00
Correct
00
Incorrect
00 : 00 : 0 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 65-year-old man with a history of hypertension, diabetes and high cholesterol arrives...

    Incorrect

    • A 65-year-old man with a history of hypertension, diabetes and high cholesterol arrives at the hospital complaining of severe chest pain that spreads to his jaw. He has vomited twice and feels lightheaded.

      An electrocardiogram (ECG) reveals widespread ST elevation with reciprocal ST-segment depression. A troponin T serum level is obtained and confirms an elevated reading.

      What is the target of this cardiac biomarker?

      Your Answer: Myoglobin

      Correct Answer: Tropomyosin

      Explanation:

      The troponin-tropomyosin complex is formed when troponin T binds to tropomyosin. In cases of ST-elevation myocardial infarction (STEMI), elevated levels of troponin T in the bloodstream can confirm the presence of cardiac tissue damage. This biomarker plays a role in regulating muscle contraction by binding to tropomyosin. However, troponin I, not troponin T, binds to actin to hold the troponin-tropomyosin complex in place. While troponin T is released in cases of cardiac cell damage, it is considered less sensitive and specific than troponin I in diagnosing myocardial infarction.

      Understanding Troponin: The Proteins Involved in Muscle Contraction

      Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.

      Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.

      Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.

    • This question is part of the following fields:

      • Cardiovascular System
      29.4
      Seconds
  • Question 2 - You perform venepuncture on the basilic vein in the cubital fossa.

    At which point...

    Incorrect

    • You perform venepuncture on the basilic vein in the cubital fossa.

      At which point does this vein pass deep under muscle?

      Your Answer: At the axilla

      Correct Answer: Midway up the humerus

      Explanation:

      When the basilic vein is located halfway up the humerus, it travels beneath muscle. At the cubital fossa, the basilic vein connects with the median cubital vein, which in turn interacts with the cephalic vein. Contrary to popular belief, the basilic vein does not pass through the medial epicondyle. Meanwhile, the cephalic vein can be found in the deltopectoral groove.

      The Basilic Vein: A Major Pathway of Venous Drainage for the Arm and Hand

      The basilic vein is one of the two main pathways of venous drainage for the arm and hand, alongside the cephalic vein. It begins on the medial side of the dorsal venous network of the hand and travels up the forearm and arm. Most of its course is superficial, but it passes deep under the muscles midway up the humerus. Near the region anterior to the cubital fossa, the basilic vein joins the cephalic vein.

      At the lower border of the teres major muscle, the anterior and posterior circumflex humeral veins feed into the basilic vein. It is often joined by the medial brachial vein before draining into the axillary vein. The basilic vein is continuous with the palmar venous arch distally and the axillary vein proximally. Understanding the path and function of the basilic vein is important for medical professionals in diagnosing and treating conditions related to venous drainage in the arm and hand.

    • This question is part of the following fields:

      • Cardiovascular System
      18.4
      Seconds
  • Question 3 - How many valves are present between the right atrium and the superior vena...

    Correct

    • How many valves are present between the right atrium and the superior vena cava (SVC)?

      Your Answer: None

      Explanation:

      Inserting a CVP line from the internal jugular vein into the right atrium is relatively easy due to the absence of valves.

      The Superior Vena Cava: Anatomy, Relations, and Developmental Variations

      The superior vena cava (SVC) is a large vein that drains blood from the head and neck, upper limbs, thorax, and part of the abdominal walls. It is formed by the union of the subclavian and internal jugular veins, which then join to form the right and left brachiocephalic veins. The SVC is located in the anterior margins of the right lung and pleura, and is related to the trachea and right vagus nerve posteromedially, and the posterior aspects of the right lung and pleura posterolaterally. The pulmonary hilum is located posteriorly, while the right phrenic nerve and pleura are located laterally on the right side, and the brachiocephalic artery and ascending aorta are located laterally on the left side.

      Developmental variations of the SVC are recognized, including anomalies of its connection and interruption of the inferior vena cava (IVC) in its abdominal course. In some individuals, a persistent left-sided SVC may drain into the right atrium via an enlarged orifice of the coronary sinus, while in rare cases, the left-sided vena cava may connect directly with the superior aspect of the left atrium, usually associated with an unroofing of the coronary sinus. Interruption of the IVC may occur in patients with left-sided atrial isomerism, with drainage achieved via the azygos venous system.

      Overall, understanding the anatomy, relations, and developmental variations of the SVC is important for medical professionals in diagnosing and treating related conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      17
      Seconds
  • Question 4 - A 55-year-old Hispanic man visits his GP for a blood pressure check-up. As...

    Incorrect

    • A 55-year-old Hispanic man visits his GP for a blood pressure check-up. As he experienced ankle swelling with amlodipine, the GP recommends trying bendroflumethiazide. Can you explain the mechanism of action of this diuretic?

