00
Correct
00
Incorrect
00 : 00 : 0 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 67-year-old man is admitted for a below knee amputation. He is taking...

    Correct

    • A 67-year-old man is admitted for a below knee amputation. He is taking digoxin. The patient presents with an irregularly irregular pulse. What would be your expectation when examining the jugular venous pressure?

      Your Answer: Absent a waves

      Explanation:

      The pressure in the jugular vein.

      Understanding Jugular Venous Pressure

      Jugular venous pressure (JVP) is a useful tool for assessing right atrial pressure and identifying underlying valvular disease. The waveform of the jugular vein can provide valuable information about the heart’s function. A non-pulsatile JVP may indicate superior vena caval obstruction, while Kussmaul’s sign describes a paradoxical rise in JVP during inspiration seen in constrictive pericarditis.

      The ‘a’ wave of the jugular vein waveform represents atrial contraction. A large ‘a’ wave may indicate conditions such as tricuspid stenosis, pulmonary stenosis, or pulmonary hypertension. However, an absent ‘a’ wave is common in atrial fibrillation.

      Cannon ‘a’ waves are caused by atrial contractions against a closed tricuspid valve. They are seen in conditions such as complete heart block, ventricular tachycardia/ectopics, nodal rhythm, and single chamber ventricular pacing.

      The ‘c’ wave represents the closure of the tricuspid valve and is not normally visible. The ‘v’ wave is due to passive filling of blood into the atrium against a closed tricuspid valve. Giant ‘v’ waves may indicate tricuspid regurgitation.

      Finally, the ‘x’ descent represents the fall in atrial pressure during ventricular systole, while the ‘y’ descent represents the opening of the tricuspid valve. Understanding the jugular venous pressure waveform can provide valuable insights into the heart’s function and help diagnose underlying conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      8.2
      Seconds
  • Question 2 - A 65-year-old patient has been discharged from the hospital after experiencing a myocardial...

    Correct

    • A 65-year-old patient has been discharged from the hospital after experiencing a myocardial infarction. What is the most suitable combination of medication for the patient to be discharged with?

      Your Answer: Aspirin, beta blocker, ACE inhibitor and statin

      Explanation:

      Medications for Secondary Prevention of Myocardial Infarction

      According to the NICE guidelines on myocardial infarction (MI), patients who have suffered from a heart attack should be discharged with specific medications for secondary prevention. These medications include aspirin, ACE inhibitors, beta-blockers, and statins. The purpose of these medications is to prevent further cardiac events and improve the patient’s overall cardiovascular health.

      Aspirin is a blood thinner that helps to prevent blood clots from forming in the arteries, which can lead to another heart attack. ACE inhibitors help to lower blood pressure and reduce the workload on the heart, which can help to prevent further damage to the heart muscle. Beta-blockers also help to lower blood pressure and reduce the workload on the heart, as well as slow down the heart rate. Statins are cholesterol-lowering medications that help to reduce the risk of plaque buildup in the arteries, which can lead to a heart attack.

      These medications are prescribed for tertiary prevention, which means they are used in conjunction with cardiac rehabilitation to help prevent future cardiac events. Cardiac rehabilitation typically involves exercise, education, and counseling to help patients make lifestyle changes that can improve their cardiovascular health.

      In summary, patients who have suffered from a heart attack should be discharged with aspirin, ACE inhibitors, beta-blockers, and statins for secondary prevention. These medications, along with cardiac rehabilitation, can help to prevent future cardiac events and improve the patient’s overall cardiovascular health.

    • This question is part of the following fields:

      • Cardiovascular System
      105.4
      Seconds
  • Question 3 - Which section of the ECG indicates atrial depolarization? ...

    Incorrect

    • Which section of the ECG indicates atrial depolarization?

      Your Answer: P-R interval

      Correct Answer: P wave

      Explanation:

      The depolarization of the atria is represented by the P wave. It should be noted that the QRS complex makes it difficult to observe the repolarization of the atria.

      Understanding the Normal ECG

      The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.

      The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.

      Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      5.3
      Seconds
  • Question 4 - A 45-year-old woman presents to the cardiology clinic complaining of palpitations and shortness...

