00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - What is the primary function of riboflavin in the B vitamin group? ...

    Incorrect

    • What is the primary function of riboflavin in the B vitamin group?

      Your Answer: Visual acuity

      Correct Answer: Mopping up free radicals

      Explanation:

      The Role of Riboflavin in the Body

      Riboflavin, also known as vitamin B2, is a B-vitamin that plays a crucial role in the body. One of its functions is to act as an antioxidant, mopping up free radicals that can cause damage to cells. However, if the metabolites formed during this process are not excreted promptly, the free radicals can be generated again. Riboflavin is also involved in the production of blue-light sensitive pigments in the eye, which help establish the circadian rhythm. This function is not related to visual acuity.

      Riboflavin is found in a variety of foods, including milk and offal. Deficiency of this vitamin is rare, but when it does occur, it can cause non-specific effects on the skin and mucous membranes. There is no evidence of clear long-lasting damage from riboflavin deficiency. Overall, riboflavin is an important nutrient that plays a vital role in maintaining good health.

    • This question is part of the following fields:

      • Basic Sciences
      20.2
      Seconds
  • Question 2 - At what stage of eukaryotic mitosis do the centromeres of chromosomes separate? ...

    Incorrect

    • At what stage of eukaryotic mitosis do the centromeres of chromosomes separate?

      Your Answer:

      Correct Answer: Anaphase

      Explanation:

      Chromosome Division during Anaphase

      Chromosomes are joined together in an X shape at the centromere. During anaphase, the centromeres break down and the chromosomes divide into two identical pairs called sister chromatids. These sister chromatids then move to opposite sides of the cell along a network of spindle fibres. When the cell divides during telophase, each daughter cell receives one sister chromatid from the parent cell. This ensures the accurate copying and propagation of genes. The process of chromosome division during anaphase is crucial for the proper distribution of genetic material in cells.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 3 - A 10-year-old patient presents with recurrent skin cancer and is diagnosed with xeroderma...

    Incorrect

    • A 10-year-old patient presents with recurrent skin cancer and is diagnosed with xeroderma pigmentosum. What is the defective biochemical mechanism in this disease?

      Your Answer:

      Correct Answer: DNA excision repair

      Explanation:

      Xeroderma Pigmentosum and DNA Repair

      Deoxyribonucleic acid (DNA) found in the skin cells can absorb ultraviolet (UV) light, which can cause the formation of pyrimidine dimers. These dimers are removed through a process called excision repair, where the damaged DNA is cut out and replaced with new DNA. However, if this process fails, it can lead to mutations in genes that suppress tumors or promote their growth, potentially leading to cancer.

      Xeroderma pigmentosum is a genetic disorder that is inherited in an autosomal recessive pattern. This means that an individual must inherit two copies of the mutated gene, one from each parent, to develop the disorder. Generally, disorders that affect metabolism or DNA replication on a cellular or genetic level are inherited in an autosomal recessive pattern. On the other hand, genetic disorders that affect larger structural components are usually inherited in an autosomal dominant pattern. While there are exceptions to these rules, they can serve as a helpful guide for exam preparation.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 4 - During which phase of aerobic respiration is FADH2 generated? ...

    Incorrect

    • During which phase of aerobic respiration is FADH2 generated?

      Your Answer:

      Correct Answer: Krebs cycle

      Explanation:

      The Krebs Cycle and the Role of FADH2

      The Krebs cycle is a crucial part of aerobic respiration in cells. It involves a series of reactions that convert acetate, derived from carbohydrates, fats, and proteins, into carbon dioxide and energy in the form of ATP. Additionally, the Krebs cycle produces precursors for some amino acids and reducing agents like NADH and FADH2 that are involved in other metabolic pathways.

      FAD is a redox cofactor that plays a vital role in the Krebs cycle. It receives two electrons from the sixth reaction of the cycle, where succinate dehydrogenase converts succinate into fumarate by removing two hydrogen atoms and attaching them onto FAD. This process results in FAD gaining two electrons and reducing into FADH2.

      FADH2 then donates the electrons to the electron transport chain, which is another part of cellular respiration. This mechanism helps compensate for the relatively low amount of ATP produced by the Krebs cycle (2.5 molecules of ATP per turn) compared to the electron transport chain (26-28 molecules of ATP). Overall, the Krebs cycle and the role of FADH2 are essential for generating energy in cells.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 5 - What is the conversion of pyruvate before it enters the Krebs cycle? ...

    Incorrect

    • What is the conversion of pyruvate before it enters the Krebs cycle?