      Your Answer: Aldosterone receptor antagonist

      Correct Answer: Inhibits the sodium-chloride transporter

      Explanation:

      Thiazides and thiazide-like drugs, such as indapamide, work by blocking the Na+-Cl− symporter at the beginning of the distal convoluted tubule, which inhibits sodium reabsorption. Bendroflumethiazide is a thiazide diuretic that prevents the absorption of sodium and chloride by inhibiting the sodium-chloride transporter, resulting in water remaining in the tubule through osmosis. Mannitol is an osmotic diuretic that is used to reduce intracranial pressure after a head injury. Spironolactone is an aldosterone antagonist, while furosemide acts on the thick ascending loop of Henle to prevent the reabsorption of potassium, sodium, and chloride. Acetazolamide is a carbonic anhydrase inhibitor that is used to treat acute angle closure glaucoma.

      Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.

      Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.

      It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.

    • This question is part of the following fields:

      • Cardiovascular System
      26.8
      Seconds
  • Question 5 - Evelyn is a 92-year-old woman who arrives at the hospital with severe chest...

    Correct

    • Evelyn is a 92-year-old woman who arrives at the hospital with severe chest pain, shortness of breath, and palpitations. Given her medical history of angina and diabetes mellitus, doctors suspect acute coronary syndrome. They order several tests, including a troponin I blood test. What is the function of this biomarker in the body?

      Your Answer: Binds to actin to hold the troponin-tropomyosin complex in place

      Explanation:

      Troponin I plays a crucial role in muscle contraction by binding to actin and holding the troponin-tropomyosin complex in place. This prevents the myosin-binding site on the actin from being exposed, thereby preventing muscle contraction. Troponin I is also used as a marker for myocardial muscle injury.

      Unlike troponin C, troponin I does not bind to calcium. Instead, troponin C has several calcium-binding sites that, when occupied, cause a conformational change in the troponin-tropomyosin complex. This change exposes the myosin-binding site on the actin filament, allowing myosin to bind and initiate muscle contraction.

      Although troponin I binds to actin, it does not perform the power stroke that shortens muscle fibers. This is the role of the myosin head, which uses energy from ATP.

      It is troponin T, not troponin I, that binds with tropomyosin to form the troponin-tropomyosin complex. This complex allows tropomyosin to move in response to the conformational change induced by calcium binding to troponin C.

      Finally, it is tropomyosin, not troponin I, that directly inhibits myosin-binding sites. Tropomyosin is a long fiber that runs along the side of actin filaments, blocking all myosin binding sites. When calcium concentrations within the cell increase, the conformational change in troponin moves tropomyosin, exposing these sites and allowing muscle contraction to occur.

      Understanding Troponin: The Proteins Involved in Muscle Contraction

      Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.

      Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.

      Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.

    • This question is part of the following fields:

      • Cardiovascular System
      28.8
      Seconds
  • Question 6 - A 65-year-old woman is admitted with severe community-acquired pneumonia that progresses to sepsis...

    Incorrect

    • A 65-year-old woman is admitted with severe community-acquired pneumonia that progresses to sepsis and sepsis-driven atrial fibrillation. During examination, her blood pressure is unrecordable and a weak pulse is detected in her left arm. She reports experiencing weakness, numbness, and pain in her left arm, leading doctors to suspect an embolus. What is the embolus' direction of travel from her heart to her left arm?

      Your Answer: Left atrium → Left ventricle → aortic arch → left supraclavicular artery → left axillary artery → left brachial artery

      Correct Answer: Left atrium → Left ventricle → aortic arch → left subclavian artery → left axillary artery → left brachial artery

      Explanation:

      The path of oxygenated blood is from the left atrium to the left ventricle, then through the aortic arch, left subclavian artery, left axillary artery, and finally the left brachial artery.

      Vascular disorders of the upper limb are less common than those in the lower limb. The upper limb circulation can be affected by embolic events, stenotic lesions, inflammatory disorders, and venous diseases. The collateral circulation of the arterial inflow can impact disease presentation. Conditions include axillary/brachial embolus, arterial occlusions, Raynaud’s disease, upper limb venous thrombosis, and cervical rib. Treatment varies depending on the condition.

    • This question is part of the following fields:

      • Cardiovascular System
      33.3
      Seconds
  • Question 7 - Where are the arterial baroreceptors situated? ...

    Correct

    • Where are the arterial baroreceptors situated?

      Your Answer: Carotid sinus and aortic arch

      Explanation:

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      4.1
      Seconds
  • Question 8 - Each of the following increases the production of endothelin, except for which one?...

    Correct

    • Each of the following increases the production of endothelin, except for which one?

      Your Answer: Prostacyclin

      Explanation:

      Understanding Endothelin and Its Role in Various Diseases

      Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.

      Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.

      In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.

    • This question is part of the following fields:

      • Cardiovascular System
      15.1
      Seconds
  • Question 9 - A 56-year-old woman comes to you complaining of severe body aches and pains...

    Incorrect

    • A 56-year-old woman comes to you complaining of severe body aches and pains that have been ongoing for the past 2 weeks. She has been taking atorvastatin for the last 5 years and is aware of its potential side effects, but insists that she has never experienced anything like this before.

      Upon examination, her CK levels are found to be above 3000 U/L. Reviewing her medical records, it is noted that she had a medication review with her cardiologist just 2 weeks ago.

      What could be the possible cause of her current symptoms?