    Incorrect

    • A 45-year-old woman presents to the cardiology clinic complaining of palpitations and shortness of breath for the past 6 weeks. She has a medical history of rheumatic fever and eczema.

      During the physical examination, the patient exhibits a malar flush and a loud S1 with an opening snap is heard upon auscultation. Her heart rhythm is irregularly irregular. A chest x-ray is ordered and reveals a double heart border.

      What other symptom is this patient likely to encounter?

      Your Answer: Neck pain

      Correct Answer: Difficulty swallowing

      Explanation:

      The statement about left atrial enlargement compressing the esophagus in mitral stenosis is correct. This can lead to difficulty swallowing. The patient’s medical history of rheumatic fever, along with clinical signs such as malar flush, a loud S1 with opening snap, and an irregularly irregular heart rhythm (likely atrial fibrillation), suggest a diagnosis of mitral stenosis. This condition obstructs the outflow of blood from the left atrium into the left ventricle, causing the left atrium to enlarge and compress surrounding structures. Left atrial enlargement can also increase the risk of developing arrhythmias like atrial fibrillation.

      The statements about arm and facial swelling, constipation, and neck pain are incorrect. Arm and facial swelling occur due to compression of the superior vena cava, which is not caused by left atrial enlargement. Constipation is not a symptom of mitral stenosis, but patients may experience abdominal discomfort due to right-sided heart failure. Neck pain is not associated with mitral stenosis, but neck vein distention may be observed.

      Understanding Mitral Stenosis

      Mitral stenosis is a condition where the mitral valve, which controls blood flow from the left atrium to the left ventricle, becomes obstructed. This leads to an increase in pressure within the left atrium, pulmonary vasculature, and right side of the heart. The most common cause of mitral stenosis is rheumatic fever, but it can also be caused by other rare conditions such as mucopolysaccharidoses, carcinoid, and endocardial fibroelastosis.

      Symptoms of mitral stenosis include dyspnea, hemoptysis, a mid-late diastolic murmur, a loud S1, and a low volume pulse. Severe cases may also present with an increased length of murmur and a closer opening snap to S2. Chest x-rays may show left atrial enlargement, while echocardiography can confirm a cross-sectional area of less than 1 sq cm for a tight mitral stenosis.

      Management of mitral stenosis depends on the severity of the condition. Asymptomatic patients are monitored with regular echocardiograms, while symptomatic patients may undergo percutaneous mitral balloon valvotomy or mitral valve surgery. Patients with associated atrial fibrillation require anticoagulation, with warfarin currently recommended for moderate/severe cases. However, there is an emerging consensus that direct-acting anticoagulants may be suitable for mild cases with atrial fibrillation.

      Overall, understanding mitral stenosis is important for proper diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      13.4
      Seconds
  • Question 5 - A 73-year-old man presents to the emergency department with complaints of severe cramping...

    Incorrect

    • A 73-year-old man presents to the emergency department with complaints of severe cramping pain in his leg at rest. He has a medical history of peripheral vascular disease, chronic obstructive pulmonary disease, and hypertension.

      During the examination, his blood pressure is measured at 138/92 mmHg, respiratory rate at 22/min, and oxygen saturations at 99%. The healthcare provider performs a neurovascular exam of the lower limbs and palpates the pulses.

      Which area should be palpated first?

      Your Answer: Behind the knee, in the popliteal fossa

      Correct Answer: First metatarsal space on dorsum of foot

      Explanation:

      To assess lower leg pulses, it is recommended to start from the most distal point and move towards the proximal area. This helps to identify the location of any occlusion. The first pulse to be checked is the dorsalis pedis pulse, which is located on the dorsum of the foot in the first metatarsal space, lateral to the extensor hallucis longus tendon. Palpating behind the knee or in the fourth metatarsal space is incorrect, as no pulse can be felt there. The posterior tibial pulse can be felt posteriorly and inferiorly to the medial malleolus, but it should not be assessed first as it is not as distal as the dorsalis pedis pulse.