      Your Answer:

      Correct Answer: Acetyl-CoA

      Explanation:

      The Krebs cycle occurs in the mitochondrion and involves the conversion of acetyl-CoA to oxaloacetate. This cycle produces six NADH, two FADH, and two ATP for each molecule of glucose. Pyruvate is converted to acetyl-CoA before entering the Krebs cycle, and water and carbon dioxide are end products. Acetic acid itself has no role in the cycle, but its acetyl group is used to form acetyl-CoA. Some anaerobic bacteria can convert sugars to acetic acid directly.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 6 - What are the vitamins that are soluble in fat? ...

    Incorrect

    • What are the vitamins that are soluble in fat?

      Your Answer:

      Correct Answer: Vitamins A, D, E and K

      Explanation:

      Absorption of Fat-Soluble Vitamins

      Fat-soluble vitamins, namely A, D, E, and K, have a different absorption process compared to water-soluble vitamins. In the gut, these vitamins are combined with other fat-soluble substances such as monoacylglycerols and cholesterol to form micelles. These micelles are then transported to the lymphatic system and eventually enter the bloodstream through the subclavian vein.

      However, any issues that affect the absorption of fats will also impact the absorption of fat-soluble vitamins. This means that individuals with conditions that affect fat absorption, such as cystic fibrosis or celiac disease, may have difficulty absorbing these vitamins. It is important to ensure adequate intake of fat-soluble vitamins through a balanced diet or supplements to prevent deficiencies and associated health problems.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 7 - In scientific experimentation, what is the term used to describe the movement of...

    Incorrect

    • In scientific experimentation, what is the term used to describe the movement of charged particles or solutes in a liquid medium due to an electric field?

      Your Answer:

      Correct Answer: Electrophoresis

      Explanation:

      Electrophoresis: Separating Molecules Based on Charge and Mass

      Electrophoresis is a technique that separates solutes, molecules, or nucleic acids based on their mass and charge. It involves the migration of charged particles in a liquid medium under the influence of an electric field. The apparatus consists of two electrodes placed at either end of a support medium, or gel, which is suspended in a buffer solution. The sample is inserted into a well and a current is applied. Over time, positively charged solutes move towards the negative electrode, while negatively charged substances move towards the positive electrode. Once the migration is complete, the gel is removed and stained to color the substance being tested for, such as protein.

      This technique is widely used in medical testing, but it requires a higher degree of operational and interpretive skill than many other tests, which is why it often takes longer to get a result. Electrophoresis has various uses and adaptations, such as standard electrophoresis for protein detection in the diagnosis of myeloma, identification of unusual lipid fractions in patients with inherited diseases, and detection of viral DNA through Southern Blotting. There is also Northern blotting, primarily a research technique at present, which uses electrophoresis to separate RNA. Additionally, Western blotting is used to test for the presence of antibodies to DNA through protein separation.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 8 - What occurs in eukaryotic prophase? ...

    Incorrect

    • What occurs in eukaryotic prophase?

      Your Answer:

      Correct Answer: Chromatin condenses into chromosomes

      Explanation:

      The Stages of Prophase in Eukaryotic Mitosis

      Prophase is the first stage of eukaryotic mitosis, except for plant cells which have a preprophase stage. During prophase, the cell’s chromatin, which is made up of DNA and associated proteins, condenses into double rod-shaped structures called chromosomes. This process is facilitated by the condensin protein I and/or II complexes. As the chromosomes form, the nuclear membrane and nucleoli disintegrate and disappear, making the chromatin visible.

      Before prophase, the cell’s DNA is replicated during interphase, resulting in identical pairs of chromosomes called chromatids. These chromatids attach to each other at a DNA element called the centromere. DNA and centrosome duplication occur during interphase, while chromosome alignment takes place during metaphase. The nuclear membrane and nucleoli re-form during telophase, and the sister chromatids separate during anaphase.

      In summary, prophase is the initial stage of eukaryotic mitosis where chromatin condenses into chromosomes, and the nuclear membrane and nucleoli disappear. Chromosome alignment, DNA and centrosome duplication, and re-formation of the nuclear membrane and nucleoli occur in subsequent stages.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 9 - A 32-year-old snowboarder presents to the Emergency department complaining of pain and swelling...

    Incorrect

    • A 32-year-old snowboarder presents to the Emergency department complaining of pain and swelling around the first metacarpophalangeal joint (MCP joint) following a fall during practice.
      Upon examination, there is significant swelling and bruising on the ulnar side of the joint.

      What is the most probable injury that the patient has sustained?

      Your Answer:

      Correct Answer: Ulnar collateral ligament

      Explanation:

      Skier’s Thumb: A Common Injury in Winter Sports

      Skier’s thumb, also known as gamekeeper’s thumb, is a common injury that occurs in winter sports. It is caused by damage or rupture of the ulnar collateral ligament, which is located at the base of the thumb. This injury can result in acute swelling and gross instability of the thumb. In severe cases where a complete tear of the ligament is suspected, an MRI may be necessary to confirm the diagnosis, and surgical repair may be required.

