range of symptoms, including diabetes mellitus, venous thrombo-embolism, and a distinctive red, blistering rash known as necrolytic migratory erythema. To diagnose glucagonoma, doctors typically look for a serum level of glucagon that is higher than 1000pg/ml, and they may also use CT scanning to visualize the tumor. Treatment options for glucagonoma include surgical resection and octreotide, a medication that can help to control the symptoms of the disease. Overall, glucagonoma is a rare but serious condition that requires prompt diagnosis and treatment to manage its symptoms and prevent complications.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 8 - A 49-year-old man visits the clinic with complaints of muscle cramps and constipation...

    Incorrect

    • A 49-year-old man visits the clinic with complaints of muscle cramps and constipation that have been present for a week. He appears to be in good health otherwise. Upon conducting a serum potassium test, you discover that his levels are below the normal range. Your next step is to determine the underlying cause of his hypokalaemia. Which of the following medical conditions is commonly linked to low potassium levels?

      Your Answer:

      Correct Answer: Cushing's syndrome

      Explanation:

      Cushing’s syndrome is the correct answer as it causes excess cortisol which can exhibit mineralocorticoid activity and lead to hypokalaemia. The kidneys play a major role in maintaining potassium balance, but other factors such as insulin, catecholamines, and aldosterone also influence potassium levels. The other options listed (congenital adrenal hypoplasia, Addison’s, rhabdomyolysis, metabolic acidosis) all cause hyperkalaemia. Addison’s disease and adrenal hypoplasia result in mineralocorticoid deficiency, leading to hyperkalaemia. Acidosis and rhabdomyolysis also cause hyperkalaemia. Symptoms of hypokalaemia include fatigue, muscle weakness, myalgia, muscle cramps, constipation, hyporeflexia, and rarely paralysis.

      Causes of Cushing’s Syndrome

      Cushing’s syndrome is a condition that can be caused by both endogenous and exogenous factors. However, it is important to note that exogenous causes, such as the use of glucocorticoid therapy, are more common than endogenous ones. The condition can be classified into two categories: ACTH dependent and ACTH independent causes.

      ACTH dependent causes of Cushing’s syndrome include Cushing’s disease, which is caused by a pituitary tumor secreting ACTH and producing adrenal hyperplasia. Ectopic ACTH production, which is caused by small cell lung cancer, is another ACTH dependent cause. On the other hand, ACTH independent causes include iatrogenic factors such as steroid use, adrenal adenoma, adrenal carcinoma, Carney complex, and micronodular adrenal dysplasia.

      In some cases, a condition called Pseudo-Cushing’s can mimic Cushing’s syndrome. This is often caused by alcohol excess or severe depression and can cause false positive results in dexamethasone suppression tests or 24-hour urinary free cortisol tests. To differentiate between Cushing’s syndrome and Pseudo-Cushing’s, an insulin stress test may be used.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 9 - A 44-year-old man has been diagnosed with type II diabetes mellitus but cannot...

    Incorrect

    • A 44-year-old man has been diagnosed with type II diabetes mellitus but cannot tolerate metformin therapy. What is the mechanism of action of alogliptin, which has been prescribed as an alternative?

      Your Answer:

      Correct Answer: Reduce the peripheral breakdown of incretins

      Explanation:

      Gliptins (DPP-4 inhibitors) work by inhibiting the enzyme DPP-4, which reduces the breakdown of incretin hormones such as GLP-1. This leads to a glucose-dependent increase in insulin secretion and a reduction in glucagon secretion, ultimately regulating glucose homeostasis. However, gliptins do not increase the production of GLP-1, directly stimulate the release of insulin from pancreatic beta cells, inhibit the SGLT2 receptor, or reduce insulin resistance.

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 10 - A 10-year-old girl with type 1 diabetes arrives at the emergency department with...

    Incorrect

    • A 10-year-old girl with type 1 diabetes arrives at the emergency department with vomiting. After a brief history, you discover she had a recent bout of strep throat. Upon examination, you detect ketones in her urine and elevated blood sugar levels, indicating a likely case of diabetic ketoacidosis. What is the primary ketone body implicated in diabetic ketoacidosis?

      Your Answer:

      Correct Answer: Acetoacetate

      Explanation:

      The liver produces water-soluble molecules called ketone bodies from fatty acids, with acetoacetate being the primary ketone body involved in diabetic ketoacidosis, along with beta-hydroxybutyrate and acetone. Ketone bodies are generated during fasting/starvation, intense exercise, or untreated type 1 diabetes mellitus. These molecules are taken up by extra-hepatic tissues and transformed into acetyl-CoA, which enters the citric acid cycle and is oxidized in the mitochondria to produce energy.

      Diabetic ketoacidosis (DKA) is a serious complication of type 1 diabetes mellitus, accounting for around 6% of cases. It can also occur in rare cases of extreme stress in patients with type 2 diabetes mellitus. DKA is caused by uncontrolled lipolysis, resulting in an excess of free fatty acids that are converted to ketone bodies. The most common precipitating factors of DKA are infection, missed insulin doses, and myocardial infarction. Symptoms include abdominal pain, polyuria, polydipsia, dehydration, Kussmaul respiration, and breath that smells like acetone. Diagnostic criteria include glucose levels above 11 mmol/l or known diabetes mellitus, pH below 7.3, bicarbonate below 15 mmol/l, and ketones above 3 mmol/l or urine ketones ++ on dipstick.