      The anterior tibial artery starts opposite the lower border of the popliteus muscle and ends in front of the ankle, where it continues as the dorsalis pedis artery. As it descends, it runs along the interosseous membrane, the distal part of the tibia, and the front of the ankle joint. The artery passes between the tendons of the extensor digitorum and extensor hallucis longus muscles as it approaches the ankle. The deep peroneal nerve is closely related to the artery, lying anterior to the middle third of the vessel and lateral to it in the lower third.

    • This question is part of the following fields:

      • Cardiovascular System
      37.5
      Seconds
  • Question 6 - A 25-year-old is suffering from tonsillitis and experiencing significant pain. Which nerve is...

    Correct

    • A 25-year-old is suffering from tonsillitis and experiencing significant pain. Which nerve is responsible for providing sensory innervation to the tonsillar fossa?

      Your Answer: Glossopharyngeal nerve

      Explanation:

      The tonsillar fossa is primarily innervated by the glossopharyngeal nerve, with a smaller contribution from the lesser palatine nerve. As a result, patients may experience ear pain (otalgia) after undergoing a tonsillectomy.

      Tonsil Anatomy and Tonsillitis

      The tonsils are located in the pharynx and have two surfaces, a medial and lateral surface. They vary in size and are usually supplied by the tonsillar artery and drained by the jugulodigastric and deep cervical nodes. Tonsillitis is a common condition that is usually caused by bacteria, with group A Streptococcus being the most common culprit. It can also be caused by viruses. In some cases, tonsillitis can lead to the development of an abscess, which can distort the uvula. Tonsillectomy is recommended for patients with recurrent acute tonsillitis, suspected malignancy, or enlargement causing sleep apnea. The preferred technique for tonsillectomy is dissection, but it can be complicated by hemorrhage, which is the most common complication. Delayed otalgia may also occur due to irritation of the glossopharyngeal nerve.

    • This question is part of the following fields:

      • Cardiovascular System
      9.8
      Seconds
  • Question 7 - Which one of the following statements relating to the posterior cerebral artery is...

    Incorrect

    • Which one of the following statements relating to the posterior cerebral artery is false?

      Your Answer: It is a branch of the basilar artery

      Correct Answer: It is connected to the circle of Willis via the superior cerebellar artery

      Explanation:

      The bifurcation of the basilar artery gives rise to the posterior cerebral arteries, which are linked to the circle of Willis through the posterior communicating artery.

      These arteries provide blood supply to the occipital lobe and a portion of the temporal lobe.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      21.2
      Seconds
  • Question 8 - A 67-year-old man presents with crushing central chest pain and flushing. His ECG...

    Incorrect

    • A 67-year-old man presents with crushing central chest pain and flushing. His ECG shows T wave inversion in II, III, and AVF, and his troponin T level is 0.9 ng/ml (normal <0.01). What is the substance that troponin T binds to?

      Your Answer:

      Correct Answer: Tropomyosin

      Explanation:

      The binding of troponin T to tropomyosin results in the formation of a troponin-tropomyosin complex. The clinical and electrographic characteristics suggest the presence of an inferior myocardial infarction, which is confirmed by the elevated levels of troponin. Troponin T is highly specific to myocardial damage. On the other hand, troponin C binds to calcium ions and is released by damage to both skeletal and cardiac muscle, making it an insensitive marker for myocardial necrosis. Troponin I binds to actin and helps to maintain the troponin-tropomyosin complex in place. It is also specific to myocardial damage. Myosin is the thick component of muscle fibers, and actin slides along myosin to generate muscle contraction. The sarcoplasmic reticulum plays a crucial role in regulating the concentration of calcium ions in the cytoplasm of striated muscle cells.

      Understanding Troponin: The Proteins Involved in Muscle Contraction

      Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.

      Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.

      Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 9 - A 75-year-old woman is hospitalized with acute mesenteric ischemia. During a CT angiogram,...

    Incorrect

    • A 75-year-old woman is hospitalized with acute mesenteric ischemia. During a CT angiogram, a narrowing is observed at the point where the superior mesenteric artery originates. At what level does this artery branch off from the aorta?