      Your Answer: She started taking laxatives

      Correct Answer: The cardiologist started her on amiodarone

      Explanation:

      The patient’s symptoms and elevated CK levels suggest that she may have rhabdomyolysis, which is a known risk associated with taking statins while also taking amiodarone. It is likely that her cardiologist prescribed amiodarone. To reduce her risk of statin-induced rhabdomyolysis, her atorvastatin dosage should be lowered.

      It is important to note that digoxin and beta-blockers do not increase the risk of statin-induced rhabdomyolysis, and there is no association between laxatives and this condition.

      Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.

    • This question is part of the following fields:

      • Cardiovascular System
      56.7
      Seconds
  • Question 10 - A 75-year-old man presents to the emergency department following a syncopal episode. He...

    Incorrect

    • A 75-year-old man presents to the emergency department following a syncopal episode. He has no significant medical history and denies any loss of bladder or bowel control or tongue biting.

      During examination, an ejection systolic murmur is detected at the right sternal edge in the second intercostal space. The murmur is heard radiating to the carotids.

      What intervention can be done to decrease the intensity of the murmur heard during auscultation?

      Your Answer: Squatting

      Correct Answer: Valsalva manoeuvre

      Explanation:

      The intensity of the ejection systolic murmur heard in aortic stenosis can be decreased by performing the Valsalva manoeuvre. On the other hand, the intensity of the murmur can be increased by administering amyl nitrite, raising legs, expiration, and squatting. These actions increase the volume of blood flow through the valve.

      Aortic stenosis is a condition characterized by the narrowing of the aortic valve, which can lead to various symptoms. These symptoms include chest pain, dyspnea, syncope or presyncope, and a distinct ejection systolic murmur that radiates to the carotids. Severe aortic stenosis can cause a narrow pulse pressure, slow rising pulse, delayed ESM, soft/absent S2, S4, thrill, duration of murmur, and left ventricular hypertrophy or failure. The condition can be caused by degenerative calcification, bicuspid aortic valve, William’s syndrome, post-rheumatic disease, or subvalvular HOCM.

      Management of aortic stenosis depends on the severity of the condition and the presence of symptoms. Asymptomatic patients are usually observed, while symptomatic patients require valve replacement. Surgical AVR is the preferred treatment for young, low/medium operative risk patients, while TAVR is used for those with a high operative risk. Balloon valvuloplasty may be used in children without aortic valve calcification and in adults with critical aortic stenosis who are not fit for valve replacement. If the valvular gradient is greater than 40 mmHg and there are features such as left ventricular systolic dysfunction, surgery may be considered even if the patient is asymptomatic.

    • This question is part of the following fields:

      • Cardiovascular System
      33.8
      Seconds
  • Question 11 - A 25-year-old man experiences a blunt head trauma and presents with a GCS...

    Correct

    • A 25-year-old man experiences a blunt head trauma and presents with a GCS of 7 upon admission. What is the primary factor influencing cerebral blood flow in this scenario?

      Your Answer: Intracranial pressure

      Explanation:

      Cerebral blood flow can be impacted by both hypoxaemia and acidosis, but in cases of trauma, the likelihood of increased intracranial pressure is much higher, particularly when the Glasgow Coma Scale (GCS) is low. This can have a negative impact on cerebral blood flow.

      Understanding Cerebral Blood Flow and Angiography

      Cerebral blood flow is regulated by the central nervous system, which can adjust its own blood supply. Various factors can affect cerebral pressure, including CNS metabolism, trauma, pressure, and systemic carbon dioxide levels. The most potent mediator is PaCO2, while acidosis and hypoxemia can also increase cerebral blood flow to a lesser degree. In patients with head injuries, increased intracranial pressure can impair blood flow. The Monro-Kelly Doctrine governs intracerebral pressure, which considers the brain as a closed box, and changes in pressure are offset by the loss of cerebrospinal fluid. However, when this is no longer possible, intracranial pressure rises.

      Cerebral angiography is an invasive test that involves injecting contrast media into the carotid artery using a catheter. Radiographs are taken as the dye works its way through the cerebral circulation. This test can be used to identify bleeding aneurysms, vasospasm, and arteriovenous malformations, as well as differentiate embolism from large artery thrombosis. Understanding cerebral blood flow and angiography is crucial in diagnosing and treating various neurological conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      41.9
      Seconds
  • Question 12 - A 60-year-old male is referred to the medical assessment unit by his physician...

    Correct

    • A 60-year-old male is referred to the medical assessment unit by his physician suspecting a UTI. He has a permanent catheter in place due to urinary retention caused by benign prostatic hypertrophy. His blood test results reveal hypercalcemia. An ultrasound Doppler scan of his neck displays a distinct sonolucent signal indicating hyperactive parathyroid tissue and noticeable vasculature, which is likely the parathyroid veins. What is the structure that the parathyroid veins empty into?

      Your Answer: Thyroid plexus of veins

      Explanation:

      The veins of the parathyroid gland drain into the thyroid plexus of veins, as opposed to other possible drainage routes.

      The cavernous sinus is a dural venous sinus that creates a cavity called the lateral sellar compartment, which is bordered by the temporal and sphenoid bones.

      The brachiocephalic vein is formed by the merging of the subclavian and internal jugular veins, and also receives drainage from the left and right internal thoracic vein.

