00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 30-year-old male presents to the emergency department after having a seizure. He...

    Incorrect

    • A 30-year-old male presents to the emergency department after having a seizure. He recently immigrated from Latin America and has been generally healthy. He reports experiencing diarrhea for the past three days but has not had any other health concerns.

      Upon examination, multiple cystic lesions are found on a head CT.

      What organism is most likely responsible for this condition?

      Your Answer: Echinococcus granulosus

      Correct Answer: Taenia solium

      Explanation:

      Upon arrival at the Emergency Department, a new immigrant from Latin America experienced a seizure. A CT scan of the head revealed the presence of numerous cystic lesions.

      Helminths are a group of parasitic worms that can infect humans and cause various diseases. Nematodes, also known as roundworms, are one type of helminth. Strongyloides stercoralis is a type of roundworm that enters the body through the skin and can cause symptoms such as diarrhea, abdominal pain, and skin lesions. Treatment for this infection typically involves the use of ivermectin or benzimidazoles. Enterobius vermicularis, also known as pinworm, is another type of roundworm that can cause perianal itching and other symptoms. Diagnosis is made by examining sticky tape applied to the perianal area. Treatment typically involves benzimidazoles.

      Hookworms, such as Ancylostoma duodenale and Necator americanus, are another type of roundworm that can cause gastrointestinal infections and anemia. Treatment typically involves benzimidazoles. Loa loa is a type of roundworm that is transmitted by deer fly and mango fly and can cause red, itchy swellings called Calabar swellings. Treatment involves the use of diethylcarbamazine. Trichinella spiralis is a type of roundworm that can develop after eating raw pork and can cause fever, periorbital edema, and myositis. Treatment typically involves benzimidazoles.

      Onchocerca volvulus is a type of roundworm that causes river blindness and is spread by female blackflies. Treatment involves the use of ivermectin. Wuchereria bancrofti is another type of roundworm that is transmitted by female mosquitoes and can cause blockage of lymphatics and elephantiasis. Treatment involves the use of diethylcarbamazine. Toxocara canis, also known as dog roundworm, is transmitted through ingestion of infective eggs and can cause visceral larva migrans and retinal granulomas. Treatment involves the use of diethylcarbamazine. Ascaris lumbricoides, also known as giant roundworm, can cause intestinal obstruction and occasionally migrate to the lung. Treatment typically involves benzimidazoles.

      Cestodes, also known as tapeworms, are another type of helminth. Echinococcus granulosus is a tapeworm that is transmitted through ingestion of eggs in dog feces and can cause liver cysts and anaphylaxis if the cyst ruptures

    • This question is part of the following fields:

      • General Principles
      24.2
      Seconds
  • Question 2 - A 65-year-old man with a history of angina, hypertension, and hypercholesterolaemia has been...

    Correct

    • A 65-year-old man with a history of angina, hypertension, and hypercholesterolaemia has been discharged from the hospital after experiencing a non-ST-elevation myocardial infarction (NSTEMI). He was already taking aspirin, atorvastatin, bisoprolol, and ramipril before his NSTEMI. As part of his post-discharge instructions, he has been advised to take ticagrelor for the next 12 months. What is the mechanism of action of this newly prescribed medication?

      Your Answer: P2Y12 receptor antagonist

      Explanation:

      Ticagrelor functions similarly to clopidogrel by hindering the binding of ADP to platelet receptors. It is prescribed to prevent atherothrombotic events in individuals with acute coronary syndrome (ACS) and is typically administered in conjunction with aspirin. Additionally, it is a specific and reversible inhibitor.

      ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.

    • This question is part of the following fields:

      • Cardiovascular System
      51.3
      Seconds
  • Question 3 - A 49-year-old man presents to the hospital with complaints of weakness in his...

    Incorrect

    • A 49-year-old man presents to the hospital with complaints of weakness in his legs and tingling sensation in his feet. His wife noticed a problem with his gait over the past few weeks. The patient also reports increasing forgetfulness. During examination, the Romberg test is positive. The patient has a medical history of Crohn's disease and is currently on treatment with 5-aminosalicylic acid and prednisone. A peripheral blood smear shows the presence of larger than normal and pale red blood cells. What laboratory finding is most likely to be present in this patient?

      Your Answer: Reduced iron levels

      Correct Answer: Elevated methylmalonic acid levels

      Explanation:

      Megaloblastic anemia can be caused by either folate deficiency or vitamin B12 deficiency, but it is important to differentiate between the two. In this case, the patient’s neurological symptoms suggest a diagnosis of vitamin B12 deficiency. This can be confirmed by checking methylmalonic acid levels, which are normal in folate deficiency but elevated in vitamin B12 deficiency. Homocysteine levels are raised in both conditions and cannot be used to differentiate between them. Reduced iron and elevated ferritin levels are common in anemia of chronic disease, which is associated with inflammatory and autoimmune conditions.

      Vitamin B12 is a type of water-soluble vitamin that belongs to the B complex group. Unlike other vitamins, it can only be found in animal-based foods. The human body typically stores enough vitamin B12 to last for up to 5 years. This vitamin plays a crucial role in various bodily functions, including acting as a co-factor for the conversion of homocysteine into methionine through the enzyme homocysteine methyltransferase, as well as for the isomerization of methylmalonyl CoA to Succinyl Co A via the enzyme methylmalonyl mutase. Additionally, it is used to regenerate folic acid in the body.

      However, there are several causes of vitamin B12 deficiency, including pernicious anaemia, Diphyllobothrium latum infection, and Crohn’s disease. When the body lacks vitamin B12, it can lead to macrocytic, megaloblastic anaemia and peripheral neuropathy. To prevent these consequences, it is important to ensure that the body has enough vitamin B12 through a balanced diet or supplements.

    • This question is part of the following fields:

      • General Principles
      38.2
      Seconds
  • Question 4 - A 32-year-old woman who is 33 weeks pregnant visits the clinic with a...

    Incorrect

    • A 32-year-old woman who is 33 weeks pregnant visits the clinic with a complaint of foot pain. The pain is mainly felt on the back of the sole of her foot and is most intense when she takes her first steps after getting out of bed in the morning. Upon examination, the area is tender to touch, and you suspect plantar fasciitis. While NSAIDs are a common treatment for this condition, you are aware that they are not recommended during pregnancy, particularly in the later stages. This is due to the potential risk of premature closure of the fetal vessel that connects which two major arteries?