      Your Answer:

      Correct Answer: L1

      Explanation:

      The inferior pancreatico-duodenal artery is the first branch of the SMA, which exits the aorta at L1 and travels beneath the neck of the pancreas.

      The Superior Mesenteric Artery and its Branches

      The superior mesenteric artery is a major blood vessel that branches off the aorta at the level of the first lumbar vertebrae. It supplies blood to the small intestine from the duodenum to the mid transverse colon. However, due to its more oblique angle from the aorta, it is more susceptible to receiving emboli than the coeliac axis.

      The superior mesenteric artery is closely related to several structures, including the neck of the pancreas superiorly, the third part of the duodenum and uncinate process postero-inferiorly, and the left renal vein posteriorly. Additionally, the right superior mesenteric vein is also in close proximity.

      The superior mesenteric artery has several branches, including the inferior pancreatico-duodenal artery, jejunal and ileal arcades, ileo-colic artery, right colic artery, and middle colic artery. These branches supply blood to various parts of the small and large intestine. An overview of the superior mesenteric artery and its branches can be seen in the accompanying image.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 10 - A 4-year-old girl is brought to the emergency department by her father after...

    Incorrect

    • A 4-year-old girl is brought to the emergency department by her father after the child has been having a fever and has been very irritable since last night. The child has a temperature of 39.5ºC, and the emergency doctor notices that the child has a red tongue and cracked lips. On examination cervical lymph nodes are enlarged. After noticing that the child's palms and soles are erythematous, the emergency doctor calls the pediatrician on call, and they make a decision to begin treatment. What is the severe complication that can occur if this patient is not treated appropriately and on time?

      Your Answer:

      Correct Answer: Coronary artery aneurysm

      Explanation:

      Kawasaki disease can lead to coronary artery aneurysms, which should be screened for with an echocardiogram. Prompt treatment with intravenous immunoglobulin and aspirin is necessary to prevent this complication. Other potential complications, such as septic shock or febrile seizures, are not as severe as coronary artery aneurysms in this case. Anaphylactic shock is not a possibility based on the information provided.

      Understanding Kawasaki Disease

      Kawasaki disease is a rare type of vasculitis that primarily affects children. It is important to identify this disease early on as it can lead to serious complications such as coronary artery aneurysms. The disease is characterized by a high-grade fever that lasts for more than five days, which is resistant to antipyretics. Other features include conjunctival injection, bright red, cracked lips, strawberry tongue, cervical lymphadenopathy, and red palms and soles that later peel.

      Diagnosis of Kawasaki disease is based on clinical presentation as there is no specific diagnostic test available. Management of the disease involves high-dose aspirin, which is one of the few indications for aspirin use in children. Intravenous immunoglobulin is also used as a treatment option. Echocardiogram is the initial screening test for coronary artery aneurysms instead of angiography.

      Complications of Kawasaki disease include coronary artery aneurysm, which can be life-threatening. Early recognition and treatment of Kawasaki disease can prevent serious complications and improve outcomes for affected children.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 11 - A 42-year-old woman has undergone some routine blood tests and her cholesterol levels...

    Incorrect

    • A 42-year-old woman has undergone some routine blood tests and her cholesterol levels are elevated. You plan to prescribe atorvastatin, but she mentions that some of her acquaintances had to discontinue the medication due to intolerable side effects.

      What is a prevalent adverse reaction associated with atorvastatin?

      Your Answer:

      Correct Answer: Myalgia

      Explanation:

      While angio-oedema and rhabdomyolysis are rare side effects of statin therapy, myalgia is a commonly experienced one.

      Statins are drugs that inhibit the action of HMG-CoA reductase, which is the enzyme responsible for cholesterol synthesis in the liver. However, they can cause adverse effects such as myopathy, liver impairment, and an increased risk of intracerebral hemorrhage in patients with a history of stroke. Statins should not be taken during pregnancy or in combination with macrolides. NICE recommends statins for patients with established cardiovascular disease, a 10-year cardiovascular risk of 10% or higher, type 2 diabetes mellitus, or type 1 diabetes mellitus with certain criteria. It is recommended to take statins at night, especially simvastatin, which has a shorter half-life than other statins. NICE recommends atorvastatin 20mg for primary prevention and atorvastatin 80 mg for secondary prevention.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 12 - Where are the arterial baroreceptors situated? ...