      Once the acute swelling has subsided, treatment for skier’s thumb typically involves immobilization in a thumb spica. This is the standard therapy for cases of partial rupture.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 10 - What is the composition of enzymes found in lysosomes? ...

    Incorrect

    • What is the composition of enzymes found in lysosomes?

      Your Answer:

      Correct Answer: Acid hydrolases

      Explanation:

      Lysosomes: The Digestive System of the Cell

      Lysosomes are organelles that come from the Golgi apparatus and are enclosed by a membrane. They are responsible for breaking down various biological macromolecules such as proteins, nucleic acids, carbohydrates, and lipids. Lysosomes contain acid hydrolases, which are enzymes that cleave chemical bonds by adding water and function at an acidic pH of around 5. They are involved in digesting foreign agents that are internalized by the cell and breaking down other cellular organelles like mitochondria, allowing for their components to be recycled.

      The acidic pH within lysosomes is maintained by a proton pump in the lysosomal membrane, which imports protons from the cytosol coupled to ATP hydrolysis. This acidic environment is necessary for the activity of the acid hydrolases. D-amino acid oxidases and peroxidases are not found in lysosomes but in peroxisomes. Alcohol dehydrogenases and ATPases are not involved in digestion but in other cellular functions. Alcohol dehydrogenases catalyze the interconversion between alcohols and aldehydes or ketones with the reduction of NAD+ to NADH, while ATPases catalyze the breakdown of ATP into ADP and a phosphate ion, releasing energy for the cell’s functions.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 11 - What is the cause of the symptoms of weakness, dermatitis, diarrhoea and dementia...

    Incorrect

    • What is the cause of the symptoms of weakness, dermatitis, diarrhoea and dementia in pellagra?

      Your Answer:

      Correct Answer: Deficiency of the vitamin niacin

      Explanation:

      Niacin Deficiency and Other Genetic Diseases

      Niacin, a vitamin present in two forms – nicotinamide and nicotinic acid, is found in a variety of plant and animal foodstuffs. However, in some cases, the form of the vitamin is not easily absorbed by the human body, leading to deficiency. This deficiency is common in areas where maize is the primary dietary carbohydrate. Additionally, niacin can be produced by the body from the amino acid tryptophan. Diseases that affect the availability of tryptophan, such as Hartnup disease and carcinoid syndrome, can also result in niacin deficiency.

      Pellagra is a condition that arises from niacin deficiency. It initially presents with non-specific symptoms such as nausea, fatigue, and reduced appetite, followed by pigmented dermatitis in sun-exposed areas, gastrointestinal disturbance, mood disturbance, and dementia in severe cases.

      Apart from niacin deficiency, genetic diseases affecting collagen synthesis, such as Ehlers Danlos, present with symptoms of fragile stretchy skin and joint hypermobility. Genetic diseases affecting haemoglobin, such as sickle cell anaemia, present with symptoms of pain, hepatosplenomegaly, shortness of breath, and anaemia. Deficiencies in B12 and folate can also lead to macrocytic anaemia, paresthesia, and lethargy.

      In conclusion, the causes and symptoms of niacin deficiency and other genetic diseases is crucial for early diagnosis and effective treatment. A balanced diet and regular medical check-ups can help prevent and manage these conditions.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 12 - A 65-year-old patient with suspected spinal cord compression has been admitted to the...

    Incorrect

    • A 65-year-old patient with suspected spinal cord compression has been admitted to the neurosurgical team for an urgent MRI of the spine. Which particle's magnetic properties does magnetic resonance imaging rely predominantly upon?

      Your Answer:

      Correct Answer: Hydrogen ion (proton)

      Explanation:

      How MRI Scanners Use Hydrogen Ions to Create Images

      MRI scanners use the magnetic properties of hydrogen ions, also known as protons, to create images of the human body. These protons have nuclear spin, which means they have magnetic vectors that can be aligned in an electromagnet. The scanner bombards the protons with radiofrequency radiation, causing them to release energy when they return to their resting state. This energy release is recorded and used to construct the MRI image.

      While other nuclei, such as carbon 13, also have nuclear spin and could be used in MRI imaging, hydrogen ions are much more abundant in human tissues. This makes them the preferred choice for creating images of the body. The process of aligning the magnetic vectors of the protons and then recording their energy release is repeated many times to create a detailed image of the body’s internal structures.

      Overall, MRI scanners use the magnetic properties of hydrogen ions to create detailed images of the human body. This non-invasive imaging technique has revolutionized medical diagnosis and treatment, allowing doctors to see inside the body without the need for surgery.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 13 - A couple in their early 30s come to your clinic seeking advice. The...