      The external vertebral venous plexuses, which are most prominent in the cervical region, consist of anterior and posterior plexuses that freely anastomose with each other. The anterior plexuses are located in front of the vertebrae bodies, communicate with the basivertebral and intervertebral veins, and receive tributaries from the vertebral bodies. The posterior plexuses are situated partly on the posterior surfaces of the vertebral arches and their processes, and partly between the deep dorsal muscles.

      The suboccipital venous plexus is responsible for draining deoxygenated blood from the back of the head, and is connected to the external vertebral venous plexuses.

      Anatomy and Development of the Parathyroid Glands

      The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.

      The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.

    • This question is part of the following fields:

      • Cardiovascular System
      34.1
      Seconds
  • Question 13 - A 25-year-old man comes to the clinic complaining of chest pain in the...

    Incorrect

    • A 25-year-old man comes to the clinic complaining of chest pain in the center of his chest. Based on his symptoms, pericarditis is suspected as the cause. The patient is typically healthy, but recently had a viral throat infection according to his primary care physician.

      What is the most probable observation in this patient?

      Your Answer: Chest pain which increases with sternal palpation

      Correct Answer: Chest pain which is relieved on leaning forwards

      Explanation:

      Pericarditis is inflammation of the pericardium, a sac surrounding the heart. It can be caused by various factors, including viral infections. The typical symptom of pericarditis is central chest pain that is relieved by sitting up or leaning forward. ST-segment depression on a 12-lead ECG is not a sign of pericarditis, but rather a sign of subendocardial tissue ischemia. A pansystolic cardiac murmur heard on auscultation is also not associated with pericarditis, as it is caused by valve defects. Additionally, pericarditis is not typically associated with bradycardia, but rather tachycardia.

      Acute Pericarditis: Causes, Features, Investigations, and Management

      Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.

      The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.

      Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.

      Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.

      In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      23
      Seconds
  • Question 14 - A 55-year-old man is scheduled for CABG surgery and your consultant has tasked...

    Incorrect

    • A 55-year-old man is scheduled for CABG surgery and your consultant has tasked you, a foundation doctor on the surgical ward, with explaining the procedure to him. You are aware that the bypass will involve using the left internal thoracic artery to supply the affected coronary vessel. Can you identify the artery from which the left internal thoracic artery arises?

      Your Answer: Left thyrocervical trunk

      Correct Answer: Left subclavian artery

      Explanation:

      The left internal thoracic artery originates from the left subclavian artery near its source and runs down the chest wall beneath the ribs to supply blood to the front of the chest and breasts. During coronary artery bypass grafting (CABG), the proximal portion of the ITA is preserved while the distal end is grafted beyond the atherosclerotic segment of the affected coronary vessel to restore blood flow to the heart.

      The left axillary artery is a continuation of the left subclavian artery and is referred to as the axillary artery beyond the lateral border of the first rib. It becomes the brachial artery after passing the lower border of the teres major muscle.

      The left common carotid artery emerges from the aortic arch and divides into the internal and external carotid arteries at the fourth cervical vertebrae.

      The aortic arch is a continuation of the ascending aorta and branches off into the right brachiocephalic trunk, the left common carotid artery, and the left subclavian artery before continuing as the descending aorta.

      The thyrocervical trunk, which arises from the subclavian artery, is a brief vessel that gives rise to four branches: the inferior thyroid artery, suprascapular artery, ascending cervical artery, and transverse cervical artery.

      Coronary Artery Bypass Grafting (CABG)

      Coronary artery bypass grafting (CABG) is a surgical procedure commonly used to treat coronary artery disease. The procedure involves using multiple grafts, with the internal mammary artery being increasingly used instead of the saphenous vein due to its lower likelihood of narrowing. The surgery requires the use of a heart-lung bypass machine and systemic anticoagulation. Suitability for the procedure is determined by cardiac catheterisation or angiography. The surgery is carried out under general anaesthesia, and patients typically stay in the hospital for 7-10 days, with a return to work within 3 months.

      Complications of CABG include atrial fibrillation (30-40% of cases, usually self-limiting) and stroke (2%). However, the prognosis for the procedure is generally positive, with 90% of operations being successful. Further revascularisation may be needed in 5-10% of cases after 5 years, but the mortality rate is low, at 1-2% at 30 days.

    • This question is part of the following fields:

      • Cardiovascular System
      34.7
      Seconds
  • Question 15 - A 75-year-old male presents with an ejection systolic murmur that is most audible...

    Incorrect

    • A 75-year-old male presents with an ejection systolic murmur that is most audible over the aortic region. The patient also reports experiencing dyspnoea and angina. What is the probable diagnosis?

      Your Answer: Aortic sclerosis

      Correct Answer: Aortic stenosis

      Explanation:

      Differentiating Aortic Stenosis from Other Cardiac Conditions

      Aortic stenosis is a common cardiac condition that can be identified through auscultation. However, it is important to differentiate it from other conditions such as aortic sclerosis, HOCM, pulmonary stenosis, and aortic regurgitation. While aortic sclerosis may also present with an ejection systolic murmur, it is typically asymptomatic. The presence of dyspnoea, angina, or syncope would suggest a diagnosis of aortic stenosis instead. HOCM would not typically cause these symptoms, and pulmonary stenosis would not be associated with a murmur at the location of the aortic valve. Aortic regurgitation, on the other hand, would present with a wide pulse pressure and an early diastolic murmur. Therefore, careful consideration of symptoms and additional diagnostic tests may be necessary to accurately diagnose and differentiate between these cardiac conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      15.7
      Seconds
  • Question 16 - A 67-year-old man complains of leg cramping that occurs while walking and quickly...