    Incorrect

    • Where are the arterial baroreceptors situated?

      Your Answer:

      Correct Answer: Carotid sinus and aortic arch

      Explanation:

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 13 - A 75-year-old man is experiencing symptoms of mesenteric ischemia. During his diagnostic evaluation,...

    Incorrect

    • A 75-year-old man is experiencing symptoms of mesenteric ischemia. During his diagnostic evaluation, a radiologist is attempting to cannulate the coeliac axis from the aorta. Typically, at which vertebral level does this artery originate?

      Your Answer:

      Correct Answer: T12

      Explanation:

      The coeliac trunk is a major artery that arises from the aorta and gives off three branches on the left-hand side: the left gastric, hepatic, and splenic arteries.

      The Coeliac Axis and its Branches

      The coeliac axis is a major artery that supplies blood to the upper abdominal organs. It has three main branches: the left gastric, hepatic, and splenic arteries. The hepatic artery further branches into the right gastric, gastroduodenal, right gastroepiploic, superior pancreaticoduodenal, and cystic arteries. Meanwhile, the splenic artery gives off the pancreatic, short gastric, and left gastroepiploic arteries. Occasionally, the coeliac axis also gives off one of the inferior phrenic arteries.

      The coeliac axis is located anteriorly to the lesser omentum and is related to the right and left coeliac ganglia, as well as the caudate process of the liver and the gastric cardia. Inferiorly, it is in close proximity to the upper border of the pancreas and the renal vein.

      Understanding the anatomy and branches of the coeliac axis is important in diagnosing and treating conditions that affect the upper abdominal organs, such as pancreatic cancer or gastric ulcers.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 14 - A 56-year-old male comes to your clinic complaining of occasional chest pain that...

    Incorrect

    • A 56-year-old male comes to your clinic complaining of occasional chest pain that usually occurs after meals and typically subsides within a few hours. He has a medical history of bipolar disorder, osteoarthritis, gout, and hyperparathyroidism. Currently, he is undergoing a prolonged course of antibiotics for prostatitis.

      During his visit, an ECG reveals a QT interval greater than 520 ms.

      What is the most likely cause of the observed ECG changes?

      - Lithium overdose
      - Paracetamol use
      - Hypercalcemia
      - Erythromycin use
      - Amoxicillin use

      Explanation: The most probable cause of the prolonged QT interval is erythromycin use, which is commonly associated with this ECG finding. Given the patient's medical history, it is likely that he is taking erythromycin for his prostatitis. Amoxicillin is not known to cause QT prolongation. Lithium toxicity typically presents with symptoms such as vomiting, diarrhea, tremors, and agitation. Hypercalcemia is more commonly associated with a short QT interval, making it an unlikely cause. Paracetamol is not known to cause QT prolongation.

      Your Answer:

      Correct Answer: Erythromycin use

      Explanation:

      The prolonged QT interval can be caused by erythromycin.

      It is highly probable that the patient is taking erythromycin to treat his prostatitis, which is the reason for the prolonged QT interval.

      Long QT syndrome (LQTS) is a genetic condition that causes a delay in the ventricles’ repolarization. This delay can lead to ventricular tachycardia/torsade de pointes, which can cause sudden death or collapse. The most common types of LQTS are LQT1 and LQT2, which are caused by defects in the alpha subunit of the slow delayed rectifier potassium channel. A normal corrected QT interval is less than 430 ms in males and 450 ms in females.

      There are various causes of a prolonged QT interval, including congenital factors, drugs, and other conditions. Congenital factors include Jervell-Lange-Nielsen syndrome and Romano-Ward syndrome. Drugs that can cause a prolonged QT interval include amiodarone, sotalol, tricyclic antidepressants, and selective serotonin reuptake inhibitors. Other factors that can cause a prolonged QT interval include electrolyte imbalances, acute myocardial infarction, myocarditis, hypothermia, and subarachnoid hemorrhage.

