00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 68-year-old man arrives at the Emergency Department complaining of sharp and stabbing...

    Incorrect

    • A 68-year-old man arrives at the Emergency Department complaining of sharp and stabbing central chest pain that radiates to his back, neck, and left shoulder. He reports feeling feverish and states that sitting forward relieves the pain while lying down worsens it. The patient also mentions a recent hospitalization for a heart attack three weeks ago. During auscultation at the left sternal border, a scratchy sound is heard while the patient leans forward and holds his breath. His ECG shows widespread ST-segment saddle elevation and PR-segment depression. Can you identify the nerve responsible for his shoulder pain?

      Your Answer: Vagus nerve

      Correct Answer: Phrenic nerve

      Explanation:

      The referred pain to the shoulder in this case is likely caused by Dressler’s syndrome, a type of pericarditis that occurs after a heart attack. The scratchy sound heard during auscultation is a pericardial friction rub, which is a common characteristic of pericarditis. The phrenic nerve, which supplies the pericardium, travels from the neck down through the thoracic cavity and can cause referred pain to the shoulder in cases of pericarditis.

      The axillary nerve is responsible for innervating the teres minor and deltoid muscles, and dysfunction of this nerve can result in loss of sensation or movement in the shoulder area.

      While the accessory nerve does innervate muscles in the neck that attach to the shoulder, it has a purely motor function and is not responsible for sensory input. Additionally, the referred pain in this case is not typical of musculoskeletal pain, but rather a result of pericarditis.

      Injuries involving the long thoracic nerve often result in winging of the scapula and are commonly caused by axillary surgery.

      Although the vagus nerve does supply parasympathetic innervation to the heart, it is not responsible for the referred pain in this case, as the pericardium is innervated by the phrenic nerve.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      50.8
      Seconds
  • Question 2 - A 26-year-old woman comes to your clinic complaining of feeling dizzy for the...

    Incorrect

    • A 26-year-old woman comes to your clinic complaining of feeling dizzy for the past two days. She describes a sensation of the room spinning and has been experiencing nausea. The dizziness is relieved when she lies down and has no apparent triggers. She denies any hearing loss or aural fullness and is otherwise healthy. Upon examination, she has no fever and otoscopy reveals no abnormalities. You suspect she may have viral labyrinthitis and prescribe prochlorperazine to alleviate her vertigo symptoms. What class of antiemetic does prochlorperazine belong to?

      Your Answer: Neurokinin 1 receptor antagonist

      Correct Answer: Dopamine receptor antagonist

      Explanation:

      Prochlorperazine belongs to a class of drugs known as dopamine receptor antagonists, which work by inhibiting stimulation of the chemoreceptor trigger zone (CTZ) through D2 receptors. Other drugs in this class include domperidone, metoclopramide, and olanzapine.

      Antihistamine antiemetics, such as cyclizine and promethazine, are H1 histamine receptor antagonists.

      5-HT3 receptor antagonists, such as ondansetron and granisetron, are effective both centrally and peripherally. They work by blocking serotonin receptors in the central nervous system and gastrointestinal tract.

      Antimuscarinic antiemetics are anticholinergic drugs, with hyoscine (scopolamine) being a common example.

      Vertigo is a condition characterized by a false sensation of movement in the body or environment. There are various causes of vertigo, each with its own unique characteristics. Viral labyrinthitis, for example, is typically associated with a recent viral infection, sudden onset, nausea and vomiting, and possible hearing loss. Vestibular neuronitis, on the other hand, is characterized by recurrent vertigo attacks lasting hours or days, but with no hearing loss. Benign paroxysmal positional vertigo is triggered by changes in head position and lasts for only a few seconds. Meniere’s disease, meanwhile, is associated with hearing loss, tinnitus, and a feeling of fullness or pressure in the ears. Elderly patients with vertigo may be experiencing vertebrobasilar ischaemia, which is accompanied by dizziness upon neck extension. Acoustic neuroma, which is associated with hearing loss, vertigo, and tinnitus, is also a possible cause of vertigo. Other causes include posterior circulation stroke, trauma, multiple sclerosis, and ototoxicity from medications like gentamicin.

    • This question is part of the following fields:

      • Respiratory System
      2
      Seconds
  • Question 3 - An 80-year-old man is brought to the emergency department in respiratory arrest. According...

    Incorrect

    • An 80-year-old man is brought to the emergency department in respiratory arrest. According to his partner, he has a history of congestive heart failure and has recently been battling an infection. After being placed on mechanical ventilation, you observe that the patient has decreased lung compliance.

      What could be the cause of this observation?

      Your Answer: Loss of lung connective tissue with age

      Correct Answer: Pulmonary oedema

      Explanation:

      Reduced lung compliance is a common consequence of pulmonary edema, which occurs when fluid accumulates in the alveoli and exerts mechanical stress on the air-filled alveoli. This can happen in patients with acute decompensation of congestive cardiac failure, often triggered by an infection. On the other hand, emphysema can increase compliance due to long-term damage that reduces the elastic recoil of the lungs. Additionally, lung surfactant produced by type II pneumocytes can increase lung compliance. Finally, aging can also lead to increased compliance as the loss of lung connective tissue can reduce elastic recoil.

      Understanding Lung Compliance in Respiratory Physiology

      Lung compliance refers to the extent of change in lung volume in response to a change in airway pressure. An increase in lung compliance can be caused by factors such as aging and emphysema, which is characterized by the loss of alveolar walls and associated elastic tissue. On the other hand, a decrease in lung compliance can be attributed to conditions such as pulmonary edema, pulmonary fibrosis, pneumonectomy, and kyphosis. These conditions can affect the elasticity of the lungs and make it more difficult for them to expand and contract properly. Understanding lung compliance is important in respiratory physiology as it can help diagnose and manage various respiratory conditions. Proper management of lung compliance can improve lung function and overall respiratory health.

    • This question is part of the following fields:

      • Respiratory System
      22.5
      Seconds
  • Question 4 - You are on call for the pediatric ward at night and are urgently...

    Correct

    • You are on call for the pediatric ward at night and are urgently called to a child who is choking on a piece of hot dog visible in their oropharynx. The child is in extremis with saturations of 87% and there is no effective cough.

      What is the most appropriate immediate management for this pediatric patient?