      Your Answer: Umbilical vein

      Correct Answer: Ductus arteriosus

      Explanation:

      The correct answer is the ductus arteriosus, which connects the proximal descending aorta to the pulmonary artery, allowing blood to bypass the non-functioning lungs in utero. It closes at birth, forming the ligamentum arteriosum. A patent ductus arteriosus (PDA) occurs when it fails to close. Prostaglandins play a role in maintaining a PDA, and NSAIDs can be used to treat it, but are avoided in pregnancy to prevent early closure.

      The ductus venosus, also known as Arantius’ duct, connects the umbilical vein to the inferior vena cava, bypassing the liver in utero. It usually closes within the first week of life, forming the ligamentum venosum.

      The foramen ovale is an opening in the atrial septum that allows blood to flow from the right to the left atrium in utero. It usually closes at birth, but a patent foramen ovale can occur if it fails to close.

      The umbilical vein carries oxygenated blood from the placenta to the fetus and closes within the first week of life, forming the round ligament of the liver.

      The patient in the question is likely experiencing plantar fasciitis, which is caused by inflammation of the plantar fascia in the foot.

      Understanding Patent Ductus Arteriosus

      Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.

      This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.

      The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      40.2
      Seconds
  • Question 5 - Which of the following structures separates the ulnar artery from the median nerve?...

    Incorrect

    • Which of the following structures separates the ulnar artery from the median nerve?

      Your Answer: Brachioradialis

      Correct Answer: Pronator teres

      Explanation:

      It is located deeply to the pronator teres muscle, which creates a separation from the median nerve.

      Anatomy of the Ulnar Artery

      The ulnar artery is a blood vessel that begins in the middle of the antecubital fossa and runs obliquely downward towards the ulnar side of the forearm. It then follows the ulnar border to the wrist, where it crosses over the flexor retinaculum and divides into the superficial and deep volar arches. The artery is deep to the pronator teres, flexor carpi radialis, and palmaris longus muscles, and lies on the brachialis and flexor digitorum profundus muscles. At the wrist, it is superficial to the flexor retinaculum.

      The ulnar nerve runs medially to the lower two-thirds of the artery, while the median nerve is in relation with the medial side of the artery for about 2.5 cm before crossing over it. The artery also gives off a branch called the anterior interosseous artery.

      Understanding the anatomy of the ulnar artery is important for medical professionals, as it plays a crucial role in the blood supply to the forearm and hand.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      13.2
      Seconds
  • Question 6 - A 30-year-old female complains of weakness, weight gain, and cold intolerance. You suspect...

    Incorrect

    • A 30-year-old female complains of weakness, weight gain, and cold intolerance. You suspect hypothyroidism. What vocal change would you anticipate to have occurred, increasing the probability of this potential diagnosis?

      Your Answer: Lower pitched voice

      Correct Answer: Hoarse voice

      Explanation:

      Hoarseness is a symptom that can be caused by hypothyroidism.

      When a patient presents with hoarseness, it can be difficult to determine the underlying cause. However, if the hoarseness is accompanied by other symptoms commonly associated with hypothyroidism, it can help narrow down the diagnosis.

      The reason for the voice change in hypothyroidism is due to the thickening of the vocal cords caused by the accumulation of mucopolysaccharide. This substance, also known as glycosaminoglycans, is found throughout the body in mucus and joint fluid. When it builds up in the vocal cords, it can lower the pitch of the voice. The thyroid hormone plays a role in preventing this buildup.

      Hoarseness can be caused by various factors such as overusing the voice, smoking, viral infections, hypothyroidism, gastro-oesophageal reflux, laryngeal cancer, and lung cancer. It is important to investigate the underlying cause of hoarseness, and a chest x-ray may be necessary to rule out any apical lung lesions.

      If laryngeal cancer is suspected, it is recommended to refer the patient to an ENT specialist through a suspected cancer pathway. This referral should be considered for individuals who are 45 years old and above and have persistent unexplained hoarseness or an unexplained lump in the neck. Early detection and treatment of laryngeal cancer can significantly improve the patient’s prognosis.

    • This question is part of the following fields:

      • Respiratory System
      19.6
      Seconds
  • Question 7 - What is the hormone that controls the levels of calcium in the blood?...

    Correct

    • What is the hormone that controls the levels of calcium in the blood?

      Your Answer: Parathyroid hormone

      Explanation:

      The Importance of Parathyroid Hormone in Regulating Blood Calcium Levels

      Calcium plays a crucial role in various bodily functions, including bone support, blood clotting, muscle contraction, nervous transmission, and hormone production. However, excessively high or low levels of calcium in the blood and interstitial fluid can lead to serious health issues such as arrhythmias and cardiac arrest. This is where parathyroid hormone comes in.

      Parathyroid hormone is responsible for regulating blood calcium levels. It works directly on the bone, stimulating bone production or resorption depending on the concentration and duration of exposure. It also acts on the kidney, increasing the loss of phosphate in the urine, decreasing the loss of calcium in the urine, and promoting the activity of the enzyme 1-alpha hydroxylase, which activates vitamin D. Additionally, parathyroid hormone indirectly affects the gut through the action of activated vitamin D.

      Overall, the regulation of blood calcium levels is crucial for maintaining optimal bodily functions. Parathyroid hormone plays a vital role in this process by directly and indirectly affecting various organs and systems in the body.

    • This question is part of the following fields:

      • Clinical Sciences
      10.4
      Seconds
  • Question 8 - As a medical student observing a health visitor in community care, I noticed...

    Incorrect

    • As a medical student observing a health visitor in community care, I noticed that she was measuring the height and weight of all the children. I was curious about what drives growth during the early childhood stage (from birth to 3 years old). Can you explain this to me?

      Your Answer: Growth hormone and thyroid function

      Correct Answer: Nutrition and insulin

      Explanation:

      Understanding Growth and Factors Affecting It

      Growth is a significant difference between children and adults, and it occurs in three stages: infancy, childhood, and puberty. Several factors affect fetal growth, including environmental, placental, hormonal, and genetic factors. Maternal nutrition and uterine capacity are the most crucial environmental factors that affect fetal growth.

      In infancy, nutrition and insulin are the primary drivers of growth. High fetal insulin levels result from poorly controlled diabetes in the mother, leading to hypoglycemia and macrosomia in the baby. Growth hormone is not a significant factor in infancy, as babies have low amounts of receptors. Hypopituitarism and thyroid have no effect on growth in infancy.