      LQTS may be detected on a routine ECG or through family screening. Long QT1 is usually associated with exertional syncope, while Long QT2 is often associated with syncope following emotional stress, exercise, or auditory stimuli. Long QT3 events often occur at night or at rest and can lead to sudden cardiac death.

      Management of LQTS involves avoiding drugs that prolong the QT interval and other precipitants if appropriate. Beta-blockers are often used, and implantable cardioverter defibrillators may be necessary in high-risk cases. It is important to note that sotalol may exacerbate LQTS.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 15 - An 80-year-old patient who recently had a TIA is admitted to the vascular...

    Incorrect

    • An 80-year-old patient who recently had a TIA is admitted to the vascular ward in preparation for a carotid endarterectomy tomorrow. During her pre-operative consultation, the surgeon explained that the artery will be tied during the procedure. The patient asks about the different arteries and their functions. You inform her that the internal carotid artery supplies the brain, while the external carotid artery divides into two arteries after ascending the neck. One of these arteries is the superficial temporal artery, but what is the other?

      Your Answer:

      Correct Answer: Maxillary artery

      Explanation:

      The correct answer is the maxillary artery, which is one of the two terminal branches of the external carotid artery. It supplies deep structures of the face and usually bifurcates within the parotid gland to form the superficial temporal artery and maxillary artery. The facial artery supplies superficial structures in the face, while the lingual artery supplies the tongue. The middle meningeal artery is a branch of the maxillary artery and supplies the dura mater and calvaria. There are also two deep temporal arteries that arise from the maxillary artery and supply the temporalis muscle. The patient is scheduled to undergo carotid endarterectomy, a surgical procedure that involves removing atherosclerotic plaque from the common carotid artery to reduce the risk of subsequent ischaemic strokes or transient ischaemic attacks.

      Anatomy of the External Carotid Artery

      The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.

      To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.

      The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 16 - A 67-year-old patient with chronic kidney disease is diagnosed with antithrombin III deficiency...

    Incorrect

    • A 67-year-old patient with chronic kidney disease is diagnosed with antithrombin III deficiency after presenting to the emergency department with left leg pain and swelling. A doppler-ultrasound scan confirms the presence of deep venous thrombosis (DVT). The patient is prescribed dabigatran. What is the mechanism of action of dabigatran?

      Your Answer:

      Correct Answer: Direct thrombin inhibitor

      Explanation:

      Dabigatran inhibits thrombin directly, while heparin activates antithrombin III. Clopidogrel is a P2Y12 inhibitor, Abciximab is a glycoprotein IIb/IIIa inhibitor, and Rivaroxaban is a direct factor X inhibitor.

      Dabigatran: An Oral Anticoagulant with Two Main Indications

      Dabigatran is an oral anticoagulant that directly inhibits thrombin, making it an alternative to warfarin. Unlike warfarin, dabigatran does not require regular monitoring. It is currently used for two main indications. Firstly, it is an option for prophylaxis of venous thromboembolism following hip or knee replacement surgery. Secondly, it is licensed for prevention of stroke in patients with non-valvular atrial fibrillation who have one or more risk factors present. The major adverse effect of dabigatran is haemorrhage, and doses should be reduced in chronic kidney disease. Dabigatran should not be prescribed if the creatinine clearance is less than 30 ml/min. In cases where rapid reversal of the anticoagulant effects of dabigatran is necessary, idarucizumab can be used. However, the RE-ALIGN study showed significantly higher bleeding and thrombotic events in patients with recent mechanical heart valve replacement using dabigatran compared with warfarin. As a result, dabigatran is now contraindicated in patients with prosthetic heart valves.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 17 - A 67-year-old woman visits the anticoagulation clinic for her regular INR test. She...

    Incorrect

    • A 67-year-old woman visits the anticoagulation clinic for her regular INR test. She has a medical history of deep vein thrombosis and pulmonary embolism and is currently taking warfarin for life. During this visit, her INR level is found to be 4.4, which is higher than her target of 3.0. Upon further inquiry, she reveals that she had been prescribed antibiotics by her GP recently. Can you identify the clotting factors that warfarin affects?