      Management of DKA involves fluid replacement, insulin, and correction of electrolyte disturbance. Fluid replacement is necessary as most patients with DKA are deplete around 5-8 litres. Isotonic saline is used initially, even if the patient is severely acidotic. Insulin is administered through an intravenous infusion, and correction of electrolyte disturbance is necessary. Long-acting insulin should be continued, while short-acting insulin should be stopped. Complications may occur from DKA itself or the treatment, such as gastric stasis, thromboembolism, arrhythmias, acute respiratory distress syndrome, acute kidney injury, and cerebral edema. Children and young adults are particularly vulnerable to cerebral edema following fluid resuscitation in DKA and often need 1:1 nursing to monitor neuro-observations, headache, irritability, visual disturbance, focal neurology, etc.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 11 - A 32-year-old man has been admitted to the emergency department with severe hypocalcaemia...

    Incorrect

    • A 32-year-old man has been admitted to the emergency department with severe hypocalcaemia that has not responded to calcium replacement therapy. What other serum electrolytes should be checked urgently?

      Your Answer:

      Correct Answer: Magnesium

      Explanation:

      If a person has hypomagnesaemia, it can lead to hypocalcaemia and make it difficult to treat. Therefore, when dealing with hypocalcaemia, it is important to keep an eye on the levels of calcium, phosphate, and magnesium. The phosphate levels can provide insight into potential causes, as low calcium levels combined with high phosphate levels may indicate hypoparathyroidism.

      The Importance of Magnesium and Calcium in the Body

      Magnesium and calcium are essential minerals in the body. Magnesium plays a crucial role in the secretion and action of parathyroid hormone (PTH) on target tissues. However, a deficiency in magnesium can cause hypocalcaemia and make patients unresponsive to calcium and vitamin D supplementation.

      The body contains 1000 mmol of magnesium, with half stored in bones and the rest in muscle, soft tissues, and extracellular fluid. Unlike calcium, there is no specific hormonal control of magnesium. Hormones such as PTH and aldosterone affect the renal handling of magnesium.

      Magnesium and calcium also interact at a cellular level. A decrease in magnesium levels can affect the permeability of cellular membranes to calcium, leading to hyperexcitability. Therefore, it is essential to maintain adequate levels of both magnesium and calcium in the body for optimal health.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 12 - A 42-year-old woman presents to a consultant endocrinologist for a discussion regarding her...

    Incorrect

    • A 42-year-old woman presents to a consultant endocrinologist for a discussion regarding her thyroid function test outcomes. The results are as follows:

      - Elevated TSH
      - Decreased FT4
      - Decreased FT3
      - Positive Anti-TPO

      What is the association of her condition with any of the following options?

      Your Answer:

      Correct Answer: MALT lymphoma

      Explanation:

      The development of Hashimoto’s thyroiditis is linked to

      Understanding Hashimoto’s Thyroiditis

      Hashimoto’s thyroiditis is a chronic autoimmune disorder that affects the thyroid gland. It is more common in women and is typically associated with hypothyroidism, although there may be a temporary period of thyrotoxicosis during the acute phase. The condition is characterized by a firm, non-tender goitre and the presence of anti-thyroid peroxidase (TPO) and anti-thyroglobulin (Tg) antibodies.

      Hashimoto’s thyroiditis is often associated with other autoimmune conditions such as coeliac disease, type 1 diabetes mellitus, and vitiligo. Additionally, there is an increased risk of developing MALT lymphoma with this condition. It is important to note that many causes of hypothyroidism may have an initial thyrotoxic phase, as shown in the Venn diagram. Understanding the features and associations of Hashimoto’s thyroiditis can aid in its diagnosis and management.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 13 - A 25-year-old regular gym attendee has been using growth hormone injections to enhance...

    Incorrect

    • A 25-year-old regular gym attendee has been using growth hormone injections to enhance his muscle mass. What potential risks is he now more susceptible to?

      Your Answer:

      Correct Answer: Diabetes mellitus type II

      Explanation:

      Excessive growth hormone can elevate the likelihood of developing type II diabetes mellitus. This is due to the hormone’s ability to release glucose from fat reserves, which raises its concentration in the bloodstream. As a result, the pancreas must produce more insulin to counteract the heightened glucose levels.

      Additional indications of surplus growth hormone may involve thickened skin, enlarged extremities, a protruding jaw, carpal tunnel syndrome, fatigue, muscle frailty, and high blood pressure.

      Understanding Growth Hormone and Its Functions

      Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.

      GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.

      In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 14 - The acute phase response to injury in elderly patients does not involve which...

    Incorrect

    • The acute phase response to injury in elderly patients does not involve which of the following?

      Your Answer:

      Correct Answer: Increased transferrin

      Explanation:

      The acute phase response is characterized by various physiological changes, such as the production of acute phase proteins, decreased levels of transport proteins like albumin and transferrin, hepatic retention of cations, fever, an increase in neutrophil count, elevated muscle proteolysis, and alterations in vascular permeability.