      In childhood, growth is driven by growth hormone and thyroxine, while in puberty, growth is driven by growth hormone and sex steroids. Genetic factors are the most important determinant of final adult height.

      It is essential to monitor growth in children regularly. Infants aged 0-1 years should have at least five weight recordings, while children aged 1-2 years should have at least three weight recordings. Children older than two years should have annual weight recordings. Children below the 2nd centile for height should be reviewed by their GP, while those below the 0.4th centile for height should be reviewed by a paediatrician.

    • This question is part of the following fields:

      • Endocrine System
      19.1
      Seconds
  • Question 9 - In an anatomy practical class, how can you differentiate between the right and...

    Incorrect

    • In an anatomy practical class, how can you differentiate between the right and left lungs based on their anatomical characteristics?

      Your Answer: Has no middle lobe

      Correct Answer: Has oblique and horizontal fissures

      Explanation:

      Anatomy of the Lungs

      The lungs are a vital organ responsible for breathing and oxygen exchange in the body. The right lung is divided into three lobes, namely the upper, middle, and lower lobes, by oblique and horizontal fissures. The left lung, on the other hand, has only two lobes, the upper and lower lobes, with a lingular segment that serves as its equivalent of the middle lobe.

      It is worth noting that the right bronchus is wider and shorter than the left bronchus. Additionally, each lung has two pulmonary veins that return blood to the heart. the anatomy of the lungs is crucial in diagnosing and treating respiratory diseases and disorders. Proper care and maintenance of the lungs are essential for overall health and well-being.

    • This question is part of the following fields:

      • Clinical Sciences
      23.3
      Seconds
  • Question 10 - A 7-year-old boy is admitted to the paediatric ward and tests positive for...

    Incorrect

    • A 7-year-old boy is admitted to the paediatric ward and tests positive for influenzae A. He is taking immunosuppressants following a liver transplant he underwent 2 years ago. The doctor prescribes him oseltamivir to try and reduce his viral load, aiding recovery.

      What is the mechanism of action of oseltamivir?

      Your Answer: Interferes with the capping of viral mRNA

      Correct Answer: Inhibits viral neuraminidase

      Explanation:

      Oseltamivir prevents replication of influenzae A and B viruses by inhibiting viral neuraminidase, an enzyme that alters the glycoproteins on the surface of an infected cell to enable the release of more viral particles. It is not an antiviral that works by inhibiting viral DNA polymerase, unlike foscarnet and acyclovir. Interferon-α is used to treat chronic hepatitis B and C by inhibiting mRNA synthesis. Ribavirin interferes with the capping of the viral mRNA by inhibiting specific dehydrogenase enzymes. Amantadine, an antiviral, can be used in Parkinson’s disease as well as influenzae, as it has a secondary action of releasing dopamine from nerve endings, but this action does not reduce viral load.

      Antiviral agents are drugs used to treat viral infections. They work by targeting specific mechanisms of the virus, such as inhibiting viral DNA polymerase or neuraminidase. Some common antiviral agents include acyclovir, ganciclovir, ribavirin, amantadine, oseltamivir, foscarnet, interferon-α, and cidofovir. Each drug has its own mechanism of action and indications for use, but they all aim to reduce the severity and duration of viral infections.

      In addition to these antiviral agents, there are also specific drugs used to treat HIV, a retrovirus. Nucleoside analogue reverse transcriptase inhibitors (NRTI), protease inhibitors (PI), and non-nucleoside reverse transcriptase inhibitors (NNRTI) are all used to target different aspects of the HIV life cycle. NRTIs work by inhibiting the reverse transcriptase enzyme, which is needed for the virus to replicate. PIs inhibit a protease enzyme that is necessary for the virus to mature and become infectious. NNRTIs bind to and inhibit the reverse transcriptase enzyme, preventing the virus from replicating. These drugs are often used in combination to achieve the best possible outcomes for HIV patients.

    • This question is part of the following fields:

      • General Principles
      23.1
      Seconds
  • Question 11 - What is the full form of ATP and how is it used during...

    Correct

    • What is the full form of ATP and how is it used during exercise?

      Your Answer: Adenosine triphosphate

      Explanation:

      ATP Generation During Exercise

      During exercise, the process of muscle contraction requires the generation of ATP, which stands for adenosine triphosphate. ATP is a small molecule composed of adenine and a sugar group attached to three phosphate groups. When ATP loses a phosphate group, it becomes ADP and releases energy.

      To sustain prolonged exercise, ATP must be regenerated quickly. This is achieved through the creatine phosphate – ATP system. Creatine phosphate releases a phosphate group, which allows for the rapid regeneration of ATP from ADP. This system ensures that the muscles have a constant supply of ATP to support muscle contraction during exercise. Proper ATP generation is crucial for athletes and individuals engaging in physical activity to perform at their best.

    • This question is part of the following fields:

      • Clinical Sciences
      17.3
      Seconds
  • Question 12 - A 26-year-old female presents to her physician complaining of tingling in her left...

    Incorrect

    • A 26-year-old female presents to her physician complaining of tingling in her left arm and double vision for the past three days. She reports feeling fatigued for the past six months. She has no significant medical history and is not taking any medications. She smokes five cigarettes per day, drinks one bottle of wine per week, and works as a journalist.

      During the neurological examination, the physician observed reduced sensation in the patient's left upper limb. Additionally, the patient's right eye failed to adduct and her left eye demonstrated nystagmus on left lateral gaze. Based on these findings, where is the anatomical location of the lesion causing the eye signs on examination likely to be?

      Your Answer:

      Correct Answer: Medial longitudinal fasciculus

      Explanation:

      The correct answer is the medial longitudinal fasciculus, which is a myelinated structure located in the brainstem responsible for conjugate eye movements. In this case, the patient’s symptoms and examination findings suggest a diagnosis of internuclear ophthalmoplegia, which is a disorder of conjugate lateral gaze caused by a lesion in the medial longitudinal fasciculus. This is often associated with multiple sclerosis. The affected eye fails to adduct when attempting to look contralaterally, and the contralateral eye demonstrates nystagmus. Mamillary bodies, neuromuscular junction, and optic nerve are not the likely causes of the patient’s symptoms.