      Your Answer: Back blows

      Explanation:

      Resuscitation Council (UK) Recommendations for Choking Emergencies

      When faced with a choking emergency, the Resuscitation Council (UK) recommends a specific course of action. If the patient is able to cough effectively, encourage them to do so. If not, but they are conscious, try five back blows followed by five abdominal thrusts (Heimlich manoeuvre) and repeat if necessary. However, if the patient becomes unconscious, begin CPR immediately. It is important to note that a finger sweep is no longer recommended as it can push the obstruction further into the airway. Additionally, high flow oxygen is necessary for breathing, but nasopharyngeal airways will not help in this situation. Removal with forceps is also not recommended as it can be hazardous. If the Heimlich manoeuvre fails, a cricothyroidotomy should be considered. While this procedure is recommended in the US and UK, it is not encouraged in some countries like Australia due to the risk of internal injury from over-vigorous use.

    • This question is part of the following fields:

      • Respiratory System
      142.1
      Seconds
  • Question 5 - A 35-year-old man comes to the clinic complaining of worsening retrosternal chest pain...

    Correct

    • A 35-year-old man comes to the clinic complaining of worsening retrosternal chest pain that radiates to the neck and shoulders and is pleuritic in nature. During examination, a pericardial friction rub is heard at the end of expiration. The diagnosis is pericarditis. What nerve supplies this area?

      Your Answer: Phrenic nerve

      Explanation:

      The correct answer is the phrenic nerve, which provides sensory innervation to the pericardium, the central part of the diaphragm, and the mediastinal part of the parietal pleura. It also supplies motor function to the diaphragm. The long thoracic nerve, medial pectoral nerve, thoracodorsal nerve, and vagus nerve are all incorrect answers.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      177
      Seconds
  • Question 6 - A 44-year-old heavy smoker presents with a productive cough and progressively worsening shortness...

    Incorrect

    • A 44-year-old heavy smoker presents with a productive cough and progressively worsening shortness of breath on exertion. The patient's spirometry results are forwarded to you in clinic for review.

      Tidal volume (TV) = 400 mL.
      Vital capacity (VC) = 3,300 mL.
      Inspiratory capacity (IC) = 2,600 mL.
      FEV1/FVC = 60%

      Body plethysmography is undertaken, demonstrating a residual volume (RV) of 1,200 mL.

      What is this patient's total lung capacity (TLC)?

      Your Answer: 3,300 mL

      Correct Answer: 4,500 mL

      Explanation:

      To calculate the total lung capacity, one can add the vital capacity and residual volume. For example, if the vital capacity is 3300 mL and the residual volume is 1200 mL, the total lung capacity would be 4500 mL. It is important to note that tidal volume, inspiratory capacity, and the FEV1/FVC ratio are other measurements related to lung function. Residual volume refers to the amount of air left in the lungs after a maximal exhalation, while total lung capacity refers to the volume of air in the lungs after a maximal inhalation.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      64.3
      Seconds
  • Question 7 - The pressure within the pleural space is positive with respect to atmospheric pressure,...

    Incorrect

    • The pressure within the pleural space is positive with respect to atmospheric pressure, in which of the following scenarios?

      Your Answer: At the end of inspiration

      Correct Answer: During a Valsalva manoeuvre

      Explanation:

      Extrinsic compression causes an increase in intrapleural pressure during a Valsalva manoeuvre.

      Understanding Pleural Pressure

      Pleural pressure refers to the pressure surrounding the lungs within the pleural space. The pleura is a thin membrane that invests the lungs and lines the walls of the thoracic cavity. The visceral pleura covers the lung, while the parietal pleura covers the chest wall. The two sides are continuous and meet at the hilum of the lung. The size of the lung is determined by the difference between the alveolar pressure and the pleural pressure, or the transpulmonary pressure.

      During quiet breathing, the pleural pressure is negative, meaning it is below atmospheric pressure. However, during active expiration, the abdominal muscles contract to force up the diaphragm, resulting in positive pleural pressure. This may temporarily collapse the bronchi and cause limitation of air flow.

      Gravity affects pleural pressure, with the pleural pressure at the base of the lung being greater (less negative) than at its apex in an upright individual. When lying on the back, the pleural pressure becomes greatest along the back. Alveolar pressure is uniform throughout the lung, so the top of the lung generally experiences a greater transpulmonary pressure and is therefore more expanded and less compliant than the bottom of the lung.

      In summary, understanding pleural pressure is important in understanding lung function and how it is affected by various factors such as gravity and muscle contraction.

    • This question is part of the following fields:

      • Respiratory System
      24.6
      Seconds
  • Question 8 - Which one of the following is not a typical feature of central chemoreceptors...

    Correct

    • Which one of the following is not a typical feature of central chemoreceptors in the regulation of respiration?

      Your Answer: They are stimulated primarily by venous hypercapnia

      Explanation:

      Arterial carbon dioxide stimulates them, but it takes longer to reach equilibrium compared to the carotid peripheral chemoreceptors. They are not as responsive to acidity because of the blood-brain barrier.

      The Control of Ventilation in the Human Body

      The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.

      The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.

      Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.

      Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.

    • This question is part of the following fields:

      • Respiratory System
      38.2
      Seconds
  • Question 9 - A 67-year-old man visits his doctor complaining of dyspnoea. He experiences shortness of...

    Incorrect

    • A 67-year-old man visits his doctor complaining of dyspnoea. He experiences shortness of breath after walking just a few meters, whereas he can usually walk up to 200m. The man appears cyanosed in his extremities and his pulse oximeter shows a reading of 83%. What is the primary mode of carbon dioxide transportation in the bloodstream?

      Your Answer: Unbound and physically dissolved in the blood

      Correct Answer: Bound to haemoglobin as bicarbonate ions

      Explanation:

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      54.1
      Seconds
  • Question 10 - A patient on the medical ward was waiting for a cardiac procedure. On...

    Correct

    • A patient on the medical ward was waiting for a cardiac procedure. On discussing the procedure with the consultant before the procedure, the patient started to feel anxious and had difficulty breathing. The resident obtained an arterial blood gas:

      pH 7.55
      pCO2 2.7kPa
      pO2 11.2kPa
      HCO3 24mmol/l

      What is the most appropriate interpretation of these results?

