00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A 40-year-old woman comes to her doctor complaining of sudden palpitations and occasional...

    Incorrect

    • A 40-year-old woman comes to her doctor complaining of sudden palpitations and occasional headaches without any apparent cause. She has no significant medical history and denies any stress in her personal or professional life. During the examination, she appears to be sweating and has a pale conjunctiva. Her heart rate is 120 beats per minute, regularly regular, and her blood pressure is 150/100 mmHg. The doctor suspects a phaeochromocytoma, a tumor of the adrenal medulla.

      Which test is the most likely to provide a definitive diagnosis?

      Your Answer: Short synacthen test

      Correct Answer: Urinary free adrenaline

      Explanation:

      Extra-adrenal tumors are often located near the aortic bifurcation and can be identified through a urinary free adrenaline test, which measures the levels of adrenaline and noradrenaline produced by the adrenal medulla. Meanwhile, a 24-hour urinary free cortisol test is used to diagnose Cushing’s Disease, which is caused by excessive cortisol production from the zona fasciculata of the adrenal cortex. The aldosterone-renin ratio test is used to diagnose Conn’s Disease, which is caused by excessive aldosterone production from the zona glomerulosa of the adrenal cortex. Androgens are produced by the zona reticularis of the adrenal cortex. Addison’s Disease, a deficiency of cortisol, can be diagnosed through a short synacthen test.

      Adrenal Physiology: Medulla and Cortex

      The adrenal gland is composed of two main parts: the medulla and the cortex. The medulla is responsible for secreting the catecholamines noradrenaline and adrenaline, which are released in response to sympathetic nervous system stimulation. The chromaffin cells of the medulla are innervated by the splanchnic nerves, and the release of these hormones is triggered by the secretion of acetylcholine from preganglionic sympathetic fibers. Phaeochromocytomas, which are tumors derived from chromaffin cells, can cause excessive secretion of both adrenaline and noradrenaline.

      The adrenal cortex is divided into three distinct zones: the zona glomerulosa, zona fasciculata, and zona reticularis. Each zone is responsible for secreting different hormones. The outer zone, zona glomerulosa, secretes aldosterone, which regulates electrolyte balance and blood pressure. The middle zone, zona fasciculata, secretes glucocorticoids, which are involved in the regulation of metabolism, immune function, and stress response. The inner zone, zona reticularis, secretes androgens, which are involved in the development and maintenance of male sex characteristics.

      Most of the hormones secreted by the adrenal cortex, including glucocorticoids and aldosterone, are bound to plasma proteins in the circulation. Glucocorticoids are inactivated and excreted by the liver. Understanding the physiology of the adrenal gland is important for the diagnosis and treatment of various endocrine disorders.

    • This question is part of the following fields:

      • Endocrine System
      73.4
      Seconds
  • Question 2 - A teenage girl and her mother come to the doctor's office with concerns...

    Correct

    • A teenage girl and her mother come to the doctor's office with concerns about ambiguous genitalia. After gathering information and conducting various tests, the doctor determines that the cause is congenital adrenal hyperplasia, which is linked to a deficiency in which specific enzyme?

      Your Answer: 21-hydroxylase

      Explanation:

      Insufficient production of cortisol and compensatory adrenal hyperplasia are the consequences of 21-hydroxylase deficiency. This leads to elevated androgen production and ambiguous genitalia. However, enzymes such as 5-a reductase, aromatase, 17B-HSD, and aldosterone synthase are not involved in this disorder. Other enzymes, including 11-beta hydroxylase and 17-hydroxylase, may also be involved.

      Congenital adrenal hyperplasia is a genetic condition that affects the adrenal glands and can result in various symptoms depending on the specific enzyme deficiency. One common form is 21-hydroxylase deficiency, which can cause virilization of female genitalia, precocious puberty in males, and a salt-losing crisis in 60-70% of patients during the first few weeks of life. Another form is 11-beta hydroxylase deficiency, which can also cause virilization and precocious puberty, as well as hypertension and hypokalemia. A third form is 17-hydroxylase deficiency, which typically does not cause virilization in females but can result in intersex characteristics in boys and hypertension.