      Understanding Internuclear Ophthalmoplegia

      Internuclear ophthalmoplegia is a condition that affects the horizontal movement of the eyes. It is caused by a lesion in the medial longitudinal fasciculus (MLF), which is responsible for interconnecting the IIIrd, IVth, and VIth cranial nuclei. This area is located in the paramedian region of the midbrain and pons. The main feature of this condition is impaired adduction of the eye on the same side as the lesion, along with horizontal nystagmus of the abducting eye on the opposite side.

      The most common causes of internuclear ophthalmoplegia are multiple sclerosis and vascular disease. It is important to note that this condition can also be a sign of other underlying neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 13 - A 44-year-old man visits the urology clinic with a complaint of erectile dysfunction....

    Incorrect

    • A 44-year-old man visits the urology clinic with a complaint of erectile dysfunction. What happens when there is an increase in parasympathetic stimulation in the penis?

      Your Answer:

      Correct Answer: Erection

      Explanation:

      To remember the process of erection, use the memory aid P for parasympathetic points, S for sympathetic shoots. This means that parasympathetic stimulation leads to an erection, while sympathetic stimulation causes ejaculation, detumescence, and vasospasm of the pudendal artery. Additionally, it causes the smooth muscle in the epididymis and vas to contract to convey the ejaculate.

      Understanding Penile Erection and Priapism

      Penile erection is a complex physiological process that involves the autonomic and somatic nervous systems. The sympathetic nerves, originating from T11-L2, and parasympathetic nerves, originating from S2-4, join to form the pelvic plexus. Parasympathetic discharge causes erection, while sympathetic discharge causes ejaculation and detumescence. Somatic nerves are supplied by dorsal penile and pudendal nerves, and efferent signals are relayed from Onufs nucleus (S2-4) to innervate ischiocavernosus and bulbocavernosus muscles. Autonomic discharge to the penis triggers the veno-occlusive mechanism, which leads to the flow of arterial blood into the penile sinusoidal spaces. During the detumescence phase, arteriolar constriction reduces arterial inflow and allows venous return to normalize.

      Priapism is a prolonged, unwanted erection lasting more than four hours in the absence of sexual desire. It is classified into low flow priapism, high flow priapism, and recurrent priapism. Low flow priapism is the most common type and is due to veno-occlusion, resulting in high intracavernosal pressures. It is often painful and requires emergency treatment if present for more than four hours. High flow priapism is due to unregulated arterial blood flow and usually presents as a semi-rigid, painless erection. Recurrent priapism is typically seen in sickle cell disease, most commonly of the high flow type. Causes of priapism include intracavernosal drug therapies, blood disorders such as leukemia and sickle cell disease, neurogenic disorders such as spinal cord transection, and trauma to the penis resulting in arterio-venous malformations. Management includes ice packs/cold showers, aspiration of blood from corpora or intracavernosal alpha adrenergic agonists for low flow priapism. Delayed therapy of low flow priapism may result in erectile dysfunction.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 14 - A 78-year-old male is brought to the family physician by his daughter, who...

    Incorrect

    • A 78-year-old male is brought to the family physician by his daughter, who reports that he has been experiencing increased forgetfulness and confusion for the past 10 weeks. Initially, he had trouble remembering appointments, but now struggles to recall the names of family members.

      The doctor suspects that the patient may have Alzheimer's disease and explains to the daughter that this condition is caused by a decrease in acetylcholine (ACh).

      What is a true statement about acetylcholine?

      Your Answer:

      Correct Answer: Main neurotransmitter in all preganglionic sympathetic neurons

      Explanation:

      The primary neurotransmitter present in all preganglionic sympathetic neurons and some postganglionic sympathetic fibers, such as those to sweat glands, is acetylcholine. Acetylcholine is also the primary neurotransmitter in all preganglionic and postganglionic parasympathetic neurons. postganglionic sympathetic neurons also contain adrenaline and noradrenaline as neurotransmitters. The basal nucleus of Meynert in the central nervous system is responsible for synthesizing ACh.

      Acetylcholine (ACh) is a crucial neurotransmitter in the somatic nervous system and plays a significant role in the autonomic nervous system. It is the primary neurotransmitter in all pre- and postganglionic parasympathetic neurons, all preganglionic sympathetic neurons, and postganglionic sympathetic fibers, including sudomotor neurons that regulate sweat glands. Acetylcholinesterase is an enzyme that breaks down acetylcholine. In conditions such as myasthenia gravis, where there is a deficiency of functioning acetylcholine receptors, acetylcholinesterase inhibitors are used.

      In the central nervous system, acetylcholine is synthesized in the basal nucleus of Meynert. Alzheimer’s disease is associated with decreased levels of acetylcholine in the basal nucleus of Meynert. Therefore, acetylcholine plays a crucial role in the functioning of the nervous system, and its deficiency can lead to various neurological disorders.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 15 - What is the anatomical level of the transpyloric plane? ...

    Incorrect

    • What is the anatomical level of the transpyloric plane?

      Your Answer:

      Correct Answer: L1

      Explanation:

      The Transpyloric Plane and its Anatomical Landmarks

      The transpyloric plane is an imaginary horizontal line that passes through the body of the first lumbar vertebrae (L1) and the pylorus of the stomach. It is an important anatomical landmark used in clinical practice to locate various organs and structures in the abdomen.

      Some of the structures that lie on the transpyloric plane include the left and right kidney hilum (with the left one being at the same level as L1), the fundus of the gallbladder, the neck of the pancreas, the duodenojejunal flexure, the superior mesenteric artery, and the portal vein. The left and right colic flexure, the root of the transverse mesocolon, and the second part of the duodenum also lie on this plane.

      In addition, the upper part of the conus medullaris (the tapered end of the spinal cord) and the spleen are also located on the transpyloric plane. Knowing the location of these structures is important for various medical procedures, such as abdominal surgeries and diagnostic imaging.

      Overall, the transpyloric plane serves as a useful reference point for clinicians to locate important anatomical structures in the abdomen.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 16 - A 9-year-old child has been brought to the emergency department after falling onto...

    Incorrect

    • A 9-year-old child has been brought to the emergency department after falling onto their shoulder during a soccer game. They are experiencing pain across their shoulder and upper chest, which is most severe when the clavicular area is palpated. A visible bony deformity is present in the clavicular area. The physician suspects a fracture and orders an x-ray.

      What is the most probable location of the fracture?