    Incorrect

    • A couple in their early 30s come to your clinic seeking advice. The husband has a history of haemophilia B and they are worried about the possibility of passing it on to their children. Can you determine which of their offspring will be affected by the disease?

      Your Answer:

      Correct Answer: All daughters will be carriers; no sons will be affected

      Explanation:

      The inheritance of Haemophilia A and B is crucial in identifying individuals who are at risk of developing the condition. Haemophilia A and B are genetic disorders that are inherited in an X-linked recessive manner. Haemophilia A is caused by a deficiency in clotting factor VIII, while haemophilia B is caused by a deficiency in clotting factor IX.

      On the other hand, haemophilia C, which is caused by a deficiency in clotting factor XI, is primarily inherited in an autosomal recessive manner. In X-linked recessive conditions like haemophilia B, males are more likely to be affected than females. This is because males only need one abnormal copy of the gene, which is carried on the X chromosome, to be affected.

      Females, on the other hand, can be carriers of the condition if they carry one normal and one abnormal copy of the gene. While carriers can have clotting abnormalities, these are usually milder than those seen in affected individuals. Men cannot pass the condition to their sons, but they will pass on the abnormal X chromosome to all their daughters, who will be carriers.

      Female carriers can pass on the condition to around half their sons, and half their daughters will be carriers. Females can only be affected if they are the offspring of an affected male and a carrier female. In summary, the inheritance of haemophilia A and B is crucial in identifying individuals who are at risk of developing the condition. It also helps in providing appropriate genetic counseling and management for affected individuals and their families.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 14 - A 70-year-old male smoker complains of calf pain.

    The GP performs a clinical...

    Incorrect

    • A 70-year-old male smoker complains of calf pain.

      The GP performs a clinical test by raising the patient's legs and observing for the angle at which there is blanching. After one minute, the legs are lowered over the side of the couch so that they are fully dependent with feet on the floor. Reactive hyperaemia is observed.

      Which clinical test does this describe?

      Your Answer:

      Correct Answer: Buerger's test

      Explanation:

      Tests for Assessing Arterial and Venous Circulation, Hip Dysfunction, and Meniscal Tear

      Buerger’s test is a method used to evaluate the arterial circulation of the lower limb. The test involves observing the angle at which blanching occurs, with a lower angle indicating a higher likelihood of arterial insufficiency. Additionally, the degree of reactive hyperaemia on dependency of the limb after one minute is another positive sign of arterial insufficiency during the test.

      Another test used to assess circulation is the Ankle-Brachial Pressure Index (ABPI), which involves using blood pressure cuffs to determine the degree of claudication. McMurray’s test, on the other hand, is used to evaluate for a meniscal tear within the knee joint.

      Perthe’s test is a method used to assess the patency of the deep femoral vein prior to varicose vein surgery. Lastly, Trendelenburg’s test is used to evaluate hip dysfunction. These tests are important in diagnosing and treating various conditions related to circulation and joint function.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 15 - You encounter a patient in the Emergency department who has been in a...

    Incorrect

    • You encounter a patient in the Emergency department who has been in a severe car accident. You need to insert a venous cannula for aggressive fluid resuscitation. Applying the Hagen-Poiseuille equation, you select a cannula with appropriate dimensions for maximum flow into the vein.
      As per this law, which of the following statements is correct?

      Your Answer:

      Correct Answer: Flow will be faster through a shorter cannula

      Explanation:

      Poiseuille’s Equation and Fluid Flow in Cylinders

      Poiseuille’s equation is used to describe the flow of non-pulsatile laminar fluids through a cylinder. The equation states that the flow rate is directly proportional to the pressure driving the fluid and the fourth power of the radius. Additionally, it is inversely proportional to the viscosity of the fluid and the length of the tube. This means that a short, wide cannula with pressure on the bag will deliver fluids more rapidly than a long, narrow one.

      It is important to note that even small changes in the radius of a tube can greatly affect the flow rate. This is because the fourth power of the radius is used in the equation. Therefore, any changes in the radius will have a significant impact on the flow rate. Poiseuille’s equation is crucial in determining the optimal conditions for fluid delivery in medical settings.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 16 - Which process occurs mainly in the smooth endoplasmic reticulum? ...

    Incorrect

    • Which process occurs mainly in the smooth endoplasmic reticulum?

      Your Answer:

      Correct Answer: Steroid synthesis

      Explanation:

      The Functions of Endoplasmic Reticulum and Lysosomes

      The endoplasmic reticulum (ER) is a complex network of membranes that is divided into two types: rough and smooth. The rough ER is characterized by the presence of ribosomes on its cytosolic side, which makes it an important site for protein production, modification, and transport. On the other hand, the smooth ER is involved in cholesterol and steroid handling, as well as calcium storage in some cells. This type of ER is particularly prominent in cells that produce large amounts of steroid hormones, such as those found in the adrenal cortex.