      Your Answer: Respiratory alkalosis

      Explanation:

      The respiratory alkalosis observed in the arterial blood gas results is most likely a result of hyperventilation, as indicated by the patient’s medical history.

      Arterial Blood Gas Interpretation: A 5-Step Approach

      Arterial blood gas interpretation is a crucial aspect of patient care, particularly in critical care settings. The Resuscitation Council (UK) recommends a 5-step approach to interpreting arterial blood gas results. The first step is to assess the patient’s overall condition. The second step is to determine if the patient is hypoxaemic, with a PaO2 on air of less than 10 kPa. The third step is to assess if the patient is acidaemic (pH <7.35) or alkalaemic (pH >7.45).

      The fourth step is to evaluate the respiratory component of the arterial blood gas results. A PaCO2 level greater than 6.0 kPa suggests respiratory acidosis, while a PaCO2 level less than 4.7 kPa suggests respiratory alkalosis. The fifth step is to assess the metabolic component of the arterial blood gas results. A bicarbonate level less than 22 mmol/l or a base excess less than -2mmol/l suggests metabolic acidosis, while a bicarbonate level greater than 26 mmol/l or a base excess greater than +2mmol/l suggests metabolic alkalosis.

      To remember the relationship between pH, PaCO2, and bicarbonate, the acronym ROME can be used. Respiratory acidosis or alkalosis is opposite to the pH level, while metabolic acidosis or alkalosis is equal to the pH level. This 5-step approach and the ROME acronym can aid healthcare professionals in interpreting arterial blood gas results accurately and efficiently.

    • This question is part of the following fields:

      • Respiratory System
      65.7
      Seconds
  • Question 11 - A 50-year-old woman with a recent diagnosis of COPD is admitted to the...

    Incorrect

    • A 50-year-old woman with a recent diagnosis of COPD is admitted to the hospital for treatment of an exacerbation caused by infection. She reports smoking 10 cigarettes per day and has a family history of lung cancer. Her chest x-ray shows signs of emphysema, and she mentions that her parents and siblings also have the disease. She asks for advice on the best course of action to improve her prognosis.

      Your Answer:

      Correct Answer: Stop smoking

      Explanation:

      The most crucial step to enhance the patient’s prognosis is to assist them in quitting smoking. While lung reduction surgery and long-term oxygen therapy may benefit certain patient groups, smoking cessation remains the top priority. Proper inhaler technique and adherence, as well as the use of home nebulizers, can provide symptomatic relief for the patient.

      The National Institute for Health and Care Excellence (NICE) updated its guidelines on the management of chronic obstructive pulmonary disease (COPD) in 2018. The guidelines recommend general management strategies such as smoking cessation advice, annual influenzae vaccination, and one-off pneumococcal vaccination. Pulmonary rehabilitation is also recommended for patients who view themselves as functionally disabled by COPD.

      Bronchodilator therapy is the first-line treatment for patients who remain breathless or have exacerbations despite using short-acting bronchodilators. The next step is determined by whether the patient has asthmatic features or features suggesting steroid responsiveness. NICE suggests several criteria to determine this, including a previous diagnosis of asthma or atopy, a higher blood eosinophil count, substantial variation in FEV1 over time, and substantial diurnal variation in peak expiratory flow.

      If the patient does not have asthmatic features or features suggesting steroid responsiveness, a long-acting beta2-agonist (LABA) and long-acting muscarinic antagonist (LAMA) should be added. If the patient is already taking a short-acting muscarinic antagonist (SAMA), it should be discontinued and switched to a short-acting beta2-agonist (SABA). If the patient has asthmatic features or features suggesting steroid responsiveness, a LABA and inhaled corticosteroid (ICS) should be added. If the patient remains breathless or has exacerbations, triple therapy (LAMA + LABA + ICS) should be offered.

      NICE only recommends theophylline after trials of short and long-acting bronchodilators or to people who cannot use inhaled therapy. Azithromycin prophylaxis is recommended in select patients who have optimised standard treatments and continue to have exacerbations. Mucolytics should be considered in patients with a chronic productive cough and continued if symptoms improve.

      Cor pulmonale features include peripheral oedema, raised jugular venous pressure, systolic parasternal heave, and loud P2. Loop diuretics should be used for oedema, and long-term oxygen therapy should be considered. Smoking cessation, long-term oxygen therapy in eligible patients, and lung volume reduction surgery in selected patients may improve survival in patients with stable COPD. NICE does not recommend the use of ACE-inhibitors, calcium channel blockers, or alpha blockers

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 12 - A seven-year-old boy who was born in Germany presents to paediatrics with a...

    Incorrect

    • A seven-year-old boy who was born in Germany presents to paediatrics with a history of recurrent chest infections, steatorrhoea, and poor growth. He has a significant medical history of meconium ileus. Following a thorough evaluation, the suspected diagnosis is confirmed through a chloride sweat test. The paediatrician informs the parents that their son will have an elevated risk of infertility in adulthood. What is the pathophysiological basis for the increased risk of infertility in this case?

      Your Answer:

      Correct Answer: Absent vas deferens

      Explanation:

      Men with cystic fibrosis are at risk of infertility due to the absence of vas deferens. Unfortunately, this condition often goes undetected in infancy as Germany does not perform neonatal testing for it. Hypogonadism, which can cause infertility, is typically caused by genetic factors like Kallmann syndrome, but not cystic fibrosis. Retrograde ejaculation is most commonly associated with complicated urological surgery, while an increased risk of testicular cancer can be caused by factors like cryptorchidism. However, cystic fibrosis is also a risk factor for testicular cancer.

      Understanding Cystic Fibrosis: Symptoms and Other Features

      Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.

      Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 13 - A 12-year-old girl is referred to a respiratory specialist due to persistent episodes...

    Incorrect

    • A 12-year-old girl is referred to a respiratory specialist due to persistent episodes of shortness of breath. She also suffers from severe hay fever and eczema. After undergoing a peak expiratory flow test, signs of outflow obstruction of her lungs are detected. The doctor prescribes beclomethasone and salbutamol for her and advises her mother to keep her away from dust, as asthma is often linked to hypersensitivity to dust. Which type of hypersensitivity is associated with asthma?