    Incorrect

    • A 67-year-old man complains of leg cramping that occurs while walking and quickly subsides with rest. During examination, you observe hair loss in his lower limbs and a weak dorsalis pedis and absent posterior tibial pulse. Your treatment plan involves administering naftidrofuryl. What is the mechanism of action of naftidrofuryl?

      Your Answer: Beta 2 antagonist

      Correct Answer: 5-HT2 receptor antagonist

      Explanation:

      Naftidrofuryl, a 5-HT2 receptor antagonist, can be used to treat peripheral vascular disease (PVD) and alleviate symptoms such as intermittent claudication. This medication works by causing vasodilation, which increases blood flow to areas of the body affected by PVD. On the other hand, drugs like doxazosin, an alpha 1 blocker, do not have a role in treating PVD. Beta blockers, which can worsen intermittent claudication by inducing vasoconstriction, are also not recommended for PVD treatment.

      Managing Peripheral Arterial Disease

      Peripheral arterial disease (PAD) is closely associated with smoking, and patients who still smoke should be provided with assistance to quit. Comorbidities such as hypertension, diabetes mellitus, and obesity should also be treated. All patients with established cardiovascular disease, including PAD, should be taking a statin, with atorvastatin 80 mg currently recommended. In 2010, NICE recommended clopidogrel as the first-line treatment for PAD patients over aspirin.

      Exercise training has been shown to have significant benefits, and NICE recommends a supervised exercise program for all PAD patients before other interventions. Severe PAD or critical limb ischaemia may be treated with endovascular or surgical revascularization, with endovascular techniques typically used for short segment stenosis, aortic iliac disease, and high-risk patients. Surgical techniques are typically used for long segment lesions, multifocal lesions, lesions of the common femoral artery, and purely infrapopliteal disease. Amputation should be reserved for patients with critical limb ischaemia who are not suitable for other interventions such as angioplasty or bypass surgery.

      Drugs licensed for use in PAD include naftidrofuryl oxalate, a vasodilator sometimes used for patients with a poor quality of life, and cilostazol, a phosphodiesterase III inhibitor with both antiplatelet and vasodilator effects, which is not recommended by NICE.

    • This question is part of the following fields:

      • Cardiovascular System
      18.8
      Seconds
  • Question 17 - An 80-year-old man visits his GP complaining of progressive breathlessness that has been...

    Incorrect

    • An 80-year-old man visits his GP complaining of progressive breathlessness that has been worsening over the past 6 months. During the examination, the GP observes pitting oedema in the mid-shins. The patient has a medical history of type 2 diabetes mellitus and a myocardial infarction that occurred 5 years ago. The GP orders a blood test to investigate the cause of the patient's symptoms.

      The blood test reveals a B-type natriuretic peptide (BNP) level of 907 pg/mL, which is significantly higher than the normal range (< 100). Can you identify the source of BNP secretion?

      Your Answer: Atrial endocardium

      Correct Answer: Ventricular myocardium

      Explanation:

      BNP is primarily secreted by the ventricular myocardium in response to stretching, making it a valuable indicator of heart failure. While it can be used for screening and prognostic scoring, it is not secreted by the atrial endocardium, distal convoluted tubule, pulmonary artery endothelium, or renal mesangial cells.

      B-type natriuretic peptide (BNP) is a hormone that is primarily produced by the left ventricular myocardium in response to strain. Although heart failure is the most common cause of elevated BNP levels, any condition that causes left ventricular dysfunction, such as myocardial ischemia or valvular disease, may also raise levels. In patients with chronic kidney disease, reduced excretion may also lead to elevated BNP levels. Conversely, treatment with ACE inhibitors, angiotensin-2 receptor blockers, and diuretics can lower BNP levels.

      BNP has several effects, including vasodilation, diuresis, natriuresis, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. Clinically, BNP is useful in diagnosing patients with acute dyspnea. A low concentration of BNP (<100 pg/mL) makes a diagnosis of heart failure unlikely, but elevated levels should prompt further investigation to confirm the diagnosis. Currently, NICE recommends BNP as a helpful test to rule out a diagnosis of heart failure. In patients with chronic heart failure, initial evidence suggests that BNP is an extremely useful marker of prognosis and can guide treatment. However, BNP is not currently recommended for population screening for cardiac dysfunction.

    • This question is part of the following fields:

      • Cardiovascular System
      19.4
      Seconds
  • Question 18 - A 70-year-old man visits his primary care physician complaining of paroxysmal nocturnal dyspnoea...

    Incorrect

    • A 70-year-old man visits his primary care physician complaining of paroxysmal nocturnal dyspnoea and increasing orthopnoea. The physician suspects heart failure and orders a chest X-ray. What signs on the chest X-ray would indicate heart failure?