      Lysosomes, on the other hand, are organelles that are responsible for breaking down and recycling cellular waste. They are formed by the Golgi apparatus, which is another complex network of membranes found in eukaryotic cells. Lysosomes contain a variety of enzymes that are capable of breaking down different types of molecules, including proteins, lipids, and carbohydrates.

      In summary, the ER and lysosomes are two important organelles in eukaryotic cells that play different roles in cellular metabolism. While the ER is involved in protein production, modification, and transport, the lysosomes are responsible for breaking down and recycling cellular waste.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 17 - As part of your general practice placement, you have been tasked with conducting...

    Incorrect

    • As part of your general practice placement, you have been tasked with conducting an audit on the duration of solid food introduction in the practice population. You review the data for the last six infants born within the practice:
      6 months, 7 months, 8 months, 9 months, 10 months, 11 months.

      What is the variance value for the duration of solid food introduction in the practice population?

      Your Answer:

      Correct Answer: 74.9

      Explanation:

      Variance and Standard Deviation in Breast Feeding Duration

      Variance is a statistical measure that indicates how spread out a set of data is. In the case of breast feeding duration, variance can help us understand how much the duration varies from the mean. The formula for variance involves squaring the difference between each data point and the mean, then dividing the sum by n-1, where n is the total number of data points. In a sample population, n-1 is a better estimate of variance than n because it accounts for the variability within the sample.

      For example, if the variance of breast feeding duration is 74.9 months, this indicates that the duration is widely distributed from the mean of 17.6 months. A smaller variance, such as 4.5 months, would indicate that the duration varies less and is closer to the mean. The standard deviation, which is the square root of the variance, is also important in the spread of data. In a normal distribution, 95% of observations will fall within two standard deviations of the mean.

      In the case of breast feeding duration, the mean is 17.6 months, indicating that babies are breast fed for an average of 15 and a half months. The median, which is the middle number in the data set, is 15 months, meaning that half of the babies were breast fed for 15 months. variance and standard deviation can help us better understand the distribution of breast feeding duration and other medical measurements.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 18 - A couple in their late 30s come to the clinic seeking information about...

    Incorrect

    • A couple in their late 30s come to the clinic seeking information about the risk of their three children inheriting Huntington's disease. The husband has recently been diagnosed with the disease, while the wife is not affected. What is the likelihood, expressed as a percentage, that their children will inherit the disease?

      Your Answer:

      Correct Answer: 50%

      Explanation:

      Huntington’s Disease

      Huntington’s disease is a genetic disorder that typically appears later in life and is characterized by symptoms such as chorea, cognitive decline, and personality changes. It is an autosomal dominant disease, meaning that there is a 50% chance of passing it on to offspring. If the gene is inherited from an unaffected parent, the child will not be affected. This is different from autosomal recessive inheritance, where both parents must pass on the gene for it to affect their children.

      The disease is caused by an increase in the length of a repeating trinucleotide sequence (CAG) in the Huntington protein. This sequence can change in length through generations, and longer sequences are associated with earlier onset of symptoms (genetic anticipation). Since Huntington’s disease usually presents itself after people have already started their families, there are many issues associated with genetic testing.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 19 - What is the primary factor that increases the risk of thiamine (vitamin B1)...

    Incorrect

    • What is the primary factor that increases the risk of thiamine (vitamin B1) deficiency?

      Your Answer:

      Correct Answer: Chronic alcohol excess

      Explanation:

      Thiamine: Its Roles, Sources, Deficiency States, and Manifestations

      Thiamine is a vital nutrient that plays several roles in the body. It acts as a cofactor to enzymes involved in energy production, metabolism of branched chain amino acids, and regulation of nerve and muscle action potentials. It is found in many foods, including wheat, oats, and yeast-containing products. However, deficiency states can occur in chronic alcohol dependence, renal dialysis, and cultures that mainly consume white rice. The deficiency can manifest as ‘dry’ beriberi, which causes peripheral neuropathy, muscle weakness, fatigue, and reduced concentration, or ‘wet’ beriberi, which also involves heart failure and edema. In severe cases, Wernicke-Korsakoff syndrome can develop, which is an emergency requiring urgent IV replacement of thiamine. If left untreated, it can lead to irreversible amnesia, confabulation, and dementia. Therefore, all patients with alcohol-related admissions should be considered for Pabrinex, a B vitamin infusion.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 20 - What significance do leucine, lysine, and phenylalanine hold? ...

    Incorrect

    • What significance do leucine, lysine, and phenylalanine hold?