      Your Answer:

      Correct Answer: Type 1 hypersensitivity

      Explanation:

      Asthma is linked to type 1 hypersensitivity, which is caused by the binding of IgE to Mast cells, resulting in an inflammatory reaction. Other types of hypersensitivity include type 2, which involves the binding of IgG or IgM to cell surface antigens, type 3, which is immune complex-mediated, and type 4, which is T-cell mediated.

      Asthma is a common respiratory disorder that affects both children and adults. It is characterized by chronic inflammation of the airways, resulting in reversible bronchospasm and airway obstruction. While asthma can develop at any age, it typically presents in childhood and may improve or resolve with age. However, it can also persist into adulthood and cause significant morbidity, with around 1,000 deaths per year in the UK.

      Several risk factors can increase the likelihood of developing asthma, including a personal or family history of atopy, antenatal factors such as maternal smoking or viral infections, low birth weight, not being breastfed, exposure to allergens and air pollution, and the hygiene hypothesis. Patients with asthma may also suffer from other atopic conditions such as eczema and hay fever, and some may be sensitive to aspirin. Occupational asthma is also a concern for those exposed to allergens in the workplace.

      Symptoms of asthma include coughing, dyspnea, wheezing, and chest tightness, with coughing often worse at night. Signs may include expiratory wheezing on auscultation and reduced peak expiratory flow rate. Diagnosis is typically made through spirometry, which measures the volume and speed of air during exhalation and inhalation.

      Management of asthma typically involves the use of inhalers to deliver drug therapy directly to the airways. Short-acting beta-agonists such as salbutamol are the first-line treatment for relieving symptoms, while inhaled corticosteroids like beclometasone dipropionate and fluticasone propionate are used for daily maintenance therapy. Long-acting beta-agonists like salmeterol and leukotriene receptor antagonists like montelukast may also be used in combination with other medications. Maintenance and reliever therapy (MART) is a newer approach that combines ICS and a fast-acting LABA in a single inhaler for both daily maintenance and symptom relief. Recent guidelines recommend offering a leukotriene receptor antagonist instead of a LABA for patients on SABA + ICS whose asthma is not well controlled, and considering MART for those with poorly controlled asthma.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 14 - A 63-year-old man arrives at the ER with a recent onset of left-sided...

    Incorrect

    • A 63-year-old man arrives at the ER with a recent onset of left-sided facial paralysis. He reports experiencing a painful rash around his ear on the affected side for the past five days. Your suspicion is Ramsay Hunt syndrome. What virus is responsible for this condition?

      Your Answer:

      Correct Answer: Varicella zoster virus

      Explanation:

      The geniculate ganglion of the facial nerve (CN VII) reactivates the varicella-zoster virus, causing Ramsay Hunt syndrome.

      Infectious mononucleosis (glandular fever) is primarily linked to the Epstein-Barr virus.

      Viral warts are commonly caused by human papillomavirus (HPV), with certain types being associated with gynaecological malignancy. Vaccines are now available to protect against the carcinogenic strains of HPV.

      Oral or genital herpes infections are caused by the herpes simplex virus.

      Understanding Ramsay Hunt Syndrome

      Ramsay Hunt syndrome, also known as herpes zoster oticus, is a condition that occurs when the varicella zoster virus reactivates in the geniculate ganglion of the seventh cranial nerve. The first symptom of this syndrome is often auricular pain, followed by facial nerve palsy and a vesicular rash around the ear. Other symptoms may include vertigo and tinnitus.

      To manage Ramsay Hunt syndrome, doctors typically prescribe oral acyclovir and corticosteroids. These medications can help reduce the severity of symptoms and prevent complications.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 15 - A 29-year-old man visits his primary care physician with complaints of a malodorous...

    Incorrect

    • A 29-year-old man visits his primary care physician with complaints of a malodorous discharge from his right ear for the past 3 weeks. The patient also reports experiencing ear pain for the past 2 weeks and occasional mild dizziness. Upon examination, the skin around the ear and pinna appear normal, but the ear canal is filled with debris. After removing the debris, a small perforation and waxy debris are observed on the tympanic membrane.

      The Rinne test indicates that bone conduction is better than air conduction on the right, and the Weber test shows sound lateralization to the right. The patient has no significant medical history and has never presented with an ear problem before.

      What is the most likely condition based on this patient's clinical presentation?

      Your Answer:

      Correct Answer: Cholesteatoma

      Explanation:

      Cholesteatoma is a growth of non-cancerous squamous epithelium that can be observed as an ‘attic crust’ during otoscopy. This patient is displaying symptoms consistent with cholesteatoma, including ear discharge, earache, conductive hearing loss, and dizziness, which suggests that the inner ear has also been affected. It is important to distinguish cholesteatoma from otitis externa, as failure to diagnose cholesteatoma can lead to serious complications. Cholesteatoma can erode the ossicles bones, damage the inner ear and vestibulocochlear nerve, and even result in brain infections if it erodes through the skull bone.

      Otitis externa is an inflammation of the outer ear canal that causes ear pain, which worsens with movement of the outer ear. It is often caused by the use of earplugs or swimming in unclean water. Otitis media is an inflammation of the middle ear that can lead to fluid accumulation and perforation of the tympanic membrane. It is common in children and often follows a viral upper respiratory tract infection. Myringitis is a condition associated with otitis media that causes small vesicles or cysts to form on the surface of the eardrum, resulting in severe pain and hearing impairment. It is caused by viral or bacterial infections and is treated with pain relief and antibiotics.

      Understanding Cholesteatoma

      Cholesteatoma is a benign growth of squamous epithelium that can cause damage to the skull base. It is most commonly found in individuals between the ages of 10 and 20 years old. Those born with a cleft palate are at a higher risk of developing cholesteatoma, with a 100-fold increase in risk.

      The main symptoms of cholesteatoma include a persistent discharge with a foul odor and hearing loss. Other symptoms may occur depending on the extent of the growth, such as vertigo, facial nerve palsy, and cerebellopontine angle syndrome.

      During otoscopy, a characteristic attic crust may be seen in the uppermost part of the eardrum.

      Management of cholesteatoma involves referral to an ear, nose, and throat specialist for surgical removal. Early detection and treatment are important to prevent further damage to the skull base and surrounding structures.