      Your Answer: Increased opacity in the left upper zone

      Correct Answer: Upper zone vessel enlargement

      Explanation:

      Diagnosis of Chronic Heart Failure

      Chronic heart failure is a serious condition that requires prompt diagnosis and management. In 2018, the National Institute for Health and Care Excellence (NICE) updated its guidelines on the diagnosis and management of chronic heart failure. According to the new guidelines, all patients should undergo an N-terminal pro-B-type natriuretic peptide (NT‑proBNP) blood test as the first-line investigation, regardless of whether they have previously had a myocardial infarction or not.

      Interpreting the NT-proBNP test is crucial in determining the severity of the condition. If the levels are high, specialist assessment, including transthoracic echocardiography, should be arranged within two weeks. If the levels are raised, specialist assessment, including echocardiogram, should be arranged within six weeks.

      BNP is a hormone produced mainly by the left ventricular myocardium in response to strain. Very high levels of BNP are associated with a poor prognosis. The table above shows the different levels of BNP and NTproBNP and their corresponding interpretations.

      It is important to note that certain factors can alter the BNP level. For instance, left ventricular hypertrophy, ischaemia, tachycardia, and right ventricular overload can increase BNP levels, while diuretics, ACE inhibitors, beta-blockers, angiotensin 2 receptor blockers, and aldosterone antagonists can decrease BNP levels. Therefore, it is crucial to consider these factors when interpreting the NT-proBNP test.

    • This question is part of the following fields:

      • Cardiovascular System
      31.3
      Seconds
  • Question 19 - A 26-year-old man collapses during a game of cricket. He has previously experienced...

    Incorrect

    • A 26-year-old man collapses during a game of cricket. He has previously experienced chest pain and shortness of breath while running, which subsides on rest. Upon examination, he is found to have an ejection systolic murmur that intensifies with Valsalva maneuvers and diminishes with squatting. His echocardiogram reveals mitral regurgitation, asymmetric hypertrophy, and systolic anterior motion of the anterior mitral valve leaflet. What is the expected inheritance pattern for this diagnosis?

      Your Answer: X-linked recessive

      Correct Answer: Autosomal dominant

      Explanation:

      The inheritance pattern of HOCM is autosomal dominant, which means that it can be passed down from generation to generation. Symptoms of HOCM may include exertional dyspnoea, angina, syncope, and an ejection systolic murmur. It is important to note that there may be a family history of similar cardiac problems or sudden death due to ventricular arrhythmias. Autosomal recessive, mitochondrial inheritance, and X-linked dominant inheritance are not applicable to HOCM.

      Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.

    • This question is part of the following fields:

      • Cardiovascular System
      35.8
      Seconds
  • Question 20 - John, a 35-year-old male, is brought to the emergency department by ambulance. The...

    Correct

    • John, a 35-year-old male, is brought to the emergency department by ambulance. The ambulance crew explains that the patient has homonymous hemianopia, weakness of left upper and lower limb, and dysphasia.

      He has a strong past medical and family history deep vein thromboses.

      A CT is ordered and the report suggests a stroke affecting the middle cerebral artery. Months later he is under investigations to explain the stroke at his young age. He is diagnosed with Factor V Leiden thrombophilia, which causes the blood to be in a hypercoagulable state.

      What are the potential areas of the brain that can be impacted by an emboli in this artery?

      Your Answer: Frontal, temporal and parietal lobes

      Explanation:

      The frontal, temporal, and parietal lobes are mainly supplied by the middle cerebral artery, which is a continuation of the internal carotid artery. As a result, any damage to this artery can have a significant impact on a large portion of the brain. The middle cerebral artery is frequently affected by cerebrovascular events. The posterior cerebral artery, on the other hand, supplies the occipital lobe. The anterior cerebral artery supplies a portion of the frontal and parietal lobes.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      44.3
      Seconds
  • Question 21 - A 49-year-old man arrived at the emergency department with chest discomfort persisting for...

    Correct

    • A 49-year-old man arrived at the emergency department with chest discomfort persisting for 2 hours and flu-like symptoms for the past 4 days. His ECG revealed widespread ST-segment alterations. The cTnI test showed elevated values for this particular troponin subunit. What is the most precise explanation of the role of this subunit?

      Your Answer: Binding to actin to hold the troponin-tropomyosin complex in place

      Explanation:

      The function of troponin I is to bind to actin and hold the troponin-tropomyosin complex in place.

      Understanding Troponin: The Proteins Involved in Muscle Contraction

      Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.

      Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.

      Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.

    • This question is part of the following fields:

      • Cardiovascular System
      27.4
      Seconds
  • Question 22 - Which one of the following is not a branch of the subclavian artery?...

    Incorrect

    • Which one of the following is not a branch of the subclavian artery?

      Your Answer: Thyrocervical trunk

      Correct Answer: Superior thyroid artery

      Explanation:

      The branches of the subclavian artery can be remembered using the mnemonic VIT C & D, which stands for Vertebral artery, Internal thoracic, Thyrocervical trunk, Costalcervical trunk, and Dorsal scapular. It is important to note that the Superior thyroid artery is actually a branch of the external carotid artery.