      Your Answer:

      Correct Answer: Middle third of the clavicle

      Explanation:

      The most frequent location for clavicle fractures is the middle third, which is the weakest part of the bone and lacks any ligaments or muscles. This is especially common in young children. Fractures in the proximal and distal thirds are less frequent and therefore incorrect answers. While sternum fractures can occur in high-force trauma, the mechanism of injury and visible bony deformity in this case suggest a clavicular fracture. Acromion fractures are rare and would not result in the observed bony injury.

      Anatomy of the Clavicle

      The clavicle is a bone that runs from the sternum to the acromion and plays a crucial role in preventing the shoulder from falling forwards and downwards. Its inferior surface is marked by ligaments at each end, including the trapezoid line and conoid tubercle, which provide attachment to the coracoclavicular ligament. The costoclavicular ligament attaches to the irregular surface on the medial part of the inferior surface, while the subclavius muscle attaches to the intermediate portion’s groove.

      The superior part of the clavicle’s medial end has a raised surface that gives attachment to the clavicular head of sternocleidomastoid, while the posterior surface attaches to the sternohyoid. On the lateral end, there is an oval articular facet for the acromion, and a disk lies between the clavicle and acromion. The joint’s capsule attaches to the ridge on the margin of the facet.

      In summary, the clavicle is a vital bone that helps stabilize the shoulder joint and provides attachment points for various ligaments and muscles. Its anatomy is marked by distinct features that allow for proper function and movement.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      0
      Seconds
  • Question 17 - A 25-year-old patient arrives at the emergency department half an hour after experiencing...

    Incorrect

    • A 25-year-old patient arrives at the emergency department half an hour after experiencing severe burns in a house fire. According to a Lund and Browder chart, approximately 42% of the patient's body is affected, with significant areas of full-thickness burns and oedema. During examination, the patient's heart rate is recorded at 124/min and blood pressure at 92/48 mmHg. What is the probable reason for the patient's vital signs?

      Your Answer:

      Correct Answer: Third space fluid loss

      Explanation:

      Third space fluid loss is a common occurrence in patients with severe burns. This happens when fluid leaks into the area surrounding cells, leading to symptoms such as edema, tachycardia, and hypotension.

      It is unlikely that neurogenic shock is the cause of these symptoms. Neurogenic shock is typically caused by damage to the autonomic pathways in the central nervous system, which is usually the result of spinal cord or central nervous system trauma.

      While secondary bacterial infections and sepsis are important considerations in patients with major burns, it is unlikely that this patient has an infection since the burns occurred only 30 minutes ago.

      Severe pain may explain the tachycardia, but it does not account for the hypotension.

      Smoke inhalation can cause coughing, shortness of breath, and burns around the airway, but it is unlikely to be the cause of the hypotension and tachycardia in this patient.

      First Aid and Management of Burns

      Burns can be caused by heat, electricity, or chemicals. Immediate first aid involves removing the person from the source of the burn and irrigating the affected area with cool water. The extent of the burn can be assessed using Wallace’s Rule of Nines or the Lund and Browder chart. The depth of the burn can be determined by its appearance, with full-thickness burns being the most severe. Referral to secondary care is necessary for deep dermal and full-thickness burns, as well as burns involving certain areas of the body or suspicion of non-accidental injury.

      Severe burns can lead to tissue loss, fluid loss, and a catabolic response. Intravenous fluids and analgesia are necessary for resuscitation and pain relief. Smoke inhalation can result in airway edema, and early intubation may be necessary. Circumferential burns may require escharotomy to relieve compartment syndrome and improve ventilation. Conservative management is appropriate for superficial burns, while more complex burns may require excision and skin grafting. There is no evidence to support the use of antimicrobial prophylaxis or topical antibiotics in burn patients.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      0
      Seconds
  • Question 18 - A 26-year-old female presents to the emergency department with a 2-day history of...

    Incorrect

    • A 26-year-old female presents to the emergency department with a 2-day history of suprapubic pain and fever. She has no significant medical or surgical history but takes a daily combined oral contraceptive pill and multivitamin. The surgical team orders a CT scan of the abdomen and pelvis, which shows pelvic fat stranding and free fluid in the pouch of Douglas. What is the most probable causative organism?

      Your Answer:

      Correct Answer: Chlamydia trachomatis

      Explanation:

      Pelvic inflammatory disease can be a challenging diagnosis for emergency practitioners, as it presents with vague abdominal pain that can be mistaken for a surgical or gynecological issue. While CT scans are not ideal for young patients due to the risk of radiation exposure to the sex organs, they can reveal common findings for pelvic inflammatory disease, such as free fluid in the pouch of Douglas, pelvic fat stranding, tubo-ovarian abscesses, and fallopian tube thickening of more than 5 mm. In contrast, CT scans for appendicitis may show appendiceal dilatation, thickening of the caecal apex with a bar sign, periappendiceal fat stranding and phlegmon, and focal wall nonenhancement in cases of gangrenous appendix. The most common cause of pelvic inflammatory disease is Chlamydia trachomatis, followed by Neisseria gonorrhoeae and Mycobacterium tuberculosis. In cases of appendicitis, Escherichia coli is the most likely causative organism, with rare cases caused by other organisms.

      Pelvic inflammatory disease (PID) is a condition where the female pelvic organs, including the uterus, fallopian tubes, ovaries, and surrounding peritoneum, become infected and inflamed. It is typically caused by an infection that spreads from the endocervix. The most common causative organism is Chlamydia trachomatis, followed by Neisseria gonorrhoeae, Mycoplasma genitalium, and Mycoplasma hominis. Symptoms of PID include lower abdominal pain, fever, dyspareunia, dysuria, menstrual irregularities, vaginal or cervical discharge, and cervical excitation.

      To diagnose PID, a pregnancy test should be done to rule out an ectopic pregnancy, and a high vaginal swab should be taken to screen for Chlamydia and gonorrhoeae. However, these tests may often be negative, so consensus guidelines recommend having a low threshold for treatment due to the potential complications of untreated PID. Management typically involves oral ofloxacin and oral metronidazole or intramuscular ceftriaxone, oral doxycycline, and oral metronidazole. In mild cases of PID, intrauterine contraceptive devices may be left in, but the evidence is limited, and removal of the IUD may be associated with better short-term clinical outcomes according to recent guidelines.