      In summary, cholesteatoma is a non-cancerous growth that can cause significant damage if left untreated. It is important to be aware of the symptoms and seek medical attention promptly if they occur.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 16 - A 75-year-old man presents to the Emergency Department with acute shortness of breath...

    Incorrect

    • A 75-year-old man presents to the Emergency Department with acute shortness of breath following a 4-day febrile illness. On initial assessment, his oxygen saturation is 70% on room air with a PaO2 of 4.2kpa on an arterial blood gas.

      What would be the anticipated physiological response in this patient?

      Your Answer:

      Correct Answer: Pulmonary artery vasoconstriction

      Explanation:

      When faced with hypoxia, the pulmonary arteries undergo vasoconstriction, which redirects blood flow away from poorly oxygenated areas of the lungs and towards well-oxygenated regions. In cases where patients remain hypoxic despite optimal mechanical ventilation, inhaled nitric oxide can be used to induce pulmonary vasodilation and reverse this response.

      The statement that increased tidal volume with decreased respiratory rate is a response to hypoxia is incorrect. While an increase in tidal volume may occur, it is typically accompanied by an increase in respiratory rate.

      Pulmonary artery vasodilation is also incorrect. Hypoxia actually induces vasoconstriction in the pulmonary vasculature, as explained above.

      Similarly, reduced tidal volume with increased respiratory rate is not a direct response to hypoxia. While respiratory rate may increase, tidal volumes typically increase in response to hypoxia.

      In contrast to the pulmonary vessels, the systemic vasculature vasodilates in response to hypoxia.

      The Effects of Hypoxia on Pulmonary Arteries

      When the partial pressure of oxygen in the blood decreases, the pulmonary arteries undergo vasoconstriction. This means that the blood vessels narrow, allowing blood to be redirected to areas of the lung that are better aerated. This response is a natural mechanism that helps to improve the efficiency of gaseous exchange in the lungs. By diverting blood to areas with more oxygen, the body can ensure that the tissues receive the oxygen they need to function properly. Overall, hypoxia triggers a physiological response that helps to maintain homeostasis in the body.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 17 - A patient with a body mass index (BMI) of 40kg/m² presents to the...

    Incorrect

    • A patient with a body mass index (BMI) of 40kg/m² presents to the GP describing apnoeic episodes during sleep. He is referred to the hospital's respiratory team where he receives an initial spirometry test which is shown below.

      Forced expiratory volume in 1 sec (FEV1) 2.00 48% of predicted
      Vital capacity (VC) 2.35 43% of predicted
      Total lung capacity (TLC) 4.09 51% of predicted
      Residual volume (RV) 1.74 75% of predicted
      Total lung coefficient (TLCO) 5.37 47% of predicted
      Transfer coefficient (KCO) 1.83 120% of predicted

      What type of lung disease pattern is shown in a patient with a body mass index (BMI) of 30kg/m² who presents to the GP with similar symptoms?

      Your Answer:

      Correct Answer: Extrapulmonary

      Explanation:

      Understanding Pulmonary Function Tests

      Pulmonary function tests are a useful tool in determining whether a respiratory disease is obstructive or restrictive. These tests measure various aspects of lung function, such as forced expiratory volume in one second (FEV1) and forced vital capacity (FVC). By analyzing the results of these tests, doctors can diagnose and monitor conditions such as asthma, COPD, pulmonary fibrosis, and neuromuscular disorders.

      In obstructive lung diseases, such as asthma and COPD, the FEV1 is significantly reduced, while the FVC may be reduced or normal. The FEV1% (FEV1/FVC) is also reduced. On the other hand, in restrictive lung diseases, such as pulmonary fibrosis and asbestosis, the FEV1 is reduced, but the FVC is significantly reduced. The FEV1% (FEV1/FVC) may be normal or increased.

      It is important to note that there are many conditions that can affect lung function, and pulmonary function tests are just one tool in diagnosing and managing respiratory diseases. However, understanding the results of these tests can provide valuable information for both patients and healthcare providers.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 18 - A 72-year-old woman is brought to the stroke unit with a suspected stroke....

    Incorrect

    • A 72-year-old woman is brought to the stroke unit with a suspected stroke. She has a medical history of hypertension, type II diabetes, and hypothyroidism. Additionally, she experienced a myocardial infarction 4 years ago. Upon arrival, the patient exhibited a positive FAST result and an irregular breathing pattern. An urgent brain CT scan was performed and is currently under review. What region of the brainstem is responsible for regulating the fundamental breathing rhythm?

      Your Answer:

      Correct Answer: Medulla oblongata

      Explanation:

      The medullary rhythmicity area in the medullary oblongata controls the basic rhythm of breathing through its inspiratory and expiratory neurons. During quiet breathing, the inspiratory area is active for approximately 2 seconds, causing the diaphragm and external intercostals to contract, followed by a period of inactivity lasting around 3 seconds as the muscles relax and there is elastic recoil. Additional brainstem regions can be stimulated to regulate various aspects of breathing, such as extending inspiration in the apneustic area (refer to the table below).

      The Control of Ventilation in the Human Body

      The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.

      The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.

      Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.

      Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 19 - A 15-year-old boy presents to his GP with a painless swelling in his...

    Incorrect

    • A 15-year-old boy presents to his GP with a painless swelling in his neck. The mass is located centrally just below the hyoid bone and does not cause any difficulty in swallowing or breathing. Upon examination, the GP notes that the mass moves with protrusion of the tongue and with swallowing. The GP diagnoses the boy with a benign thyroglossal cyst, which is caused by a persistent thyroglossal duct, and advises surgical removal. Where is the thyroglossal duct attached to the tongue?

      Your Answer:

      Correct Answer: Foramen cecum

      Explanation:

      The thyroglossal duct connects the thyroid gland to the tongue via the foramen caecum during embryonic development. The terminal sulcus, median sulcus, palatoglossal arch, and epiglottis are not connected to the thyroid gland.

      Understanding Thyroglossal Cysts

      Thyroglossal cysts are named after the thyroid and tongue, which are the two structures involved in their development. During embryology, the thyroid gland develops from the floor of the pharynx and descends into the neck, connected to the tongue by the thyroglossal duct. The foramen cecum is the point of attachment of the thyroglossal duct to the tongue. Normally, the thyroglossal duct atrophies, but in some people, it may persist and give rise to a thyroglossal duct cyst.