      The Subclavian Artery: Origin, Path, and Branches

      The subclavian artery is a major blood vessel that supplies blood to the upper extremities, neck, and head. It has two branches, the left and right subclavian arteries, which arise from different sources. The left subclavian artery originates directly from the arch of the aorta, while the right subclavian artery arises from the brachiocephalic artery (trunk) when it bifurcates into the subclavian and the right common carotid artery.

      From its origin, the subclavian artery travels laterally, passing between the anterior and middle scalene muscles, deep to scalenus anterior and anterior to scalenus medius. As it crosses the lateral border of the first rib, it becomes the axillary artery and is superficial within the subclavian triangle.

      The subclavian artery has several branches that supply blood to different parts of the body. These branches include the vertebral artery, which supplies blood to the brain and spinal cord, the internal thoracic artery, which supplies blood to the chest wall and breast tissue, the thyrocervical trunk, which supplies blood to the thyroid gland and neck muscles, the costocervical trunk, which supplies blood to the neck and upper back muscles, and the dorsal scapular artery, which supplies blood to the muscles of the shoulder blade.

      In summary, the subclavian artery is an important blood vessel that plays a crucial role in supplying blood to the upper extremities, neck, and head. Its branches provide blood to various parts of the body, ensuring proper functioning and health.

    • This question is part of the following fields:

      • Cardiovascular System
      11.1
      Seconds
  • Question 23 - A 50-year-old UK born patient with end-stage kidney failure arrives at the emergency...

    Correct

    • A 50-year-old UK born patient with end-stage kidney failure arrives at the emergency department complaining of sharp chest pain that subsides when sitting forward. The patient has not undergone dialysis yet. Upon conducting an ECG, it is observed that there is a widespread 'saddle-shaped' ST elevation and PR depression, leading to a diagnosis of pericarditis. What could be the probable cause of this pericarditis?

      Your Answer: Uraemia

      Explanation:

      There is no indication of trauma in patients with advanced renal failure prior to dialysis initiation.

      ECG results do not indicate a recent heart attack.

      The patient’s age decreases the likelihood of malignancy.

      Acute Pericarditis: Causes, Features, Investigations, and Management

      Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.

      The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.

      Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.

      Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.

      In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      25.4
      Seconds
  • Question 24 - What is the equivalent of cardiac preload? ...

    Correct

    • What is the equivalent of cardiac preload?

      Your Answer: End diastolic volume

      Explanation:

      Preload, also known as end diastolic volume, follows the Frank Starling principle where a slight increase results in an increase in cardiac output. However, if preload is significantly increased, such as exceeding 250ml, it can lead to a decrease in cardiac output.

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      11.5
      Seconds
  • Question 25 - A 75-year-old man is experiencing symptoms of mesenteric ischemia. During his diagnostic evaluation,...

    Incorrect

    • A 75-year-old man is experiencing symptoms of mesenteric ischemia. During his diagnostic evaluation, a radiologist is attempting to cannulate the coeliac axis from the aorta. Typically, at which vertebral level does this artery originate?

      Your Answer: T8

      Correct Answer: T12

      Explanation:

      The coeliac trunk is a major artery that arises from the aorta and gives off three branches on the left-hand side: the left gastric, hepatic, and splenic arteries.

      The Coeliac Axis and its Branches

      The coeliac axis is a major artery that supplies blood to the upper abdominal organs. It has three main branches: the left gastric, hepatic, and splenic arteries. The hepatic artery further branches into the right gastric, gastroduodenal, right gastroepiploic, superior pancreaticoduodenal, and cystic arteries. Meanwhile, the splenic artery gives off the pancreatic, short gastric, and left gastroepiploic arteries. Occasionally, the coeliac axis also gives off one of the inferior phrenic arteries.

      The coeliac axis is located anteriorly to the lesser omentum and is related to the right and left coeliac ganglia, as well as the caudate process of the liver and the gastric cardia. Inferiorly, it is in close proximity to the upper border of the pancreas and the renal vein.

      Understanding the anatomy and branches of the coeliac axis is important in diagnosing and treating conditions that affect the upper abdominal organs, such as pancreatic cancer or gastric ulcers.

    • This question is part of the following fields:

      • Cardiovascular System
      24.7
      Seconds
  • Question 26 - A 35-year-old man arrives at the emergency department with bradycardia. Is it possible...

    Incorrect

    • A 35-year-old man arrives at the emergency department with bradycardia. Is it possible for cardiac muscle to stay in phase 4 of the cardiac action potential for an extended period of time?

      What happens during phase 4 of the cardiac action potential?

      Your Answer: Slow sodium influx

      Correct Answer: Na+/K+ ATPase acts

      Explanation:

      The Na+/K+ ATPase restores the resting potential.

      The cardiac action potential does not involve slow sodium influx.

      Phase 3 of repolarisation involves rapid potassium influx.

      Phase 2 involves slow calcium influx.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      26.7
      Seconds
  • Question 27 - A young woman presents with sudden palpitations and difficulty breathing, and her ECG...

    Correct

    • A young woman presents with sudden palpitations and difficulty breathing, and her ECG reveals tachycardia. Which cardiac component typically experiences the most rapid depolarization?

      Your Answer: Sino-atrial node

      Explanation:

      The heart’s conducting system is made up of specialized cardiac muscle cells and fibers that generate and rapidly transmit action potentials. This system is crucial for coordinating the contractions of the heart’s chambers during the cardiac cycle. When this system malfunctions due to conduction blockages or abnormal action potential sources, it can lead to arrhythmias.