      Overall, congenital adrenal hyperplasia can have significant impacts on a person’s physical development and health, and early diagnosis and treatment are important for managing symptoms and preventing complications.

    • This question is part of the following fields:

      • Endocrine System
      10.2
      Seconds
  • Question 3 - A 56-year-old man visits the breast clinic with a solitary lump in the...

    Correct

    • A 56-year-old man visits the breast clinic with a solitary lump in the upper-right quadrant of his right breast. He has a history of non-alcoholic liver disease, hypertension, and gout, and is currently taking Bisoprolol, Naproxen, and Allopurinol. The lump is smooth and firm. Based on his medical history and current medications, what is the probable cause of his breast lump?

      Your Answer: Liver disease

      Explanation:

      Understanding Gynaecomastia: Causes and Drug Triggers

      Gynaecomastia is a condition characterized by the abnormal growth of breast tissue in males, often caused by an increased ratio of oestrogen to androgen. It is important to distinguish the causes of gynaecomastia from those of galactorrhoea, which is caused by the actions of prolactin on breast tissue.

      Physiological changes during puberty can lead to gynaecomastia, but it can also be caused by syndromes with androgen deficiency such as Kallmann and Klinefelter’s, testicular failure due to mumps, liver disease, testicular cancer, and hyperthyroidism. Additionally, haemodialysis and ectopic tumour secretion can also trigger gynaecomastia.

      Drug-induced gynaecomastia is also a common cause, with spironolactone being the most frequent trigger. Other drugs that can cause gynaecomastia include cimetidine, digoxin, cannabis, finasteride, GnRH agonists like goserelin and buserelin, oestrogens, and anabolic steroids. However, it is important to note that very rare drug causes of gynaecomastia include tricyclics, isoniazid, calcium channel blockers, heroin, busulfan, and methyldopa.

      In summary, understanding the causes and drug triggers of gynaecomastia is crucial in diagnosing and treating this condition.

    • This question is part of the following fields:

      • Endocrine System
      26.9
      Seconds
  • Question 4 - A 29-year-old female has been diagnosed with hyperthyroidism. She is experiencing heat intolerance...

    Incorrect

    • A 29-year-old female has been diagnosed with hyperthyroidism. She is experiencing heat intolerance and is very frightened by her palpitations. The GP prescribes Carbimazole and a second medication to manage the palpitations. Which receptors are being overstimulated by the increased catecholamine effects in this patient, leading to her palpitations?

      Your Answer: α1 receptors

      Correct Answer: β1 receptors

      Explanation:

      The sensitivity of the body to catecholamines is heightened by thyroid hormones. When catecholamines activate the β1 receptors in the heart, it leads to an elevation in heart rate.

      Thyroid disorders are commonly encountered in clinical practice, with hypothyroidism and thyrotoxicosis being the most prevalent. Women are ten times more likely to develop these conditions than men. The thyroid gland is a bi-lobed structure located in the anterior neck and is part of a hypothalamus-pituitary-end organ system that regulates the production of thyroxine and triiodothyronine hormones. These hormones help regulate energy sources, protein synthesis, and the body’s sensitivity to other hormones. Hypothyroidism can be primary or secondary, while thyrotoxicosis is mostly primary. Autoimmunity is the leading cause of thyroid problems in the developed world.

      Thyroid disorders can present in various ways, with symptoms often being the opposite depending on whether the thyroid gland is under or overactive. For example, hypothyroidism may result in weight gain, while thyrotoxicosis leads to weight loss. Thyroid function tests are the primary investigation for diagnosing thyroid disorders. These tests primarily look at serum TSH and T4 levels, with T3 being measured in specific cases. TSH levels are more sensitive than T4 levels for monitoring patients with existing thyroid problems.