      Your Answer:

      Correct Answer: They are essential amino acids

      Explanation:

      Essential Amino Acids and their Importance in the Diet

      There are approximately 20 essential amino acids that are crucial for human health. These amino acids are considered essential because the body cannot produce them on its own and they must be obtained through the diet. While some of these essential amino acids can be used to create other non-essential amino acids, they are still necessary for overall health and wellbeing.

      Some examples of essential amino acids include histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. However, the amount of these essential amino acids can vary depending on the type of dietary protein consumed. Additionally, cooking or preserving proteins can alter the amino acid composition, making them less effective for the body.

      In summary, essential amino acids play a vital role in maintaining human health and must be obtained through the diet. the importance of these amino acids and their sources can help individuals make informed decisions about their dietary choices.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 21 - What is the most common method of assessing nutritional status in adults? ...

    Incorrect

    • What is the most common method of assessing nutritional status in adults?

      Your Answer:

      Correct Answer: Body mass index

      Explanation:

      The Body Mass Index as a Measure of Nutritional Status

      The measurement and assessment of nutritional status can be challenging, and there is no single test that can provide a complete picture. However, the body mass index (BMI) is a commonly used measurement in clinical practice. The BMI is calculated by dividing a person’s weight in kilograms by their height in meters squared. This measure is used to assess adiposity and nutritional status, and it is simple and quick to calculate and interpret.

      Although the BMI is a convenient measure, it has limitations for assessing obesity in individual patients. It is best used to track trends in an individual patient’s BMI over time. In some cases, the BMI may overestimate fat mass in patients who are very tall or have a high proportion of lean tissue due to an active lifestyle. Additionally, the BMI may not be accurate for athletes and children.

      Other measurements, such as skin fold thickness and weight, can also be useful, but the BMI is generally considered the better option. The ponderal index is used specifically for children. It is important to note that albumin is not a reliable marker of nutritional status, as it can also be affected by inflammation.

      Overall, the BMI is a widely used measure of nutritional status and is recommended by the World Health Organization. However, it is important to consider its limitations and use it in conjunction with other measurements to obtain a more complete picture of a patient’s nutritional status.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 22 - What are the clinical consequences of a lack of vitamin A? ...

    Incorrect

    • What are the clinical consequences of a lack of vitamin A?

      Your Answer:

      Correct Answer: Dry conjunctiva

      Explanation:

      The Devastating Effects of Vitamin A Deficiency

      Vitamin A deficiency is a serious health concern that can lead to a range of devastating effects. One of the most common consequences is blindness, particularly in children. Poor night vision is often an early sign of this deficiency, which can progress to complete blindness if left untreated.

      In addition to blindness, vitamin A deficiency can also cause dry conjunctiva, a condition known as conjunctival xerosis. This occurs when the normally moist and fine conjunctiva becomes thickened and dysfunctional, leading to the formation of white plaques known as Bitot’s spots. Corneal ulceration can also occur as a result of this condition.

      The respiratory and gastrointestinal epithelia can also be affected by vitamin A deficiency, leading to reduced resistance to infection. This deficiency is a major public health issue in some parts of the world and is the single most common preventable cause of blindness. It is crucial to address this issue through education and access to vitamin A-rich foods and supplements.

      Overall, the devastating effects of vitamin A deficiency highlight the importance of proper nutrition and access to essential vitamins and minerals. By addressing this issue, we can help prevent blindness and improve overall health outcomes for individuals and communities around the world.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 23 - A 50-year-old male comes to the clinic complaining of abdominal swelling, nausea, and...

    Incorrect

    • A 50-year-old male comes to the clinic complaining of abdominal swelling, nausea, and mild jaundice. He has a history of regular alcohol consumption, drinking two 330ml bottles of lager per day (3% ABV) and a 75cl bottle of 12% ABV wine per week.

      What is the approximate number of units of alcohol this man consumes per week? Round to the nearest unit.

      Your Answer:

      Correct Answer: 23 units

      Explanation:

      Calculating Units of Alcohol

      To calculate the number of units of alcohol in a drink, you need to multiply the percentage of alcohol (ABV) by the volume in millilitres and then divide by 1000. However, there are potential pitfalls to watch out for when answering questions about units of alcohol. For example, if the consumption is presented as a daily amount, you need to multiply by 7 to get the weekly amount. Additionally, if the volume is presented in centilitres, you need to convert it to millilitres before performing the calculation.

      For instance, let’s say you want to calculate the units of alcohol in a bottle of lager. If the ABV is 3% and the volume is 330ml, the calculation would be 3% x 330ml divided by 1000, which equals 0.99 units rounded up to 1 unit. If the person drinks two bottles a day, that’s 2 units per day or 14 units per week. Similarly, if the person drinks one bottle of wine per week, and the ABV is 12% and the volume is 750ml, the calculation would be 12% x 750ml divided by 1000, which equals 9 units per bottle.