      Surgery triggers a stress response that causes hormonal and metabolic changes in the body. This response is characterized by substrate mobilization, muscle protein loss, sodium and water retention, suppression of anabolic hormone secretion, activation of the sympathetic nervous system, and immunological and haematological changes. The hypothalamic-pituitary axis and the sympathetic nervous systems are activated, and the normal feedback mechanisms of control of hormone secretion fail. The stress response is associated with increased growth hormone, cortisol, renin, adrenocorticotrophic hormone (ACTH), aldosterone, prolactin, antidiuretic hormone, and glucagon, while insulin, testosterone, oestrogen, thyroid stimulating hormone, luteinizing hormone, and follicle stimulating hormone are decreased or remain unchanged. The metabolic effects of cortisol are enhanced, including skeletal muscle protein breakdown, stimulation of lipolysis, anti-insulin effect, mineralocorticoid effects, and anti-inflammatory effects. The stress response also affects carbohydrate, protein, lipid, salt and water metabolism, and cytokine release. Modifying the response can be achieved through opioids, spinal anaesthesia, nutrition, growth hormone, anabolic steroids, and normothermia.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 15 - A 65-year-old man with a history of poorly-controlled type 2 diabetes presents to...

    Incorrect

    • A 65-year-old man with a history of poorly-controlled type 2 diabetes presents to the emergency department with altered mental status. His daughter reports that he has been complaining of increased thirst and urination over the past few days and has been skipping his insulin injections. On examination, he is dehydrated with a GCS of 3. His vital signs are recorded, and he is intubated and given ventilatory support. An arterial blood gas shows mild metabolic acidosis and his capillary blood glucose is undetectable. What is the next most appropriate step in his treatment?

      Your Answer:

      Correct Answer: 0.9% sodium chloride

      Explanation:

      In the ABCDE approach, the patient should be promptly given sodium chloride to restore their intravascular volume and maintain circulatory function. However, insulin is not recommended as an initial treatment for HHS. This is because glucose in the intravascular space helps maintain circulating volume, which is crucial for dehydrated patients. Administering insulin before fluid resuscitation can cause a reduction in intravascular volume and worsen hypotension. It may also worsen pre-existing hypokalaemia by driving potassium into the intracellular space. Potassium chloride should be administered only after fluid resuscitation and guided by potassium levels obtained from an arterial blood gas. Thiamine supplementation is not indicated at the moment as urgent resuscitation should be the priority.

      Hyperosmolar hyperglycaemic state (HHS) is a serious medical emergency that can be challenging to manage and has a high mortality rate of up to 20%. It is typically seen in elderly patients with type 2 diabetes mellitus (T2DM) and is caused by hyperglycaemia leading to osmotic diuresis, severe dehydration, and electrolyte imbalances. HHS develops gradually over several days, resulting in extreme dehydration and metabolic disturbances. Symptoms include polyuria, polydipsia, lethargy, nausea, vomiting, altered consciousness, and focal neurological deficits. Diagnosis is based on hypovolaemia, marked hyperglycaemia, significantly raised serum osmolarity, and no significant hyperketonaemia or acidosis.

      Management of HHS involves fluid replacement with IV 0.9% sodium chloride solution at a rate of 0.5-1 L/hour, depending on clinical assessment. Potassium levels should be monitored and added to fluids as needed. Insulin should not be given unless blood glucose stops falling while giving IV fluids. Patients are at risk of thrombosis due to hyperviscosity, so venous thromboembolism prophylaxis is recommended. Complications of HHS include vascular complications such as myocardial infarction and stroke.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 16 - A young male with a history of diabetes mellitus type 1 is admitted...

    Incorrect

    • A young male with a history of diabetes mellitus type 1 is admitted to the emergency department. He was previously found to be confused by his roommates in his room. As well as this, he complains of nausea and abdominal pain.

      An ECG is performed and shows tall tented T waves.

      A simple blood test reveals marked hyperglycemia. A urinalysis shows the presence of ketones ++.

      His bloods show the following:

      Hb 136 g/L Male: (135-180)
      Platelets 210 * 109/L (150 - 400)
      WBC 9.5 * 109/L (4.0 - 11.0)

      Na+ 137 mmol/L (135 - 145)
      K+ 7.1 mmol/L (3.5 - 5.0)
      Bicarbonate 31 mmol/L (22 - 29)
      Urea 8.0 mmol/L (2.0 - 7.0)
      Creatinine 155 µmol/L (55 - 120)

      He is given insulin, calcium gluconate and IV saline.

      What is the main mechanism as to why the patient's potassium level will decrease?

      Your Answer:

      Correct Answer: Insulin increases sodium potassium pump

      Explanation:

      Insulin stimulates the Na+/K+ ATPase pump, leading to a decrease in serum potassium levels. This is primarily achieved through increased activity of the sodium-potassium pump, which is triggered by phosphorylation of the transmembrane subunits in response to insulin. While calcium gluconate is used to protect the heart during hyperkalaemia-induced arrhythmias, it does not affect potassium levels. Although IV fluids can improve renal function and potassium clearance, they are not the primary method for reducing potassium levels. Calcium-activated potassium channels are present throughout the body and are activated by an increase in intracellular calcium levels during action potentials.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 17 - A 36-year-old woman visits her GP complaining of frequent urination. She has been...