      Treatment for thyroid disorders depends on the cause. Patients with hypothyroidism are given levothyroxine to replace the underlying deficiency. Patients with thyrotoxicosis may be treated with propranolol to control symptoms such as tremors, carbimazole to reduce thyroid hormone production, or radioiodine treatment.

    • This question is part of the following fields:

      • Endocrine System
      32.2
      Seconds
  • Question 5 - A young man comes to the clinic with symptoms suggestive of mania. After...

    Incorrect

    • A young man comes to the clinic with symptoms suggestive of mania. After further inquiry and assessment, he is found to have tachycardia, sweaty palms, and a recent bout of diarrhea. What is the probable diagnosis?

      Your Answer: Hashimoto's thyroiditis

      Correct Answer: Grave's disease

      Explanation:

      The correct diagnosis for this patient is Grave’s disease, which is characterized by hyperthyroidism. While mania may be a symptom, it is important to note that tachycardia, sweaty hands, and exophthalmos are specific to Grave’s disease.

      Bipolar disorder may also present with manic episodes, but it does not typically include the other symptoms associated with hyperthyroidism.

      Hashimoto’s thyroiditis is another autoimmune thyroid disorder, but it causes hypothyroidism instead of hyperthyroidism. Symptoms of hypothyroidism may include bradycardia and dry skin.

      Graves’ Disease: Common Features and Unique Signs

      Graves’ disease is the most frequent cause of thyrotoxicosis, which is commonly observed in women aged 30-50 years. The condition presents typical features of thyrotoxicosis, such as weight loss, palpitations, and heat intolerance. However, Graves’ disease also displays specific signs that are not present in other causes of thyrotoxicosis. These include eye signs, such as exophthalmos and ophthalmoplegia, as well as pretibial myxoedema and thyroid acropachy. The latter is a triad of digital clubbing, soft tissue swelling of the hands and feet, and periosteal new bone formation.

      Graves’ disease is characterized by the presence of autoantibodies, including TSH receptor stimulating antibodies in 90% of patients and anti-thyroid peroxidase antibodies in 75% of patients. Thyroid scintigraphy reveals a diffuse, homogenous, and increased uptake of radioactive iodine. These features help distinguish Graves’ disease from other causes of thyrotoxicosis and aid in its diagnosis.

    • This question is part of the following fields:

      • Endocrine System
      20.4
      Seconds
  • Question 6 - A 7-year-old boy is brought to the doctor by his father with a...

    Incorrect

    • A 7-year-old boy is brought to the doctor by his father with a complaint of frequent urination and excessive thirst. Upon conducting a fasting blood glucose test, the results are found to be abnormally high. The doctor suspects type 1 diabetes and initiates first-line injectable therapy.

      What characteristic of this medication should be noted?

      Your Answer: Decreases cellular uptake of potassium

      Correct Answer: Decreases serum potassium

      Explanation:

      Insulin stimulates the Na+/K+ ATPase pump, which leads to a decrease in serum potassium levels. This is the primary treatment for type 1 diabetes, where the pancreas no longer produces insulin, causing high blood sugar levels. Injectable insulin allows glucose to enter cells, and insulin also increases cellular uptake of potassium while decreasing serum potassium levels. Insulin also stimulates muscle protein synthesis, reducing muscle protein loss. Insulin is secreted in response to hyperglycaemia, where high blood sugar levels trigger the beta cells of the pancreas to release insulin in healthy individuals.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      22.6
      Seconds
  • Question 7 - A 14-year-old boy is brought to the clinic by his mother due to...

    Incorrect

    • A 14-year-old boy is brought to the clinic by his mother due to concerns about his height compared to other boys his age. The boy also shares that he often receives comments about his appearance, with some likening him to a toy doll. What can be inferred about the pattern of hormone release that he may be lacking?