      Thyroglossal cysts are more common in patients under 20 years old and are usually midline, between the isthmus of the thyroid and the hyoid bone. They move upwards with protrusion of the tongue and may be painful if infected. Understanding the embryology and presentation of thyroglossal cysts is important for proper diagnosis and treatment.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 20 - A 70-year-old man is admitted to the respiratory ward with an exacerbation of...

    Incorrect

    • A 70-year-old man is admitted to the respiratory ward with an exacerbation of COPD. He has been experiencing increased breathlessness and a productive cough for the past week. He is currently on day three of his rescue medication regimen consisting of amoxicillin and prednisolone. According to his previous discharge summary, this patient has a history of carbon dioxide retention. He is currently receiving controlled oxygen therapy via a 28% venturi mask. What is the target oxygen saturation level for this patient?

      Your Answer:

      Correct Answer: 88%-92%

      Explanation:

      As a junior doctor, you will often encounter patients who retain carbon dioxide and depend on their hypoxic drive to breathe. When using Venturi masks to deliver controlled oxygen, it is important to set a target that balances the patient’s need for oxygen with their reliance on hypoxia to stimulate breathing. Answer 4 is the correct choice in this scenario. Providing too much oxygen, as in answers 2 and 3, can cause the patient to lose their hypoxic drive and become drowsy or confused. Answer 5 does not provide enough oxygen to properly perfuse the tissues. Failing to set a target for these patients is not good clinical practice.

      Guidelines for Oxygen Therapy in Emergency Situations

      In 2017, the British Thoracic Society updated its guidelines for emergency oxygen therapy. The guidelines state that in critically ill patients, such as those experiencing anaphylaxis or shock, oxygen should be administered through a reservoir mask at a rate of 15 liters per minute. However, certain conditions, such as stable myocardial infarction, are excluded from this recommendation.

      The guidelines also provide specific oxygen saturation targets for different patient populations. Acutely ill patients should have a saturation level between 94-98%, while patients at risk of hypercapnia, such as those with COPD, should have a saturation level between 88-92%. Oxygen levels should be reduced in stable patients with satisfactory oxygen saturation.

      For COPD patients, a 28% Venturi mask at 4 liters per minute should be used prior to the availability of blood gases. The target oxygen saturation level for these patients should be 88-92% if they have risk factors for hypercapnia but no prior history of respiratory acidosis. If the patient’s pCO2 is normal, the target range should be adjusted to 94-98%.

      The guidelines also state that oxygen therapy should not be used routinely in certain situations where there is no evidence of hypoxia, such as in cases of myocardial infarction, acute coronary syndromes, stroke, obstetric emergencies, and anxiety-related hyperventilation.

      Overall, these guidelines provide important recommendations for the appropriate use of oxygen therapy in emergency situations, taking into account the specific needs of different patient populations.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 21 - Mrs. Johnson is an 82-year-old woman who visited her General practitioner complaining of...

    Incorrect

    • Mrs. Johnson is an 82-year-old woman who visited her General practitioner complaining of gradual worsening shortness of breath over the past two months. During the medical history, it was discovered that she has had Chronic Obstructive Pulmonary Disease (COPD) for 20 years.

      Upon examination, there are no breath sounds at both lung bases and a stony dull note to percussion over the same areas. Based on this clinical scenario, what is the probable cause of her recent exacerbation of shortness of breath?

      Your Answer:

      Correct Answer: Pleural transudate effusion secondary to cor pulmonale

      Explanation:

      The most likely cause of a pleural transudate is heart failure. This is due to the congestion of blood into the systemic venous circulation, which can result from long-standing COPD and increase in pulmonary vascular resistance leading to right-sided heart failure or cor pulmonale. Other options such as infective exacerbation of COPD or pulmonary edema secondary to heart failure are less likely to explain the clinical signs. Pleural exudate effusion secondary to cor pulmonale is also not the most appropriate answer as it would cause a transudate pleural effusion, not an exudate.

      Understanding the Causes and Features of Pleural Effusion

      Pleural effusion is a medical condition characterized by the accumulation of fluid in the pleural space, which is the area between the lungs and the chest wall. The causes of pleural effusion can be classified into two types: transudate and exudate. Transudate is characterized by a protein concentration of less than 30g/L and is commonly caused by heart failure, hypoalbuminemia, liver disease, and other conditions. On the other hand, exudate is characterized by a protein concentration of more than 30g/L and is commonly caused by infections, pneumonia, tuberculosis, and other conditions.

      The symptoms of pleural effusion may include dyspnea, non-productive cough, and chest pain. Upon examination, patients may exhibit dullness to percussion, reduced breath sounds, and reduced chest expansion. It is important to identify the underlying cause of pleural effusion to determine the appropriate treatment plan. Early diagnosis and treatment can help prevent complications and improve the patient’s overall health.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 22 - How many fissures can be found in the right lung?

    At what age...

    Incorrect

    • How many fissures can be found in the right lung?

      At what age do these fissures typically develop?

      Your Answer:

      Correct Answer: Two

      Explanation:

      The oblique and horizontal fissures are present in the right lung. The lower lobe is separated from the middle and upper lobes by the upper oblique fissure. The superior and middle lobes are separated by the short horizontal fissure.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 23 - A 29-year-old man comes to the clinic with a complaint of ear pain....

    Incorrect

    • A 29-year-old man comes to the clinic with a complaint of ear pain. He mentions that the pain started yesterday and has been preventing him from working. He also reports experiencing dizziness and muffled sounds on the affected side. During the examination, you notice that he has a fever and a bulging tympanic membrane with visible fluid. Based on these symptoms, you suspect that he has a middle ear infection. Now, you wonder which ossicle the tensor tympani muscle inserts into.

      Which ossicle does the tensor tympani muscle insert into?

      Your Answer:

      Correct Answer: Malleus

      Explanation:

      The tensor tympani muscle is located in a bony canal above the pharyngotympanic tube and originates from the cartilaginous portion of the tube, the bony canal, and the greater wing of the sphenoid bone. Its function is to reduce the magnitude of vibrations transmitted into the middle ear by pulling the handle of the malleus medially when contracted. This muscle is innervated by the nerve to tensor tympani, which arises from the mandibular nerve.