    Incorrect

    • A 36-year-old woman visits her GP complaining of frequent urination. She has been waking up several times at night to urinate for the past two weeks and has been feeling more thirsty than usual. Her temperature is 37.3ºC. She has a history of bipolar disorder and is currently on lithium medication.

      What could be the possible cause of her polyuria?

      Your Answer:

      Correct Answer: Lithium reducing ADH-dependent water reabsorption in the collecting duct

      Explanation:

      The site of action for antidiuretic hormone (ADH) is the collecting ducts. Lithium treatment for bipolar disorder can lead to diabetes insipidus, which is characterized by increased thirst (polydipsia) and increased urination (polyuria). Lithium use can cause nephrogenic diabetes insipidus, where the kidneys are unable to respond adequately to ADH. Normally, ADH induces the expression of aquaporin 2 channels in the collecting duct, which stimulates water reabsorption.

      Central diabetes insipidus occurs when there is damage to the posterior pituitary gland, resulting in insufficient production and release of ADH. However, lithium use causes nephrogenic diabetes insipidus instead of central diabetes insipidus.

      Although insulin resistance and hyperglycemia can also cause polyuria and polydipsia, as seen in diabetic ketoacidosis, the use of lithium suggests that the patient’s symptoms are due to diabetes insipidus rather than diabetes mellitus.

      Lithium inhibits the expression of aquaporin channels in the renal collecting duct, rather than the distal convoluted tubule, which causes diabetes insipidus.

      While a urinary tract infection can also present with polyuria and nocturia, the presence of lithium in the patient’s drug history and the fact that the patient also has polydipsia suggest nephrogenic diabetes insipidus. Diabetes insipidus causes increased thirst due to the excessive volume of urine produced, leading to water loss from the body. In addition, a urinary tract infection would likely cause dysuria (burning or stinging when passing urine) and lower abdominal pain.

      Understanding Antidiuretic Hormone (ADH)

      Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.

      ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.

      Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.

      Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 18 - A 25-year-old woman presents to the endocrinology clinic with a diagnosis of Grave's...

    Incorrect

    • A 25-year-old woman presents to the endocrinology clinic with a diagnosis of Grave's disease. The diagnosis was made based on her elevated levels of thyroid hormones T3 and T4, as well as symptoms of heat intolerance, weight loss, and tremors. Typically, where are the receptors for thyroid hormones found?

      Your Answer:

      Correct Answer: Nucleus

      Explanation:

      Thyroid hormones can enter cells through diffusion or carriers. Once inside, they bind to intracellular DNA-binding proteins called thyroid hormone receptors located in the nucleus. This binding forms a complex that attaches to the thyroid hormone responsive element on DNA. The outcome of this process is an increase in mRNA production, protein synthesis, Na/K ATPase, mitochondrial function leading to higher oxygen consumption, and adrenoceptors.

      Thyroid disorders are commonly encountered in clinical practice, with hypothyroidism and thyrotoxicosis being the most prevalent. Women are ten times more likely to develop these conditions than men. The thyroid gland is a bi-lobed structure located in the anterior neck and is part of a hypothalamus-pituitary-end organ system that regulates the production of thyroxine and triiodothyronine hormones. These hormones help regulate energy sources, protein synthesis, and the body’s sensitivity to other hormones. Hypothyroidism can be primary or secondary, while thyrotoxicosis is mostly primary. Autoimmunity is the leading cause of thyroid problems in the developed world.

      Thyroid disorders can present in various ways, with symptoms often being the opposite depending on whether the thyroid gland is under or overactive. For example, hypothyroidism may result in weight gain, while thyrotoxicosis leads to weight loss. Thyroid function tests are the primary investigation for diagnosing thyroid disorders. These tests primarily look at serum TSH and T4 levels, with T3 being measured in specific cases. TSH levels are more sensitive than T4 levels for monitoring patients with existing thyroid problems.

      Treatment for thyroid disorders depends on the cause. Patients with hypothyroidism are given levothyroxine to replace the underlying deficiency. Patients with thyrotoxicosis may be treated with propranolol to control symptoms such as tremors, carbimazole to reduce thyroid hormone production, or radioiodine treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 19 - A 65-year-old man with type 2 diabetes mellitus has been taking metformin 1g...

    Incorrect

    • A 65-year-old man with type 2 diabetes mellitus has been taking metformin 1g twice daily for the past 6 months. Despite this, his HbA1c has remained above target at 64 mmol/mol (8.0%).

      He has a history of left ventricular failure following a myocardial infarction 2 years ago. He has been trying to lose weight since but still has a body mass index of 33 kg/m². He is also prone to recurrent urinary tract infections.

      You intend to intensify treatment by adding a second medication.

      What is the mechanism of action of the most appropriate anti-diabetic drug for him?