      Your Answer:

      Correct Answer: It is released in a pulsatile manner

      Explanation:

      The doll-like appearance of the boy in his presentation suggests that he may be suffering from growth hormone deficiency, which can cause short stature, forehead prominence, and maxillary hypoplasia. The hypothalamus controls the release of growth hormone through the pulsatile release of growth hormone releasing hormone. Therefore, measuring GHRH levels is not a useful method for investigating growth hormone deficiency.

      Understanding Growth Hormone and Its Functions

      Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.

      GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.

      In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 8 - A 25-year-old male patient presents to the endocrine clinic with delayed-onset puberty. His...

    Incorrect

    • A 25-year-old male patient presents to the endocrine clinic with delayed-onset puberty. His history revealed a cleft palate as a child which had been repaired successfully. On direct questioning, he revealed he had anosmia but was told this was due to a minor head injury aged 5. On examination, he was 1.80 metres tall, had sparse pubic hair and small volume testes (Tanner staging grade 1).

      Blood results revealed:

      FSH 2 IU/L (1-7)
      LH 2 IU/L (1-8)
      Testosterone 240 ng/dL (280-1100)

      What is the most likely cause of this patient's condition?

      Your Answer:

      Correct Answer: Kallmann syndrome

      Explanation:

      The minor head injury is unlikely to be the cause of the patient’s anosmia. However, the combination of anosmia and cleft palate, along with the blood test results indicating hypogonadotropic hypogonadism, suggests that the patient may have Kallmann’s syndrome, which is an X-linked inherited disorder. Constitutional developmental delay is less likely due to the patient’s age and abnormal blood test results.

      Empty sella syndrome is a condition where the sella turcica, the area of the brain where the pituitary gland is located, is empty and filled with cerebrospinal fluid. Although this condition can be asymptomatic, it can also present with symptoms of hypopituitarism. However, since the patient also has anosmia and cleft palate, empty sella syndrome is less likely.

      Klinefelter’s syndrome is characterized by tall stature, gynecomastia, and small penis/testes. Blood tests would reveal elevated gonadotropins and low testosterone levels. However, since the patient’s FSH and LH levels are low, Klinefelter’s syndrome can be ruled out.

      Kallmann’s syndrome is a condition that can cause delayed puberty due to hypogonadotropic hypogonadism. It is often inherited as an X-linked recessive trait and is believed to be caused by a failure of GnRH-secreting neurons to migrate to the hypothalamus. One of the key indicators of Kallmann’s syndrome is anosmia, or a lack of smell, in boys with delayed puberty. Other features may include hypogonadism, cryptorchidism, low sex hormone levels, and normal or above-average height. Some patients may also have cleft lip/palate and visual/hearing defects.

      Management of Kallmann’s syndrome typically involves testosterone supplementation. Gonadotrophin supplementation may also be used to stimulate sperm production if fertility is desired later in life. It is important for individuals with Kallmann’s syndrome to receive appropriate medical care and monitoring to manage their symptoms and ensure optimal health outcomes.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 9 - A 45-year-old Caucasian male visits his doctor complaining of numbness in his extremities...

    Incorrect

    • A 45-year-old Caucasian male visits his doctor complaining of numbness in his extremities and tingling sensations around his mouth and lips. He has undergone a thyroidectomy in the past. During a complete cranial nerve examination, the physician observes facial muscle twitching upon tapping the patient's face.

      What is the reason for the facial muscle twitching observed during the examination?

      Your Answer:

      Correct Answer: Increased irritability of peripheral nerves due to hypocalcaemia

      Explanation:

      Chvostek’s sign is a facial twitch that occurs when the distribution of the facial nerve in front of the tragus is tapped. This sign is caused by increased irritability of peripheral nerves, which is often seen in cases of hypocalcemia. In fact, Chvostek’s sign is considered the most reliable test for hypocalcemia.