      It’s important to be aware of potential pitfalls when calculating units of alcohol, such as checking the units of volume and adjusting for duration. By this simple calculation, you can be prepared for any question that may come up in an exam setting. The UK recommendations for alcohol consumption are no more than 14 units per week for both sexes. While calculating units of alcohol may seem daunting, with practice and preparation, you can confidently tackle any question that comes your way.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 24 - The diabetes prevention program has been running for the last 5 years. At...

    Incorrect

    • The diabetes prevention program has been running for the last 5 years. At baseline, a well conducted study with a sample size of 500 showed that the prevalence of diabetes among adults aged 40 and above was 15%.
      Five years later another survey (of 400 responders) showed that the prevalence of diabetes was 10%.
      In the above example, which definition of prevalence is correct?

      Your Answer:

      Correct Answer: Prevalence is the number of new and old smokers in a year

      Explanation:

      Prevalence and Incidence in Smoking

      Prevalence and incidence are two important concepts in the smoking habits of a population. Prevalence refers to the number of people who smoke at a particular time point, such as at the beginning or end of a study period. This is calculated by dividing the number of smokers by the total population.

      On the other hand, incidence refers to the number of new cases of smoking at a particular time point. For example, this could be at the beginning of a study period for the whole year or at the 10th year. This is calculated by dividing the number of new smokers by the number of smoke-free individuals who are potentially at risk of taking up smoking.

      prevalence and incidence is important in evaluating the effectiveness of smoking cessation programs and policies. By tracking changes in prevalence and incidence over time, researchers and policymakers can determine whether their efforts are making a difference in reducing smoking rates. Additionally, these concepts can help identify populations that are at higher risk of taking up smoking, allowing for targeted interventions to prevent smoking initiation.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 25 - What type of molecule does haemoglobin belong to? ...

    Incorrect

    • What type of molecule does haemoglobin belong to?

      Your Answer:

      Correct Answer: Quaternary protein structure

      Explanation:

      The Structure and Functions of Proteins

      Proteins are complex molecules that can vary in structure from single amino acids to large, folded molecules. Amino acids are joined together by peptide bonds to form dipeptides and polypeptides. More complex molecules can also have disulphide bonds and ionic bonds. The primary structure of a protein is a simple amino acid chain, while the secondary structure is a specific shape such as a helix or pleated sheet. The tertiary structure is a more globular shape, arranged by ionic, hydrogen, and disulphide bonds, and hydrophobic interactions. The quaternary structure is a complex protein containing several polypeptide chains held together by interactions.

      Proteins have multiple roles within the human body, including as hormones, food substrates, enzymes, receptor molecules, muscles, cell membrane constituents, carrier molecules in blood, and determinants of oncotic/osmotic pressures. However, proteins can be easily damaged by denaturation, which is the loss of the specific three-dimensional shape of a molecule. Denaturation can be caused by heat, salts, heavy metals, solvents, detergents, and extremes of pH.

      In summary, proteins are essential molecules with a diverse range of structures and functions within the human body. their structure and potential for denaturation is crucial for maintaining their proper function.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 26 - What is the primary reason for malnutrition? ...

    Incorrect

    • What is the primary reason for malnutrition?

      Your Answer:

      Correct Answer: Inadequate intake of calories in any form

      Explanation:

      Malnutrition

      Malnutrition refers to a state where the dietary intake is insufficient to maintain a healthy state and stable weight. It can be caused by over- or under-nutrition, but it is commonly used to describe under-nutrition. Malnutrition can be defined as a state of nutrition where a deficiency, excess, or imbalance of energy, protein, and other nutrients causes measurable adverse effects on tissue, function, and clinical outcome. Protein malnutrition is the most severe form of malnutrition, causing significant mortality and clinical effects such as kwashiorkor. Carbohydrate malnutrition is less common as carbohydrate sources are widely grown and cheap. Fat malnutrition rarely results in problems if there is adequate dietary protein and carbohydrate. Deficiencies of fat-soluble vitamins can result in various clinical effects. Body size can give some indication of nutritional status, but many obese patients may have nutritional deficiencies due to their faddy diets.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 27 - Which of the following would not increase the rate of diffusion of a...

    Incorrect

    • Which of the following would not increase the rate of diffusion of a substance across a lipid membrane such as the cell wall?