      Your Answer:

      Correct Answer: Inhibition of dipeptidyl peptidase-4 (DPP-4) to increase incretin levels

      Explanation:

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 20 - A 33-year-old man arrives at the emergency department with symptoms of increased thirst...

    Incorrect

    • A 33-year-old man arrives at the emergency department with symptoms of increased thirst and frequent urination. He had suffered a head injury a few days ago and had previously been discharged after investigations. Upon examination, he appears dehydrated and is admitted to a medical ward. The urine osmolality test results show a low level of 250 mosmol/kg after water deprivation and a high level of 655 mosmol/kg after desmopressin administration. Based on this information, where is the deficient substance typically active?

      Your Answer:

      Correct Answer: Collecting duct

      Explanation:

      The site of action for antidiuretic hormone (ADH) is the collecting ducts in the kidneys. A diagnosis of cranial diabetes insipidus, which can occur after head trauma, is confirmed by low urine osmolalities. In this condition, there is a deficiency of ADH, which is synthesized in the hypothalamus but acts on the collecting ducts to promote water reabsorption. Therefore, the hypothalamus is not the site of action for ADH, despite being where it is synthesized. The Loop of Henle and proximal convoluted tubule are also not the primary sites of action for ADH. ADH is released from the posterior pituitary gland, but its action occurs in the collecting ducts.

      Understanding Antidiuretic Hormone (ADH)

      Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.

      ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.

      Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.

      Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 21 - A 34-year-old male presents with tingling in his thumb, index, and middle finger,...

    Incorrect

    • A 34-year-old male presents with tingling in his thumb, index, and middle finger, along with complaints of excessive fatigue and snoring. Upon examination, he displays a prominent brow ridge and significant facial changes over time. Following blood tests and an MRI scan, the patient is prescribed octreotide. What is the mechanism of action of this medication?

      Your Answer:

      Correct Answer: Somatostatin analogue

      Explanation:

      Acromegaly is a condition that results from excessive growth hormone production. The release of growth hormone is directly inhibited by somatostatin, which is why somatostatin analogues are used to treat acromegaly.

      To answer the question, one must first recognize the symptoms of acromegaly, such as carpal tunnel syndrome, sleep apnea, and changes in facial features over time. The second part of the question involves identifying octreotide as a somatostatin analogue commonly used to treat acromegaly.

      While dopamine agonists were previously used to treat acromegaly, they are no longer preferred due to the availability of more effective treatments. Dopamine antagonists have never been used to treat acromegaly. Pegvisomant is an example of a growth hormone antagonist, but antagonists for insulin growth factor-1 release have not yet been developed.

      Acromegaly is a condition that can be managed through various treatment options. The first-line treatment for the majority of patients is trans-sphenoidal surgery. However, if the pituitary tumour is inoperable or surgery is unsuccessful, medication may be indicated. One such medication is a somatostatin analogue, which directly inhibits the release of growth hormone. Octreotide is an example of this medication and is effective in 50-70% of patients. Another medication is pegvisomant, which is a GH receptor antagonist that prevents dimerization of the GH receptor. It is administered once daily subcutaneously and is very effective, decreasing IGF-1 levels in 90% of patients to normal. However, it does not reduce tumour volume, so surgery is still needed if there is a mass effect. Dopamine agonists, such as bromocriptine, were the first effective medical treatment for acromegaly but are now superseded by somatostatin analogues and are only effective in a minority of patients. External irradiation may be used for older patients or following failed surgical/medical treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 22 - Which of the following will increase the volume of pancreatic exocrine secretions? ...

    Incorrect

    • Which of the following will increase the volume of pancreatic exocrine secretions?

      Your Answer:

      Correct Answer: Cholecystokinin

      Explanation:

      The volume of pancreatic secretions is often increased by cholecystokinin.

      Pancreatic Secretions and their Regulation

      Pancreatic secretions are composed of enzymes and aqueous substances, with a pH of 8 and a volume of 1000-1500ml per day. The acinar cells secrete enzymes such as trypsinogen, procarboxylase, amylase, and elastase, while the ductal and centroacinar cells secrete sodium, bicarbonate, water, potassium, and chloride. The regulation of pancreatic secretions is mainly stimulated by CCK and ACh, which are released in response to digested material in the small bowel. Secretin, released by the S cells of the duodenum, also stimulates ductal cells and increases bicarbonate secretion.

      Trypsinogen is converted to active trypsin in the duodenum via enterokinase, and trypsin then activates the other inactive enzymes. The cephalic and gastric phases have less of an impact on regulating pancreatic secretions. Understanding the composition and regulation of pancreatic secretions is important in the diagnosis and treatment of pancreatic disorders.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 23 - As a third year medical student working in a GP surgery, you come...

    Incorrect

    • As a third year medical student working in a GP surgery, you come across a worried 54-year-old male patient who is experiencing chest discomfort. He has recently begun taking a new tablet for his high blood pressure and suspects it may be the cause of his symptoms. During your examination, you notice bilateral non-tender glandular swellings around the areolae. There are no signs of lymphadenopathy in the axillary region, and testicular examination is normal. Which medication is most likely responsible for this clinical presentation?