      Calcium homeostasis is the process of regulating the concentration of calcium ions in the extracellular fluid. This is important because calcium ions help stabilize voltage-gated ion channels. When calcium levels are too low, these ion channels become more easily activated, leading to hyperactivity in nerve and muscle cells. This can result in hypocalcemic tetany, which is characterized by involuntary muscle spasms. On the other hand, when calcium levels are too high, voltage-gated ion channels become less responsive, leading to depressed nervous system function.

      Understanding Hypoparathyroidism

      Hypoparathyroidism is a medical condition that occurs when there is a decrease in the secretion of parathyroid hormone (PTH). This can be caused by primary hypoparathyroidism, which is often a result of thyroid surgery, leading to low calcium and high phosphate levels. Treatment for this type of hypoparathyroidism involves the use of alfacalcidol. The main symptoms of hypoparathyroidism are due to hypocalcaemia and include muscle twitching, cramping, and spasms, as well as perioral paraesthesia. Other symptoms include Trousseau’s sign, which is carpal spasm when the brachial artery is occluded, and Chvostek’s sign, which is facial muscle twitching when the parotid is tapped. Chronic hypoparathyroidism can lead to depression and cataracts, and ECG may show a prolonged QT interval.

      Pseudohypoparathyroidism is another type of hypoparathyroidism that occurs when the target cells are insensitive to PTH due to an abnormality in a G protein. This condition is associated with low IQ, short stature, and shortened 4th and 5th metacarpals. The diagnosis is made by measuring urinary cAMP and phosphate levels following an infusion of PTH. In hypoparathyroidism, this will cause an increase in both cAMP and phosphate levels. In pseudohypoparathyroidism type I, neither cAMP nor phosphate levels are increased, while in pseudohypoparathyroidism type II, only cAMP rises. Pseudopseudohypoparathyroidism is a similar condition to pseudohypoparathyroidism, but with normal biochemistry.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 10 - A 25-year-old female visits her GP complaining of chronic thirst, polyuria, and nocturia...

    Incorrect

    • A 25-year-old female visits her GP complaining of chronic thirst, polyuria, and nocturia that have persisted for 2 months. She has a medical history of premenstrual dysphoric disorder diagnosed 3 years ago. After a series of tests, the patient is diagnosed with primary polydipsia. What results are expected from her water deprivation test?

      Your Answer:

      Correct Answer: High urine osmolality after both fluid deprivation and desmopressin

      Explanation:

      The patient has primary polydipsia, a psychogenic disorder causing excessive drinking despite being hydrated. Urine osmolality is high after both fluid deprivation and desmopressin, as the patient still produces and responds to ADH. Low urine osmolality after both fluid deprivation and desmopressin is typical of nephrogenic DI, while low urine osmolality after fluid deprivation but high after desmopressin is typical of cranial DI. Low urine osmolality after desmopressin and low urine osmolality after fluid deprivation but normal after desmopressin are not commonly seen with any pathological state.

      The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 11 - A 32-year-old man has been admitted to the emergency department with severe hypocalcaemia...

    Incorrect

    • A 32-year-old man has been admitted to the emergency department with severe hypocalcaemia that has not responded to calcium replacement therapy. What other serum electrolytes should be checked urgently?

      Your Answer:

      Correct Answer: Magnesium

      Explanation:

      If a person has hypomagnesaemia, it can lead to hypocalcaemia and make it difficult to treat. Therefore, when dealing with hypocalcaemia, it is important to keep an eye on the levels of calcium, phosphate, and magnesium. The phosphate levels can provide insight into potential causes, as low calcium levels combined with high phosphate levels may indicate hypoparathyroidism.

      The Importance of Magnesium and Calcium in the Body

      Magnesium and calcium are essential minerals in the body. Magnesium plays a crucial role in the secretion and action of parathyroid hormone (PTH) on target tissues. However, a deficiency in magnesium can cause hypocalcaemia and make patients unresponsive to calcium and vitamin D supplementation.