      The conducting system has five main components:

      1. The sino-atrial (SAN) node, located in the right atrium, generates electrical signals.
      2. These signals stimulate the atria to contract and travel to the atrio-ventricular (AVN) node in the interatrial septum.
      3. After a delay, the stimulus diverges and is conducted through the left and right bundle of His.
      4. The conduction then passes to the respective Purkinje fibers for each side of the heart.
      5. Finally, the electrical signals reach the endocardium at the apex of the heart and the ventricular epicardium.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      19.6
      Seconds
  • Question 28 - A 57-year-old woman comes to see her GP to discuss the findings of...

    Correct

    • A 57-year-old woman comes to see her GP to discuss the findings of her ABPM, which revealed a blood pressure reading of 145/90 mmHg, leading to a diagnosis of stage 1 hypertension. What is the most common symptom experienced by patients with this condition?

      Your Answer: None

      Explanation:

      Symptoms are not typically caused by hypertension.

      Hypertension is a common medical condition that refers to chronically raised blood pressure. It is a significant risk factor for cardiovascular disease such as stroke and ischaemic heart disease. Normal blood pressure can vary widely according to age, gender, and individual physiology, but hypertension is defined as a clinic reading persistently above 140/90 mmHg or a 24-hour blood pressure average reading above 135/85 mmHg.

      Around 90-95% of patients with hypertension have primary or essential hypertension, which is caused by complex physiological changes that occur as we age. Secondary hypertension may be caused by a variety of endocrine, renal, and other conditions. Hypertension typically does not cause symptoms unless it is very high, but patients may experience headaches, visual disturbance, or seizures.

      Diagnosis of hypertension involves 24-hour blood pressure monitoring or home readings using an automated sphygmomanometer. Patients with hypertension typically have tests to check for renal disease, diabetes mellitus, hyperlipidaemia, and end-organ damage. Management of hypertension involves drug therapy using antihypertensives, modification of other risk factors, and monitoring for complications. Common drugs used to treat hypertension include angiotensin-converting enzyme inhibitors, calcium channel blockers, thiazide type diuretics, and angiotensin II receptor blockers. Drug therapy is decided by well-established NICE guidelines, which advocate a step-wise approach.

    • This question is part of the following fields:

      • Cardiovascular System
      8
      Seconds
  • Question 29 - A 70-year-old male patient with a history of rheumatic heart disease presents to...

    Incorrect

    • A 70-year-old male patient with a history of rheumatic heart disease presents to the Emergency Room (ER) with complaints of paroxysmal nocturnal dyspnoea, shortness of breath on exertion, and orthopnoea. During physical examination, bilateral pitting oedema and malar flush are observed. On auscultation, bibasal crepitations and a grade IV/VI mid-diastolic rumbling murmur following an opening snap are heard, loudest in the left 5th intercostal space midclavicular line with radiation to the axilla.

      The patient is stabilized and scheduled for echocardiography to confirm the underlying pathology. Additionally, Swan-Ganz catheterization is performed to measure the mean pulmonary capillary wedge pressure (PCWP). What are the most likely findings?

      Your Answer: Mitral regurgitation, normal PCWP

      Correct Answer: Mitral stenosis, raised PCWP

      Explanation:

      Mitral stenosis results in an elevation of left atrial pressure, which in turn causes an increase in pulmonary capillary wedge pressure (PCWP). This is a typical manifestation of acute heart failure associated with mitral stenosis, which is commonly caused by rheumatic fever. PCWP serves as an indirect indicator of left atrial pressure, with a normal range of 6-12 mmHg. However, in the presence of mitral stenosis, left atrial pressure is elevated, leading to an increase in PCWP.

      Understanding Pulmonary Capillary Wedge Pressure

      Pulmonary capillary wedge pressure (PCWP) is a measurement taken using a Swan-Ganz catheter with a balloon tip that is inserted into the pulmonary artery. The pressure measured is similar to that of the left atrium, which is typically between 6-12 mmHg. The primary purpose of measuring PCWP is to determine whether pulmonary edema is caused by heart failure or acute respiratory distress syndrome.

      In modern intensive care units, non-invasive techniques have replaced PCWP measurement. However, it remains an important diagnostic tool in certain situations. By measuring the pressure in the pulmonary artery, doctors can determine whether the left side of the heart is functioning properly or if there is a problem with the lungs. This information can help guide treatment decisions and improve patient outcomes. Overall, understanding PCWP is an important aspect of managing patients with respiratory and cardiovascular conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      23.6
      Seconds
  • Question 30 - Which of the following is true about endothelin? ...

    Incorrect

    • Which of the following is true about endothelin?

      Your Answer: It is a potent vasodilator

      Correct Answer: Endothelin antagonists are useful in primary pulmonary hypertension

      Explanation:

      Antagonists are used in primary pulmonary hypertension because endothelin induced constriction of the pulmonary blood vessels.

      Understanding Endothelin and Its Role in Various Diseases

      Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.

      Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.

      In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.

    • This question is part of the following fields:

      • Cardiovascular System
      4.6
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (12/30) 40%
Passmed