      Your Answer:

      Correct Answer: Spironolactone

      Explanation:

      Spironolactone-Induced Gynaecomastia

      Spironolactone is a type of diuretic that helps to increase urine production by blocking aldosterone receptors in the kidneys. However, it also has anti-androgenic properties that can lead to the development of gynaecomastia, a condition where men develop breast tissue. This is because spironolactone inhibits the production of testosterone and increases the level of free oestrogen in the blood, causing the proliferation of glandular tissue in the mammary glands.

      While gynaecomastia is not commonly associated with other medications, they all have their own side effects. Aspirin, for example, can cause gastrointestinal ulceration by inhibiting COX enzymes and prostaglandin synthesis. Thiazide diuretics work by blocking the sodium chloride co-transporter in the distal convoluted tubule, which can lead to a decrease in blood volume. Loop diuretics, on the other hand, can cause severe hyponatraemia but do not affect testosterone production. Statins, which are used to lower cholesterol levels, can cause rhabdomyolysis, a serious condition where muscle tissue breaks down and releases harmful substances into the bloodstream.

      In summary, while spironolactone can be an effective diuretic, it is important to be aware of its potential side effects, including gynaecomastia. Patients should always consult with their healthcare provider before starting any new medication and report any unusual symptoms or side effects.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 24 - A 30-year-old female with a two year history of type 1 diabetes presents...

    Incorrect

    • A 30-year-old female with a two year history of type 1 diabetes presents with a two day history of colicky abdominal pain and vomiting. She has been relatively anorexic and has cut down on her insulin today as she has not been able to eat that much.

      On examination she has a sweet smell to her breath, has some loss of skin turgor, has a pulse of 102 bpm regular and a blood pressure of 112/70 mmHg. Her abdomen is generally soft with some epigastric tenderness.

      BM stix analysis reveals a glucose of 19 mmol/L (3.0-6.0).

      What investigation would be the most important for this woman?

      Your Answer:

      Correct Answer: Blood gas analysis

      Explanation:

      Diabetic Ketoacidosis: Diagnosis and Investigations

      Diabetic ketoacidosis (DKA) is a serious complication of diabetes that can lead to life-threatening consequences. Symptoms include ketotic breath, vomiting, abdominal pain, and dehydration. To confirm the diagnosis, it is essential to prove the presence of acidosis and ketosis. The most urgent and important investigation is arterial or venous blood gas analysis, which can reveal the level of acidosis and low bicarbonate.

      Other investigations that can be helpful include a full blood count (FBC) to show haemoconcentration and a raised white cell count, and urinalysis to detect glucose and ketones. However, venous or capillary ketones are needed to confirm DKA. A plasma glucose test is also part of the investigation, but it is not as urgent as the blood gas analysis.

      An abdominal x-ray is not useful in diagnosing DKA, and a chest x-ray is only indicated if there are signs of a lower respiratory tract infection. Blood cultures are unlikely to grow anything, and amylase levels are often raised but do not provide diagnostic information in this case.

      It is important to note that DKA can occur even if the plasma glucose level is normal. Therefore, prompt diagnosis and treatment are crucial to prevent complications and improve outcomes.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 25 - A 62-year-old male with type 2 diabetes is urgently referred by his GP...

    Incorrect

    • A 62-year-old male with type 2 diabetes is urgently referred by his GP due to poor glycaemic control for the past three days, with home blood glucose readings around 25 mmol/L. He is currently being treated with metformin and lisinopril. Yesterday, his GP checked his U+E and found that his serum sodium was 138 mmol/L (137-144), serum potassium was 5.8 mmol/L (3.5-4.9), serum urea was 20 mmol/L (2.5-7.5), and serum creatinine was 350 µmol/L (60-110). On examination, he has a temperature of 39°C, a pulse of 108 bpm, a blood pressure of 96/60 mmHg, a respiratory rate of 32/min, and oxygen saturations of 99% on air. His cardiovascular, respiratory, and abdominal examination are otherwise normal. Further investigations reveal a plasma glucose level of 17 mmol/L (3.0-6.0) and urine analysis showing blood ++ and protein ++, but ketones are negative. What is the likely diagnosis?

      Your Answer:

      Correct Answer: Sepsis

      Explanation:

      The causes of septic shock are important to understand in order to provide appropriate treatment and improve patient outcomes. Septic shock can cause fever, hypotension, and renal failure, as well as tachypnea due to metabolic acidosis. However, it is crucial to rule out other conditions such as hyperosmolar hyperglycemic state or diabetic ketoacidosis, which have different symptoms and diagnostic criteria.

      While metformin can contribute to acidosis, it is unlikely to be the primary cause in this case. Diabetic patients may be prone to renal tubular acidosis, but this is not likely to be the cause of an acute presentation. Instead, a type IV renal tubular acidosis, characterized by hyporeninaemic hypoaldosteronism, may be a more likely association.

      Overall, it is crucial to carefully evaluate patients with septic shock and consider all possible causes of their symptoms. By ruling out other conditions and identifying the underlying cause of the acidosis, healthcare providers can provide targeted treatment and improve patient outcomes. Further research and education on septic shock and its causes can also help to improve diagnosis and treatment in the future.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 26 - A 15-year-old girl comes to the Emergency Department complaining of sudden onset pain...