      Complications of PID include perihepatitis (Fitz-Hugh Curtis Syndrome), which occurs in around 10% of cases and is characterized by right upper quadrant pain that may be confused with cholecystitis, infertility (with a risk as high as 10-20% after a single episode), chronic pelvic pain, and ectopic pregnancy.

    • This question is part of the following fields:

      • Reproductive System
      0
      Seconds
  • Question 19 - A 75-year-old male presents to the GP clinic complaining of increased shortness of...

    Incorrect

    • A 75-year-old male presents to the GP clinic complaining of increased shortness of breath during physical activity and swelling in both ankles. The GP schedules an echocardiogram for him as an outpatient. During the echocardiogram, the patient's heart rate was 72 bpm and blood pressure was 136/88 mmHg. The results of the echocardiogram show an end-diastolic volume of 105ml and an end-systolic volume of 65ml. What is the left ventricular ejection fraction (LVEF) of this patient?

      Your Answer:

      Correct Answer: 40%

      Explanation:

      Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.

      Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.

      Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 20 - Which of the following is atypical for Lynch syndrome? ...

    Incorrect

    • Which of the following is atypical for Lynch syndrome?

      Your Answer:

      Correct Answer: It is inherited in an autosomal recessive manner

      Explanation:

      Inheritance of Lynch syndrome follows an autosomal dominant pattern and is identified by the presence of microsatellite instability in DNA mismatch repair genes. Patients with Lynch syndrome are more prone to developing poorly differentiated right-sided colonic tumors.

      Genetic Conditions and Their Association with Surgical Diseases

      Li-Fraumeni Syndrome is an autosomal dominant genetic condition caused by mutations in the p53 tumour suppressor gene. Individuals with this syndrome have a high incidence of malignancies, particularly sarcomas and leukaemias. The diagnosis is made when an individual develops sarcoma under the age of 45 or when a first-degree relative is diagnosed with any cancer below the age of 45 and another family member develops malignancy under the age of 45 or sarcoma at any age.

      BRCA 1 and 2 are genetic conditions carried on chromosome 17 and chromosome 13, respectively. These conditions are linked to developing breast cancer with a 60% risk and an associated risk of developing ovarian cancer with a 55% risk for BRCA 1 and 25% risk for BRCA 2. BRCA2 mutation is also associated with prostate cancer in men.

      Lynch Syndrome is another autosomal dominant genetic condition that causes individuals to develop colonic cancer and endometrial cancer at a young age. 80% of affected individuals will get colonic and/or endometrial cancer. High-risk individuals may be identified using the Amsterdam criteria, which include three or more family members with a confirmed diagnosis of colorectal cancer, two successive affected generations, and one or more colon cancers diagnosed under the age of 50 years.

      Gardners syndrome is an autosomal dominant familial colorectal polyposis that causes multiple colonic polyps. Extra colonic diseases include skull osteoma, thyroid cancer, and epidermoid cysts. Desmoid tumours are seen in 15% of individuals with this syndrome. Due to colonic polyps, most patients will undergo colectomy to reduce the risk of colorectal cancer. It is now considered a variant of familial adenomatous polyposis coli.

      Overall, these genetic conditions have a significant association with surgical diseases, and early identification and management can help reduce the risk of malignancies and other associated conditions.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 21 - A 5-year-old girl from an underprivileged family comes in with a waddling gait....

    Incorrect

    • A 5-year-old girl from an underprivileged family comes in with a waddling gait. She displays signs of a proximal myopathy and positional deformity in her lower limbs. Upon examination, x-rays reveal a widened growth plate with cupping of the metaphysis. What is the probable diagnosis?

      Your Answer:

      Correct Answer: Vitamin D deficiency

      Explanation:

      Rickets and Other Growth-Related Disorders

      Rickets is a condition that results from a deficiency in vitamin D, which is essential for the mineralization of osteoid. This process primarily occurs at the growth plate, or physis, and in vitamin D deficiency, the growth plate widens, and the metaphysis appears cupped and frayed. The bones become softer than usual, and the lower limbs may develop a bow-legged deformity. In addition to affecting bone health, vitamin D deficiency can also lead to hypocalcemia, which causes muscle spasms and changes in bowel habits.

      Growth hormone deficiency, on the other hand, causes growth failure and an immature doll-like facies. Hyperthyroidism tends to occur in teenage girls and presents with weight loss, heat intolerance, and diarrhea. Hypothyroidism, on the other hand, presents with failure to grow, disproportionate weight gain, tiredness, and cold intolerance.

      It is important to understand these growth-related disorders and their symptoms to ensure proper diagnosis and treatment. By recognizing the characteristic changes on x-ray in rickets, for example, healthcare professionals can identify and address vitamin D deficiency early on. Similarly, the symptoms of other disorders can help healthcare professionals provide appropriate care and support to those affected.

    • This question is part of the following fields:

      • Paediatrics
      0
      Seconds
  • Question 22 - A patient with intricate mental health issues and multiple medications presents at the...

    Incorrect

    • A patient with intricate mental health issues and multiple medications presents at the clinic with concerns about weight gain. Which of the following medications is probable to be the cause of this side effect?

      Your Answer:

      Correct Answer: Olanzapine

      Explanation:

      Weight gain is a prevalent side effect of antipsychotics.

      While antipsychotics are successful in treating schizophrenia, they often lead to weight gain and an increased likelihood of developing type 2 diabetes. The most rapid weight gain typically occurs within the first six months of starting antipsychotic treatment.

      In particular, Olanzapine and Clozapine are associated with a high risk of weight gain. They stimulate appetite and result in overeating, as well as disrupt glucose regulation.

      Schizophrenia management guidelines were published by NICE in 2009. The guidelines recommend that first-line treatment for schizophrenia should involve oral atypical antipsychotics. Additionally, cognitive behavioural therapy should be offered to all patients. It is important to pay close attention to cardiovascular risk-factor modification due to the high rates of cardiovascular disease in schizophrenic patients, which is linked to antipsychotic medication and high smoking rates. Therefore, healthcare professionals should take necessary measures to reduce the risk of cardiovascular disease in these patients.

    • This question is part of the following fields:

      • Psychiatry
      0
      Seconds
  • Question 23 - Which types of cells have cilia that are capable of movement? ...

    Incorrect

    • Which types of cells have cilia that are capable of movement?