      The middle ear contains three ossicles, which are the malleus, incus, and stapes. The malleus is the most lateral and attaches to the tympanic membrane, while the incus lies between and articulates with the other two ossicles. The stapes is the most medial and is connected to the oval window of the cochlea. The stapedius muscle is associated with the stapes. The lunate and trapezium are not bones of the middle ear but are carpal bones.

      A patient with ear pain, difficulty hearing, dizziness, and fever may have otitis media, which is confirmed on otoscopy by a bulging tympanic membrane and visible fluid level.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 24 - Which one of the following is true regarding the phrenic nerves? ...

    Incorrect

    • Which one of the following is true regarding the phrenic nerves?

      Your Answer:

      Correct Answer: They both lie anterior to the hilum of the lungs

      Explanation:

      The phrenic nerves, located in the anterior region of the lung’s hilum, play a crucial role in keeping the diaphragm functioning properly. These nerves have both sensory and motor functions, and any issues in the sub diaphragmatic area may result in referred pain in the shoulder.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 25 - An 85-year-old woman visits her doctor with a complaint of worsening breathlessness in...

    Incorrect

    • An 85-year-old woman visits her doctor with a complaint of worsening breathlessness in the past 6 months. She has been smoking 10 cigarettes a day for the last 40 years. The doctor suspects that she may have chronic obstructive pulmonary disease. What is one of the mechanisms by which smoking damages the lungs and leads to emphysema?

      Your Answer:

      Correct Answer: Inactivation of alpha-1 antitrypsin

      Explanation:

      The function of alpha-1 antitrypsin is to inhibit elastase. However, smoke has a negative impact on this protein in the lungs, resulting in increased activity of elastases and the breakdown of elastic tissue, which leads to emphysema.

      Contrary to popular belief, smoke actually activates polymorphonuclear leucocytes, which contributes to the development of emphysema.

      Mucous gland hyperplasia, basal cell metaplasia, and basement membrane thickening are all examples of how smoke affects the lungs to cause chronic bronchitis, not emphysema.

      COPD, or chronic obstructive pulmonary disease, can be caused by a variety of factors. The most common cause is smoking, which can lead to inflammation and damage in the lungs over time. Another potential cause is alpha-1 antitrypsin deficiency, a genetic condition that can result in lung damage. Additionally, exposure to certain substances such as cadmium (used in smelting), coal, cotton, cement, and grain can also contribute to the development of COPD. It is important to identify and address these underlying causes in order to effectively manage and treat COPD.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 26 - A 35-year-old man arrives at the emergency department following an assault with a...

    Incorrect

    • A 35-year-old man arrives at the emergency department following an assault with a baseball bat. He has significant swelling around his eye, which has caused him to lose vision in that eye. A CT scan reveals a fracture in the floor of the orbit. This type of fracture creates an unusual connection between the orbit and which of the following facial regions?

      Your Answer:

      Correct Answer: Maxillary sinus

      Explanation:

      The correct answer is the maxillary sinus, which is the largest of the paranasal air sinuses found in the maxillary bone below the orbit. Fractures of the orbit’s floor can lead to herniation of the orbital contents into the maxillary sinus. The ethmoidal air cells are smaller air cells in the ethmoid bone, separated from the orbit by a thin plate of bone called the lamina papyracea. Fractures of the medial wall of the orbit can lead to communication between the ethmoidal air cells and the orbit. The frontal sinuses are located in the frontal bones above the orbits and fractures of the roof of the orbit can lead to communication between the frontal sinus and orbit. The sphenoid sinuses are found in the sphenoid bone and are located in the posterior portion of the roof of the nasal cavity. The nasal cavity is located more medial and inferior than the orbits and is not adjacent to the orbit.

      Paranasal Air Sinuses and Carotid Sinus

      The paranasal air sinuses are air-filled spaces found in the bones of the skull. They are named after the bone in which they are located and all communicate with the nasal cavity. The four paired paranasal air sinuses are the frontal sinuses, maxillary sinuses, ethmoid air cells, and sphenoid sinuses. The frontal sinuses are located above each eye on the forehead, while the maxillary sinuses are the largest and found in the maxillary bone below the orbit. The ethmoidal air cells are a collection of smaller air cells located lateral to the anterior superior nasal cavity, while the sphenoid sinuses are found in the posterior portion of the roof of the nasal cavity.

      On the other hand, the carotid sinus is not a paranasal air sinus. It is a dilatation of the internal carotid artery, located just beyond the bifurcation of the common carotid artery. It contains baroreceptors that enable it to detect changes in arterial pressure.

      Overall, understanding the location and function of these sinuses and the carotid sinus is important in various medical procedures and conditions.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 27 - A 55-year-old man is admitted to the ICU after emergency surgery for an...

    Incorrect

    • A 55-year-old man is admitted to the ICU after emergency surgery for an abdominal aortic aneurysm. He presents with abdominal pain and diarrhea and is in a critical condition. Despite the absence of peritonism, which of the following arterial blood gas patterns is most likely to be observed?

      Your Answer:

      Correct Answer: pH 7.20, pO2 9.0, pCO2 3.5, Base excess -10, Lactate 8

      Explanation:

      It is probable that this individual is experiencing metabolic acidosis as a result of a mesenteric infarction.

      Disorders of Acid-Base Balance

      The acid-base nomogram is a useful tool for categorizing the various disorders of acid-base balance. Metabolic acidosis is the most common surgical acid-base disorder, characterized by a reduction in plasma bicarbonate levels. This can be caused by a gain of strong acid or loss of base, and is classified according to the anion gap. A normal anion gap indicates hyperchloraemic metabolic acidosis, which can be caused by gastrointestinal bicarbonate loss, renal tubular acidosis, drugs, or Addison’s disease. A raised anion gap indicates lactate, ketones, urate, or acid poisoning. Metabolic alkalosis, on the other hand, is usually caused by a rise in plasma bicarbonate levels due to a loss of hydrogen ions or a gain of bicarbonate. It is mainly caused by problems of the kidney or gastrointestinal tract. Respiratory acidosis is characterized by a rise in carbon dioxide levels due to alveolar hypoventilation, while respiratory alkalosis is caused by hyperventilation resulting in excess loss of carbon dioxide. These disorders have various causes, such as COPD, sedative drugs, anxiety, hypoxia, and pregnancy.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 28 - A 28-year-old man is found on his bathroom floor next to needles and...