    Incorrect

    • A 15-year-old girl comes to the Emergency Department complaining of sudden onset pain in the right iliac fossa, along with nausea, vomiting, and fever. She has no significant medical or surgical history. During the examination, you observe rebound tenderness at McBurney's point, guarding, and a positive Rovsing's sign. You suspect appendicitis and decide to take her for surgery.

      What is the most probable physiological response in this situation?

      Your Answer:

      Correct Answer: Increased glucagon secretion

      Explanation:

      Glucagon secretion increases in response to physiological stresses such as inflammation of the appendix and surgery. This is because glucagon helps to increase glucose availability in the body through glycogenolysis and gluconeogenesis. During times of stress, the body’s response is to increase glucose and oxygen availability, increased sympathetic activity, and redirect energy towards more crucial functions such as increasing blood pressure and heart rate.

      However, insulin and glucagon have opposite effects on glucose regulation. Therefore, any factor that stimulates glucagon secretion must decrease insulin levels. This is because insulin reduces glucose availability in the body, which weakens the body’s ability to cope with stress.

      The hypothalamic-pituitary-adrenal axis is also activated during times of stress, leading to the production of cortisol. Cortisol plays an important role in releasing glucose from fat storage, which is necessary for the body’s stress response. Therefore, the level of ACTH, which stimulates cortisol production, would increase rather than decrease.

      Cortisol and glucocorticoids also inhibit thyroid hormone secretion. As a result, the level of T4, which is a modulator of metabolic rate, would decrease during times of stress. This is because the body needs to divert energy away from metabolism and towards more acute functions during times of stress.

      Glucagon: The Hormonal Antagonist to Insulin

      Glucagon is a hormone that is released from the alpha cells of the Islets of Langerhans in the pancreas. It has the opposite metabolic effects to insulin, resulting in increased plasma glucose levels. Glucagon functions by promoting glycogenolysis, gluconeogenesis, and lipolysis. It is regulated by various factors such as hypoglycemia, stresses like infections, burns, surgery, increased catecholamines, and sympathetic nervous system stimulation, as well as increased plasma amino acids. On the other hand, glucagon secretion decreases with hyperglycemia, insulin, somatostatin, and increased free fatty acids and keto acids.

      Glucagon is used to rapidly reverse the effects of hypoglycemia in diabetics. It is an essential hormone that plays a crucial role in maintaining glucose homeostasis in the body. Its antagonistic relationship with insulin helps to regulate blood glucose levels and prevent hyperglycemia. Understanding the regulation and function of glucagon is crucial in the management of diabetes and other metabolic disorders.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 27 - A 39-year-old male presents to an endocrine clinic with acromegaly caused by a...

    Incorrect

    • A 39-year-old male presents to an endocrine clinic with acromegaly caused by a growth hormone-secreting tumor. The patient is prescribed Octreotide, a somatostatin analogue, to suppress growth hormone release.

      What additional hormonal effects can be attributed to somatostatin?

      Your Answer:

      Correct Answer: Decreases secretion of glucagon

      Explanation:

      Somatostatin has an inhibitory effect on the secretion of glucagon, but it does not affect the secretion of estrogen. It also decreases the secretion of insulin, and overproduction of somatostatin can lead to diabetes mellitus. Additionally, somatostatin reduces the secretion of gastrin, which in turn decreases the production of gastric acid by parietal cells. It also decreases the secretion of thyroid stimulating hormone (TSH), resulting in a decrease in the production of thyroxine in the thyroid.

      Somatostatin: The Inhibitor Hormone

      Somatostatin, also known as growth hormone inhibiting hormone (GHIH), is a hormone produced by delta cells found in the pancreas, pylorus, and duodenum. Its main function is to inhibit the secretion of growth hormone, insulin, and glucagon. It also decreases acid and pepsin secretion, as well as pancreatic enzyme secretion. Additionally, somatostatin inhibits the trophic effects of gastrin and stimulates gastric mucous production.

      Somatostatin analogs are commonly used in the management of acromegaly, a condition characterized by excessive growth hormone secretion. These analogs work by inhibiting growth hormone secretion, thereby reducing the symptoms associated with acromegaly.

      The secretion of somatostatin is regulated by various factors. Its secretion increases in response to fat, bile salts, and glucose in the intestinal lumen, as well as glucagon. On the other hand, insulin decreases the secretion of somatostatin.

      In summary, somatostatin plays a crucial role in regulating the secretion of various hormones and enzymes in the body. Its inhibitory effects on growth hormone, insulin, and glucagon make it an important hormone in the management of certain medical conditions.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 28 - A 28-year-old female with a three year history of type 1 diabetes complains...

    Incorrect

    • A 28-year-old female with a three year history of type 1 diabetes complains of sudden confusion and excessive sweating. Upon examination, her pulse is 105 bpm, respiratory rate is 16/min, and she appears disoriented. What would be the most suitable initial test to perform for this patient?