      Your Answer:

      Correct Answer: Thickness of the membrane

      Explanation:

      Diffusion and Fick’s Law

      Diffusion is a natural process that occurs when molecules move from an area of high concentration to an area of low concentration. This process is passive and random, meaning that it does not require any external energy input. Fick’s Law states that diffusion occurs more quickly across a large, permeable, and thin membrane. For example, in lung disease, the thickening of the alveolar epithelial barrier can lead to a poor carbon monoxide transfer coefficient because the thicker membrane slows down the diffusion process. the principles of diffusion and Fick’s Law can help us better understand how molecules move and interact in various biological and chemical processes. By optimizing the conditions for diffusion, we can improve the efficiency of many natural and artificial systems.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 28 - What is the main role of the Golgi apparatus in eukaryotic cells? ...

    Incorrect

    • What is the main role of the Golgi apparatus in eukaryotic cells?

      Your Answer:

      Correct Answer: Process of proteins

      Explanation:

      The Golgi Apparatus, Cell Division, and Homeostasis

      The Golgi apparatus is a structure found in eukaryotic cells that consists of flattened membrane stacks. Its primary function is to modify proteins that have been synthesized in the rough endoplasmic reticulum, preparing them for secretion or transport within the cell. However, the Golgi apparatus is not directly involved in cell division, which is controlled by the nucleus.

      Cell homeostasis, on the other hand, is primarily maintained by membrane-embedded channels or proteins such as the sodium-potassium pump. This mechanism ensures that the cell’s internal environment remains stable. The sodium-potassium pump is an active transport mechanism that involves the binding of three intracellular sodium ions to the protein. Adenosine triphosphate (ATP) donates a phosphate group to the protein, which causes it to change shape and release the sodium ions out of the cell.

      The protein then accepts two extracellular potassium ions, and the donated phosphate group detaches, causing the protein to revert to its original shape. This allows the potassium ions to enter the cell, increasing the intracellular potassium concentration and decreasing the intracellular sodium concentration. This process is in contrast to the extracellular conditions.

      In summary, the Golgi apparatus modifies proteins for secretion or transport, while cell division is controlled by the nucleus. Cell homeostasis is maintained by membrane-embedded channels or proteins such as the sodium-potassium pump, which actively transports ions to stabilize the cell’s internal environment.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 29 - What are the primary constituents of the cytoskeleton in eukaryotic cells? ...

    Incorrect

    • What are the primary constituents of the cytoskeleton in eukaryotic cells?

      Your Answer:

      Correct Answer: Microfilaments, intermediate filaments and microtubules

      Explanation:

      The Eukaryotic Cytoskeleton: A Structural Support System

      The eukaryotic cytoskeleton is a network of structures that provide structural support to the cell. It helps the cell maintain its shape, protects it from external pressure, and performs intracellular transport. The cytoskeleton is made up of three major structures: microfilaments, intermediate filaments, and microtubules. Microfilaments are thin double helices made up of actin and are involved in pressure resistance and cell motility. Intermediate filaments have a more complex structure and maintain cell shape while bearing tension. Microtubules are hollow cylinders made up of alpha and beta tubulin proteins and are involved in intracellular transport, cell movement, and form the mitotic spindle during cytokinesis.

      Cilia, flagella, and lamellipodia are structures that are not part of the cell’s cytoskeleton but are made up of components of it and perform unique functions such as cell movement and extracellular sensing. Kinesin and dynein are motor proteins that support microtubule function. Microfilaments and alpha/beta microtubules are incorrect because they leave out intermediate filaments. Tubulin and actin are proteins of microtubules and microfilaments, respectively, but myosin is a motility protein involved in muscle contraction. The eukaryotic cytoskeleton is an essential component of the cell that provides structural support and enables various cellular functions.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 30 - A 50-year-old female patient with varicose veins presents to the vascular clinic for...

    Incorrect

    • A 50-year-old female patient with varicose veins presents to the vascular clinic for evaluation.

      During the assessment, a test is conducted to determine the location of incompetence. The patient is instructed to lie down, and the veins are emptied by elevating her legs off the couch. The examiner then identifies the site of the sapheno-femoral junction and applies pressure with their fingers. The patient is then asked to stand up to evaluate vein filling.

      What is the name of this test?

      Your Answer:

      Correct Answer: Trendelenburg's test

      Explanation:

      Assessing Varicose Vein Site of Incompetence

      The Trendelenburg and tourniquet tests are both used to evaluate the site of incompetence in varicose veins at the sapheno-femoral junction. During the Trendelenburg test, the examiner applies pressure with their fingers over the junction site, while in the tourniquet test, a tourniquet is placed just below the junction level.

      If the veins fill quickly upon standing, it indicates that the sapheno-femoral junction is not the source of the incompetence. These tests are essential in determining the location of the varicose vein site of incompetence, which is crucial in planning the appropriate treatment. By identifying the site of incompetence, physicians can perform targeted interventions to improve venous function and alleviate symptoms. Therefore, the Trendelenburg and tourniquet tests are valuable tools in the diagnosis and management of varicose veins.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Basic Sciences (0/1) 0%
Passmed