      The body contains 1000 mmol of magnesium, with half stored in bones and the rest in muscle, soft tissues, and extracellular fluid. Unlike calcium, there is no specific hormonal control of magnesium. Hormones such as PTH and aldosterone affect the renal handling of magnesium.

      Magnesium and calcium also interact at a cellular level. A decrease in magnesium levels can affect the permeability of cellular membranes to calcium, leading to hyperexcitability. Therefore, it is essential to maintain adequate levels of both magnesium and calcium in the body for optimal health.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 12 - A 54-year-old female visits her doctor complaining of chronic thirst, polyuria, and nocturia...

    Incorrect

    • A 54-year-old female visits her doctor complaining of chronic thirst, polyuria, and nocturia that have persisted for 2 months. She has a medical history of polycystic kidney disease that has led to chronic kidney disease (CKD). Her most recent eGFR result was 28 mL/min/1.73m². Following a series of tests, she is diagnosed with nephrogenic diabetes insipidus. What would the water deprivation test likely reveal in this patient's case?

      Your Answer:

      Correct Answer: Low urine osmolality after both fluid deprivation and desmopressin

      Explanation:

      The correct answer is low urine osmolality after both fluid deprivation and desmopressin. This is indicative of nephrogenic diabetes insipidus, a condition where the kidneys are insensitive to antidiuretic hormone (ADH), resulting in an inability to concentrate urine. This leads to low urine osmolality even during water deprivation and no response to desmopressin. High urine osmolality after both fluid deprivation and desmopressin would be seen in a healthy individual or primary polydipsia, while low urine osmolality after desmopressin but high after fluid deprivation is not commonly seen in any pathological state. Similarly, low urine osmolality after fluid deprivation but high after desmopressin is typically seen in cranial DI, which is not the best answer as the patient has no risk factors for this condition.

      The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 13 - A 36-year-old woman visits her GP complaining of frequent urination. She has been...

    Incorrect

    • A 36-year-old woman visits her GP complaining of frequent urination. She has been waking up several times at night to urinate for the past two weeks and has been feeling more thirsty than usual. Her temperature is 37.3ºC. She has a history of bipolar disorder and is currently on lithium medication.

      What could be the possible cause of her polyuria?

      Your Answer:

      Correct Answer: Lithium reducing ADH-dependent water reabsorption in the collecting duct

      Explanation:

      The site of action for antidiuretic hormone (ADH) is the collecting ducts. Lithium treatment for bipolar disorder can lead to diabetes insipidus, which is characterized by increased thirst (polydipsia) and increased urination (polyuria). Lithium use can cause nephrogenic diabetes insipidus, where the kidneys are unable to respond adequately to ADH. Normally, ADH induces the expression of aquaporin 2 channels in the collecting duct, which stimulates water reabsorption.

      Central diabetes insipidus occurs when there is damage to the posterior pituitary gland, resulting in insufficient production and release of ADH. However, lithium use causes nephrogenic diabetes insipidus instead of central diabetes insipidus.

      Although insulin resistance and hyperglycemia can also cause polyuria and polydipsia, as seen in diabetic ketoacidosis, the use of lithium suggests that the patient’s symptoms are due to diabetes insipidus rather than diabetes mellitus.

      Lithium inhibits the expression of aquaporin channels in the renal collecting duct, rather than the distal convoluted tubule, which causes diabetes insipidus.

      While a urinary tract infection can also present with polyuria and nocturia, the presence of lithium in the patient’s drug history and the fact that the patient also has polydipsia suggest nephrogenic diabetes insipidus. Diabetes insipidus causes increased thirst due to the excessive volume of urine produced, leading to water loss from the body. In addition, a urinary tract infection would likely cause dysuria (burning or stinging when passing urine) and lower abdominal pain.

      Understanding Antidiuretic Hormone (ADH)

      Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.

      ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.

      Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.

      Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 14 - A 57-year-old man comes to the diabetes clinic for a check-up. He has...

    Incorrect

    • A 57-year-old man comes to the diabetes clinic for a check-up. He has a medical history of type 2 diabetes, which is currently managed with metformin and sitagliptin, and hypertension, for which he takes ramipril. His recent blood tests show an increase in HbA1c from 51mmol/L to 59mmol/L. He has not experienced any hypoglycaemic events and reports good adherence to his medication and blood glucose monitoring. He expresses interest in trying an additional antidiabetic medication and is prescribed tolbutamide after receiving counselling on hypoglycaemic awareness.

      What is the mechanism of action of tolbutamide?

      Your Answer:

      Correct Answer: Binds to and shuts pancreatic beta cell ATP-dependent K+ channels, causing membrane depolarisation and increased insulin exocytosis

      Explanation:

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 15 - A 12-year-old girl is being informed about the typical changes that occur during...

    Incorrect

    • A 12-year-old girl is being informed about the typical changes that occur during puberty by her doctor. The doctor explains that there are three main changes that usually happen before menarche. What is the order in which these changes occur?

      Your Answer:

      Correct Answer: Breast buds, growth of pubic hair, growth of axillary hair

      Explanation:

      The onset of menarche is preceded by three sequential physical changes: the development of breast buds, growth of pubic hair, and growth of axillary hair. These changes are brought about by the hormone estrogen, which is crucial for the process of puberty.

      Puberty: Normal Changes in Males and Females

      Puberty is a natural process that marks the transition from childhood to adolescence. In males, the first sign of puberty is testicular growth, which typically occurs around the age of 12. Testicular volume greater than 4 ml indicates the onset of puberty. The maximum height spurt for boys occurs at the age of 14. On the other hand, in females, the first sign of puberty is breast development, which usually occurs around the age of 11.5. The height spurt for girls reaches its maximum early in puberty, at the age of 12, before menarche. Menarche, or the first menstrual period, typically occurs at the age of 13, with a range of 11-15 years. Following menarche, there is only a slight increase of about 4% in height.

      During puberty, it is normal for boys to experience gynaecomastia, or the development of breast tissue. Girls may also experience asymmetrical breast growth. Additionally, diffuse enlargement of the thyroid gland may be seen in both males and females. These changes are all part of the normal process of puberty and should not be a cause for concern.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 16 - A 55-year-old man comes in for his regular check-up with his GP. He...

    Incorrect

    • A 55-year-old man comes in for his regular check-up with his GP. He has a medical history of chronic pancreatitis and diabetes mellitus and is currently taking the maximum doses of metformin and gliclazide. During a random plasma glucose test, his levels show 18.0 mmol/l and his urinalysis reveals glycosuria with minimal ketones. The GP suspects that his body is not producing enough insulin and decides to initiate insulin therapy. Can you identify the location in the body where insulin is produced?

      Your Answer:

      Correct Answer: Pancreatic beta cells

      Explanation:

      Diabetes mellitus in this patient is most likely caused by chronic pancreatitis, which has resulted in the destruction of the pancreatic endocrine cells responsible for producing endogenous insulin. These cells are located in the Islets of Langerhans and are known as pancreatic beta cells (β-cells). Other cells in the pancreas, such as alpha cells (which secrete glucagon) and delta cells (which secrete somatostatin), do not produce insulin. Similarly, gastric G cells secrete gastrin and are not involved in insulin production.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 17 - A 55-year-old male visits his doctor complaining of a milky discharge from his...

    Incorrect

    • A 55-year-old male visits his doctor complaining of a milky discharge from his nipples. He has a history of schizophrenia and has been taking olanzapine for a while now. No recent changes have been made to his medication.

      Which compound with elevated levels is most likely causing this symptom?