    Incorrect

    • A 28-year-old man is found on his bathroom floor next to needles and syringes and is brought into the hospital. He has a Glasgow coma score of 10 and a bedside oxygen saturation of 88%. On physical examination, he has pinpoint pupils and needle track marks on his left arm. His arterial blood gases are as follows: PaO2 7.4 kPa (11.3-12.6), PaCO2 9.6 kPa (4.7-6.0), pH 7.32 (7.36-7.44), and HCO3 25 mmol/L (20-28). What do these results indicate?

      Your Answer:

      Correct Answer: Acute type II respiratory failure

      Explanation:

      Opiate Overdose

      Opiate overdose is a common occurrence that can lead to slowed breathing, inadequate oxygen saturation, and CO2 retention. This classic picture of opiate overdose can be reversed with the use of naloxone. The condition is often caused by the use of illicit drugs and can have serious consequences if left untreated.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 29 - A 35-year-old man visits his GP with complaints of persistent cough and difficulty...

    Incorrect

    • A 35-year-old man visits his GP with complaints of persistent cough and difficulty breathing for over four months. Despite not being a smoker, he is puzzled as to why his symptoms have not improved. Upon further investigation, he is diagnosed with chronic obstructive pulmonary disease (COPD). The GP suspects a genetic factor contributing to the early onset of the disease and orders blood tests. The results reveal a deficiency in a protein responsible for shielding lung cells from neutrophil elastase. What is the name of the deficient protein?

      Your Answer:

      Correct Answer: Alpha-1 antitrypsin

      Explanation:

      COPD is typically found in older smokers, but non-smokers with A-1 antitrypsin deficiency may also develop the condition. This genetic condition is tested for with genetic and blood tests, as the protein it affects would normally protect lung cells from damage caused by neutrophil elastase. C1 inhibitor is not related to early onset COPD, but rather plays a role in hereditary angioedema. Plasminogen activator inhibitor-1 deficiency increases the risk of fibrinolysis, while surfactant protein D deficiency is associated with a higher likelihood of bacterial lung infections due to decreased ability of alveolar macrophages to bind to pathogens. Emphysema is primarily caused by uninhibited action of neutrophil elastase due to a1- antitrypsin deficiency, rather than elastin destruction.

      Alpha-1 antitrypsin (A1AT) deficiency is a genetic condition that occurs when the liver does not produce enough of a protein called protease inhibitor (Pi). This protein is responsible for protecting cells from enzymes like neutrophil elastase. A1AT deficiency is inherited in an autosomal recessive or co-dominant manner and is located on chromosome 14. The alleles are classified by their electrophoretic mobility, with M being normal, S being slow, and Z being very slow. The normal genotype is PiMM, while heterozygous individuals have PiMZ. Homozygous PiSS individuals have 50% normal A1AT levels, while homozygous PiZZ individuals have only 10% normal A1AT levels.

      A1AT deficiency is most commonly associated with panacinar emphysema, which is a type of chronic obstructive pulmonary disease (COPD). This is especially true for patients with the PiZZ genotype. Emphysema is more likely to occur in non-smokers with A1AT deficiency, but they may still pass on the gene to their children. In addition to lung problems, A1AT deficiency can also cause liver issues such as cirrhosis and hepatocellular carcinoma in adults, and cholestasis in children.

      Diagnosis of A1AT deficiency involves measuring A1AT concentrations and performing spirometry to assess lung function. Management of the condition includes avoiding smoking and receiving supportive care such as bronchodilators and physiotherapy. Intravenous alpha1-antitrypsin protein concentrates may also be used. In severe cases, lung volume reduction surgery or lung transplantation may be necessary.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 30 - A 25-year-old woman visits the outpatient department with concerns of eyelid drooping, double...

    Incorrect

    • A 25-year-old woman visits the outpatient department with concerns of eyelid drooping, double vision, shortness of breath, and rapid breathing. These symptoms typically occur in the evening or after physical activity.

      What respiratory condition could be causing her symptoms?

      Your Answer:

      Correct Answer: Restrictive lung disease

      Explanation:

      The presence of myasthenia gravis can result in a restrictive pattern of lung disease due to weakened chest wall muscles, leading to incomplete expansion during inhalation.

      Occupational lung disease, also known as pneumoconioses, is caused by inhaling specific types of dust particles in the workplace, resulting in a restrictive pattern of lung disease. However, symptoms such as drooping eyelids and double vision are typically not associated with this condition.

      Pneumonia is an infection of the lung tissue that typically presents with symptoms such as coughing, chest pain, fever, and difficulty breathing.

      Pulmonary embolism is an acute condition that presents with symptoms such as chest pain, shortness of breath, and coughing up blood.

      Understanding the Differences between Obstructive and Restrictive Lung Diseases

      Obstructive and restrictive lung diseases are two distinct categories of respiratory conditions that affect the lungs in different ways. Obstructive lung diseases are characterized by a reduction in the flow of air through the airways due to narrowing or blockage, while restrictive lung diseases are characterized by a decrease in lung volume or capacity, making it difficult to breathe in enough air.

      Spirometry is a common diagnostic tool used to differentiate between obstructive and restrictive lung diseases. In obstructive lung diseases, the ratio of forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) is less than 80%, indicating a reduced ability to exhale air. In contrast, restrictive lung diseases are characterized by an FEV1/FVC ratio greater than 80%, indicating a reduced ability to inhale air.

      Examples of obstructive lung diseases include chronic obstructive pulmonary disease (COPD), chronic bronchitis, and emphysema, while asthma and bronchiectasis are also considered obstructive. Restrictive lung diseases include intrapulmonary conditions such as idiopathic pulmonary fibrosis, extrinsic allergic alveolitis, and drug-induced fibrosis, as well as extrapulmonary conditions such as neuromuscular diseases, obesity, and scoliosis.

      Understanding the differences between obstructive and restrictive lung diseases is important for accurate diagnosis and appropriate treatment. While both types of conditions can cause difficulty breathing, the underlying causes and treatment approaches can vary significantly.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Respiratory System (4/10) 40%
Passmed