      Your Answer:

      Correct Answer: Fallopian tube epithelial cells

      Explanation:

      Cilia, Flagella, and Microvilli: Cellular Projections with Unique Functions

      Cilia, flagella, and microvilli are cellular projections that serve different functions in various cells. Cilia are hair-like structures made up of microtubules and dynein proteins. They can be either immotile or motile, with immotile cilia used for sensory transduction and attachment to underlying tissues, while motile cilia beat rhythmically to move fluid over the surface of cells or confer motility to cells. Cilia are found in the respiratory tract and Fallopian tube epithelium.

      Flagella, on the other hand, are longer projections that are classified as a type of cilium. Spermatozoa have a long flagellum that has a similar internal structure to a cilium but is much longer and is used for motility.

      Microvilli are folds of the cell membrane that increase the surface area for absorption. They are found in cells such as ileal enterocytes, which are responsible for nutrient absorption in the small intestine.

      In summary, cilia, flagella, and microvilli are cellular projections that serve unique functions in different cells. While cilia can be either immotile or motile, flagella are longer and used for motility, and microvilli increase surface area for absorption.

    • This question is part of the following fields:

      • Histology
      0
      Seconds
  • Question 24 - A six-month-old infant is brought to the emergency department due to sudden abdominal...

    Incorrect

    • A six-month-old infant is brought to the emergency department due to sudden abdominal pain and distension. The infant has a history of lethargy, growth restriction, and overall weakness. Upon abdominal examination, splenomegaly is noted. Further investigations reveal a diagnosis of sickle cell disease, with the acute presentation believed to be an acute crisis. Based on this information, what is the most probable haemoglobin trait in this patient?

      Your Answer:

      Correct Answer: HbS HbS

      Explanation:

      Understanding Sickle-Cell Anaemia

      Sickle-cell anaemia is a genetic disorder that occurs when an abnormal haemoglobin chain, known as HbS, is synthesized due to an autosomal recessive condition. This condition is more common in people of African descent, as the heterozygous condition offers some protection against malaria. In the UK, around 10% of Afro-Caribbean individuals are carriers of HbS. Symptoms in homozygotes typically do not develop until 4-6 months when the abnormal HbSS molecules take over from fetal haemoglobin.

      The pathophysiology of sickle-cell anaemia involves the substitution of the polar amino acid glutamate with the non-polar valine in each of the two beta chains (codon 6) of haemoglobin. This substitution decreases the water solubility of deoxy-Hb, causing HbS molecules to polymerize and sickle in the deoxygenated state. HbAS patients sickle at p02 2.5 – 4 kPa, while HbSS patients sickle at p02 5 – 6 kPa. Sickle cells are fragile and can cause haemolysis, block small blood vessels, and lead to infarction.

      To diagnose sickle-cell anaemia, haemoglobin electrophoresis is the definitive test. It is essential to understand the pathophysiology and symptoms of sickle-cell anaemia to provide appropriate care and management for affected individuals.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 25 - A 56-year-old male patient comes to the clinic with a history of dyspepsia...

    Incorrect

    • A 56-year-old male patient comes to the clinic with a history of dyspepsia that he has ignored for a long time. He reports no symptoms of dysphagia or haematemesis. During an oesophagoduodenoscopy (OGD), mucosal changes are observed in the lower part of the oesophagus near the sphincter, and a biopsy is taken from this area. What is the probable result of the biopsy?

      Your Answer:

      Correct Answer: Columnar epithelial cells

      Explanation:

      The patient has Barrett’s oesophagus, which is a metaplastic condition where the normal oesophageal epithelium is replaced by columnar cells. This increases the risk of adenocarcinoma.

      Barrett’s oesophagus is a condition where the lower oesophageal mucosa is replaced by columnar epithelium, which increases the risk of oesophageal adenocarcinoma by 50-100 fold. It is usually identified during an endoscopy for upper gastrointestinal symptoms such as dyspepsia, as there are no screening programs for it. The length of the affected segment determines the chances of identifying metaplasia, with short (<3 cm) and long (>3 cm) subtypes. The prevalence of Barrett’s oesophagus is estimated to be around 1 in 20, and it is identified in up to 12% of those undergoing endoscopy for reflux.

      The columnar epithelium in Barrett’s oesophagus may resemble that of the cardiac region of the stomach or that of the small intestine, with goblet cells and brush border. The single strongest risk factor for Barrett’s oesophagus is gastro-oesophageal reflux disease (GORD), followed by male gender, smoking, and central obesity. Alcohol is not an independent risk factor for Barrett’s, but it is associated with both GORD and oesophageal cancer. Patients with Barrett’s oesophagus often have coexistent GORD symptoms.

      The management of Barrett’s oesophagus involves high-dose proton pump inhibitor, although the evidence base for its effectiveness in reducing the progression to dysplasia or inducing regression of the lesion is limited. Endoscopic surveillance with biopsies is recommended every 3-5 years for patients with metaplasia but not dysplasia. If dysplasia of any grade is identified, endoscopic intervention is offered, such as radiofrequency ablation, which is the preferred first-line treatment, particularly for low-grade dysplasia, or endoscopic mucosal resection.

    • This question is part of the following fields:

      • Gastrointestinal System
      0
      Seconds
  • Question 26 - A 10-year-old boy has been admitted to the hospital due to a swollen...

    Incorrect

    • A 10-year-old boy has been admitted to the hospital due to a swollen and painful right knee. His mother reports that he has always had large bruises after minor injuries. About six months ago, he had bleeding that lasted for ten days after biting his tongue, which required a blood transfusion. The patient has not taken any medication except for Paracetamol for knee pain two hours ago. In the family history, the patient's uncle required a blood transfusion after tonsillectomy and had bleeding after a dental extraction, while their grandfather had severe bleeding after a routine knee operation. Which of the following test results would be expected? The tests are BT (bleeding time), APTT (activated partial thromboplastin time), PT (prothrombin time), and TT (thrombin time).

      Your Answer:

      Correct Answer: BT - Normal; APTT - Abnormal; PT - Normal; TT - Normal

      Explanation:

      Haemophilia and its Laboratory Findings

      Haemophilia is a genetic disorder that affects males in the family. It can either be haemophilia A or B, which are both sex-linked recessive disorders. Haemophilia A is caused by a deficiency of factor VIII, while haemophilia B is caused by a deficiency of factor IX. Females are carriers of the gene, but only males express the disease. The hallmark symptoms of haemophilia include haemorrhage into the joints, bleeding with tooth extraction, and skin bruising.