      Your Answer:

      Correct Answer: Prolactin, released from the anterior pituitary

      Explanation:

      The patient is experiencing galactorrhea, which is commonly associated with hyperprolactinemia. Prolactin stimulates milk production in the mammary glands, and the patient’s hyperprolactinemia is likely due to his use of olanzapine, which acts as a dopamine antagonist. Dopamine normally inhibits prolactin secretion. The other answer choices are incorrect as they do not accurately explain the mechanism behind the patient’s presentation.

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 18 - As a medical student in community care, while shadowing a health visitor, I...

    Incorrect

    • As a medical student in community care, while shadowing a health visitor, I observed her measuring the height and weight of children to monitor their growth. What factors drive growth during the developmental stage of 4 to 10 years old?

      Your Answer:

      Correct Answer: Growth and thyroid hormones

      Explanation:

      Understanding Growth and Factors Affecting It

      Growth is a significant difference between children and adults, and it occurs in three stages: infancy, childhood, and puberty. Several factors affect fetal growth, including environmental, placental, hormonal, and genetic factors. Maternal nutrition and uterine capacity are the most crucial environmental factors that affect fetal growth.

      In infancy, nutrition and insulin are the primary drivers of growth. High fetal insulin levels result from poorly controlled diabetes in the mother, leading to hypoglycemia and macrosomia in the baby. Growth hormone is not a significant factor in infancy, as babies have low amounts of receptors. Hypopituitarism and thyroid have no effect on growth in infancy.

      In childhood, growth is driven by growth hormone and thyroxine, while in puberty, growth is driven by growth hormone and sex steroids. Genetic factors are the most important determinant of final adult height.

      It is essential to monitor growth in children regularly. Infants aged 0-1 years should have at least five weight recordings, while children aged 1-2 years should have at least three weight recordings. Children older than two years should have annual weight recordings. Children below the 2nd centile for height should be reviewed by their GP, while those below the 0.4th centile for height should be reviewed by a paediatrician.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 19 - For individuals with multiple endocrine neoplasia type IIb, what is the most probable...

    Incorrect

    • For individuals with multiple endocrine neoplasia type IIb, what is the most probable clinical presentation they will exhibit?

      Your Answer:

      Correct Answer: Marfanoid features

      Explanation:

      Understanding Multiple Endocrine Neoplasia

      Multiple endocrine neoplasia (MEN) is an autosomal dominant disorder that affects the endocrine system. There are three main types of MEN, each with its own set of associated features. MEN type I is characterized by the 3 P’s: parathyroid hyperplasia leading to hyperparathyroidism, pituitary tumors, and pancreatic tumors such as insulinomas and gastrinomas. MEN type IIa is associated with the 2 P’s: parathyroid hyperplasia leading to hyperparathyroidism and phaeochromocytoma, as well as medullary thyroid cancer. MEN type IIb is characterized by phaeochromocytoma, medullary thyroid cancer, and a marfanoid body habitus.

      The most common presentation of MEN is hypercalcaemia, which is often seen in MEN type I due to parathyroid hyperplasia. MEN type IIa and IIb are both associated with medullary thyroid cancer, which is caused by mutations in the RET oncogene. MEN type I is caused by mutations in the MEN1 gene. Understanding the different types of MEN and their associated features is important for early diagnosis and management of this rare but potentially serious condition.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 20 - A 65-year-old man with a history of type 2 diabetes is being seen...

    Incorrect

    • A 65-year-old man with a history of type 2 diabetes is being seen by his primary care physician.

      He is currently taking metformin 1g twice daily and lisinopril for his high blood pressure.

      His most recent HbA1c result is:

      HbA1c 58 mmol/L (<42)

      After further discussion, he has agreed to add a second medication for his diabetes. He has been informed that potential side effects may include weight gain, hypoglycemia, and gastrointestinal issues.

      What is the mechanism of action for this new medication?

      Your Answer:

      Correct Answer: Binding to KATP channels on pancreatic beta cell membrane

      Explanation:

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Endocrine System (2/6) 33%
Passmed