      Your Answer:

      Correct Answer: Plasma glucose concentration

      Explanation:

      Differentiating Hypoglycaemia from Diabetic Ketoacidosis in Critically Ill Patients

      When assessing a critically ill patient, it is important not to forget the E in the ABCDE algorithm. In the case of a woman presenting acutely, with a normal respiratory rate, it is more likely that she is hypoglycaemic rather than experiencing diabetic ketoacidosis (DKA). To confirm this, it is essential to check her glucose or blood sugar levels and then administer glucose as necessary.

      It is crucial to differentiate between hypoglycaemia and DKA as the treatment for each condition is vastly different. While hypoglycaemia requires immediate administration of glucose, DKA requires insulin therapy and fluid replacement. Therefore, a correct diagnosis is essential to ensure the patient receives the appropriate treatment promptly.

      In conclusion, when assessing a critically ill patient, it is vital to consider all aspects of the ABCDE algorithm, including the often-overlooked E for exposure. In cases where a patient presents acutely, with a normal respiratory rate, it is essential to differentiate between hypoglycaemia and DKA by checking glucose levels and administering glucose or insulin therapy accordingly.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 29 - Sam, a 75-year-old man, presents to the GP with a complaint of breast...

    Incorrect

    • Sam, a 75-year-old man, presents to the GP with a complaint of breast growth that has developed rapidly over the past 3 months. Sam insists that he has no trouble with sexual function. He has recently been diagnosed with a heart problem and is taking multiple medications for it, although he cannot recall their names. Other than that, he claims to be in good health. Upon examination, all of Sam's vital signs are within normal limits. After measuring his height and weight, his body mass index is calculated to be 24 kg/m². Each breast is approximately 10 cm in diameter, with large nipples and tenderness but no pain. Moderate cardiomegaly and a 3rd heart sound are noted during chest assessment. No abnormalities are found during an abdominal examination. Pitting edema is present up to his mid calf. Based on the history and examination, what is the most probable cause of Sam's gynaecomastia?

      Your Answer:

      Correct Answer: Digoxin

      Explanation:

      Digoxin is the correct answer as it can lead to drug-induced gynaecomastia. Sam is likely taking digoxin due to his heart failure, and this medication has a side effect of causing breast tissue growth in men. This is thought to occur because digoxin has a similar structure to oestrogen and can directly stimulate oestrogen receptors.

      While cirrhosis can also cause gynaecomastia, it is unlikely in this case as there are no signs or symptoms of liver disease. Cirrhosis typically causes gynaecomastia due to the liver’s reduced ability to clear oestrogens from the bloodstream.

      Obesity is not the correct answer as Sam is not obese, with a BMI of 24 kg/m². However, obesity is a common cause of gynaecomastia as excess fat can be distributed to the breasts and result in increased aromatisation of androgens to oestrogens.

      An oestrogen-secreting tumour is not the correct answer as there is no evidence in Sam’s history or examination to suggest he has one, although these tumours can cause gynaecomastia in men.

      Understanding Gynaecomastia: Causes and Drug Triggers

      Gynaecomastia is a condition characterized by the abnormal growth of breast tissue in males, often caused by an increased ratio of oestrogen to androgen. It is important to distinguish the causes of gynaecomastia from those of galactorrhoea, which is caused by the actions of prolactin on breast tissue.

      Physiological changes during puberty can lead to gynaecomastia, but it can also be caused by syndromes with androgen deficiency such as Kallmann and Klinefelter’s, testicular failure due to mumps, liver disease, testicular cancer, and hyperthyroidism. Additionally, haemodialysis and ectopic tumour secretion can also trigger gynaecomastia.

      Drug-induced gynaecomastia is also a common cause, with spironolactone being the most frequent trigger. Other drugs that can cause gynaecomastia include cimetidine, digoxin, cannabis, finasteride, GnRH agonists like goserelin and buserelin, oestrogens, and anabolic steroids. However, it is important to note that very rare drug causes of gynaecomastia include tricyclics, isoniazid, calcium channel blockers, heroin, busulfan, and methyldopa.

      In summary, understanding the causes and drug triggers of gynaecomastia is crucial in diagnosing and treating this condition.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 30 - A 33-year-old woman with a history of asthma, gout, rheumatoid arthritis, and type...

    Incorrect

    • A 33-year-old woman with a history of asthma, gout, rheumatoid arthritis, and type II diabetes mellitus has been admitted to the respiratory ward due to breathlessness after contracting SARS-CoV-2. Despite receiving 60% oxygen via a venturi mask, her oxygen saturation remains at 91%. The doctor decides to prescribe dexamethasone. What is the expected effect of this medication?

      Your Answer:

      Correct Answer: Increased blood glucose levels

      Explanation:

      The use of corticosteroids, such as dexamethasone, can worsen diabetic control due to their anti-insulin effects. Dexamethasone, which is commonly used to manage severe SARS-CoV-2 infection, has a high glucocorticoid activity that can lead to insulin resistance and increased blood glucose levels. However, it is unlikely to cause an asthma exacerbation or a flare-up of rheumatoid arthritis or gout. While psychosis is a known side effect of dexamethasone, it is less common than an increase in blood glucose levels.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Endocrine System (0/2) 0%
Passmed