      Laboratory findings in haemophilia include normal prothrombin time and bleeding time, as well as normal fibrinogen levels. However, there is a prolongation of the partial thromboplastin time. It is important to differentiate haemophilia from other bleeding disorders, such as Von Willebrand’s disease. While the bleeding phenotype in Von Willebrand’s disease is generally less severe, the family history is more in keeping with haemophilia. Coagulation tests in Von Willebrand’s disease are often normal.

      In summary, haemophilia is a genetic disorder that affects males in the family and can either be haemophilia A or B. The hallmark symptoms include haemorrhage into the joints, bleeding with tooth extraction, and skin bruising. Laboratory findings in haemophilia include normal prothrombin time and bleeding time, normal fibrinogen levels, and a prolongation of the partial thromboplastin time. It is important to differentiate haemophilia from other bleeding disorders, such as Von Willebrand’s disease, which has different coagulation test results.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 27 - A 29-year-old woman presents to her GP complaining of a tingling sensation around...

    Incorrect

    • A 29-year-old woman presents to her GP complaining of a tingling sensation around her mouth and intermittent cramps in her legs. Trousseau's sign is positive. Blood results are shown below.

      Urea 4.0 mmol/L (2.0 - 7.0)
      Creatinine 80 µmol/L (55 - 120)
      Calcium 1.95 mmol/L (2.1-2.6)
      Phosphate 1.2 mmol/L (0.8-1.4)
      Vitamin D 150 nmol/L (50-250)
      Parathyroid hormone (PTH) 1.7 pmol/L (1.6-8.5)

      Derangement of what substance may be responsible for this patient's presentation?

      Your Answer:

      Correct Answer: Magnesium

      Explanation:

      The correct answer is magnesium. Adequate levels of magnesium are necessary for the proper functioning of parathyroid hormone, which can lead to hypocalcemia if magnesium levels are low. Magnesium is also essential for PTH secretion and sensitivity. Amylase, chloride, and potassium are not associated with hypocalcemia. While severe pancreatitis may cause hypocalcemia, it is typically accompanied by other symptoms such as vomiting and epigastric pain. Chloride is not linked to hypocalcemia, and hypomagnesemia can cause hypokalemia, which can lead to muscle weakness, tremors, and arrhythmias, as well as ECG changes such as flattened T waves, prolonged PR and QT intervals, and U waves.

      Understanding Parathyroid Hormone and Its Effects

      Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.

      The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.

      Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 28 - You are asked to evaluate a 5-day old cyanotic infant named Benjamin. Benjamin...

    Incorrect

    • You are asked to evaluate a 5-day old cyanotic infant named Benjamin. Benjamin has had a chest x-ray which shows a heart appearance described as 'egg-on-side'. What is the probable underlying diagnosis?

      Your Answer:

      Correct Answer: Transposition of the great arteries

      Explanation:

      The ‘egg-on-side’ appearance on x-rays is a characteristic finding of transposition of the great arteries, which is one of the causes of cyanotic heart disease along with tetralogy of Fallot. While the age of the patient can help distinguish between the two conditions, the x-ray provides a clue for diagnosis. Patent ductus arteriosus, coarctation of the aorta, and ventricular septal defect do not typically present with cyanosis.

      Understanding Transposition of the Great Arteries

      Transposition of the great arteries (TGA) is a type of congenital heart disease that results in cyanosis. This condition occurs when the aorticopulmonary septum fails to spiral during septation, causing the aorta to leave the right ventricle and the pulmonary trunk to leave the left ventricle. Infants born to diabetic mothers are at a higher risk of developing TGA.

      The clinical features of TGA include cyanosis, tachypnea, a loud single S2, and a prominent right ventricular impulse. Chest x-rays may show an egg-on-side appearance. To manage TGA, prostaglandins can be used to maintain the ductus arteriosus. However, surgical correction is the definitive treatment for this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 29 - An 80-year-old patient who recently had a TIA is admitted to the vascular...

    Incorrect

    • An 80-year-old patient who recently had a TIA is admitted to the vascular ward in preparation for a carotid endarterectomy tomorrow. During her pre-operative consultation, the surgeon explained that the artery will be tied during the procedure. The patient asks about the different arteries and their functions. You inform her that the internal carotid artery supplies the brain, while the external carotid artery divides into two arteries after ascending the neck. One of these arteries is the superficial temporal artery, but what is the other?

      Your Answer:

      Correct Answer: Maxillary artery

      Explanation:

      The correct answer is the maxillary artery, which is one of the two terminal branches of the external carotid artery. It supplies deep structures of the face and usually bifurcates within the parotid gland to form the superficial temporal artery and maxillary artery. The facial artery supplies superficial structures in the face, while the lingual artery supplies the tongue. The middle meningeal artery is a branch of the maxillary artery and supplies the dura mater and calvaria. There are also two deep temporal arteries that arise from the maxillary artery and supply the temporalis muscle. The patient is scheduled to undergo carotid endarterectomy, a surgical procedure that involves removing atherosclerotic plaque from the common carotid artery to reduce the risk of subsequent ischaemic strokes or transient ischaemic attacks.

      Anatomy of the External Carotid Artery

      The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.

      To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.

      The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 30 - Which one of the following is not closely related to the capitate bone?...

    Incorrect

    • Which one of the following is not closely related to the capitate bone?

      Your Answer:

      Correct Answer: Ulnar nerve

      Explanation:

      The pisiform bone is in close proximity to both the ulnar nerve and artery. Additionally, the capitate bone is in articulation with the lunate, scaphoid, hamate, and trapezoid bones, indicating a close relationship between them.

      The Capitate Bone: Largest of the Carpal Bones

      The capitate bone is the largest of the carpal bones and is located centrally in the wrist. It has a rounded head that fits into the cavities of the lunate and scaphoid bones. The bone also has flatter articular surfaces for the hamate medially and the trapezoid laterally. At the distal end, the capitate bone primarily articulates with the middle metacarpal. Overall, the capitate bone plays an important role in the structure and function of the wrist joint.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

General Principles (0/3) 0%
Cardiovascular System (1/2) 50%
Musculoskeletal System And Skin (0/1) 0%
Respiratory System (0/1) 0%
Clinical Sciences (2/3) 67%
Endocrine System (0/1) 0%
Passmed