      Your Answer:

      Correct Answer: Factors II, VII, IX, X

      Explanation:

      Warfarin is an oral anticoagulant that is widely used to prevent blood clotting in various medical conditions, including stroke prevention in atrial fibrillation and venous thromboembolism. Warfarin primarily targets the Vitamin K dependent clotting factors, which include factors II, VII, IX, and X.

      To monitor the effectiveness of warfarin therapy, the International Normalized Ratio (INR) is used. However, the INR can be affected by drug interactions, such as those with antibiotics. Therefore, it is important to be aware of the common drug interactions associated with warfarin.

      Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects

      Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.

      Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.

      Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.

      In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 18 - A 75-year-old male presents to his GP with a four week history of...

    Incorrect

    • A 75-year-old male presents to his GP with a four week history of shortness of breath when he walks for approximately two minutes on level ground. There is also an associated central chest pain which resolves when he rests. The pain is localised and does not radiate.

      On examination, there were obvious signs of ankle and sacral pitting oedema. A left ventricular heave was palpated but the apex beat was not displaced. A systolic murmur was heard best at the second intercostal space just right of the sternum. This murmur also radiated to the carotid arteries.

      Which investigation is most likely to confirm the underlying cause of his symptoms?

      Your Answer:

      Correct Answer: Echocardiogram

      Explanation:

      Diagnosis of Valvular Heart Disease

      Echocardiography is the most sensitive and specific way to diagnose valvular heart disease (VHD). It involves observing the valvular leaflets and degree of calcified stenosis of the aortic valve, as well as calculating cardiac output and ejection fraction for prognostic information. Chest x-ray may reveal a calcified aortic valve and left ventricular hypertrophy, while bilateral ankle edema is a minor sign for congestive heart failure. To assess the severity of heart failure, an x-ray, ECG, and BNP should be performed, but echocardiogram remains the most reliable diagnostic tool for VHD.

      A myocardial infarction is unlikely in this patient due to her age and the duration of symptoms. Instead, her angina-type pain is likely due to her underlying aortic valve disease. An angiogram of the coronary arteries alone cannot diagnose valvular defects. Cardiac enzymes such as troponin I and T are markers for myocardial necrosis and will not aid in the diagnosis of VHD. While ECG should be performed in a patient presenting with these symptoms, it alone is insufficient to diagnose VHD. The ECG may show left axis deviation due to left ventricular hypertrophy.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 19 - A 70-year-old man arrives at the Emergency department displaying indications and symptoms of...

    Incorrect

    • A 70-year-old man arrives at the Emergency department displaying indications and symptoms of acute coronary syndrome. Among the following cardiac enzymes, which is the most probable to increase first after a heart attack?

      Your Answer:

      Correct Answer: Myoglobin

      Explanation:

      Enzyme Markers for Myocardial Infarction

      Enzyme markers are used to diagnose myocardial infarction, with troponins being the most sensitive and specific. However, troponins are not the fastest to rise and are only measured 12 hours after the event. Myoglobin, although less sensitive and specific, is the earliest marker to rise. The rise of myoglobin occurs within 2 hours of the event, with a peak at 6-8 hours and a fall within 1-2 days. Creatine kinase rises within 4-6 hours, peaks at 24 hours, and falls within 3-4 days. LDH rises within 6-12 hours, peaks at 72 hours, and falls within 10-14 days. These enzyme markers are important in the diagnosis and management of myocardial infarction.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 20 - Where are the red hat pins most likely located based on the highest...

    Incorrect

    • Where are the red hat pins most likely located based on the highest velocity measurements in different parts of a bovine heart during experimental research for a new drug for heart conduction disorders?

      Your Answer:

      Correct Answer: Purkinje fibres

      Explanation:

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 21 - A 30-year-old female patient complains of chest pain that is mainly located behind...

    Incorrect

    • A 30-year-old female patient complains of chest pain that is mainly located behind her sternum but radiates to both shoulders. The pain worsens when she breathes deeply or exercises. She has never smoked, drinks a bottle of wine per week, and had a flu-like illness about ten days ago. During examination, her temperature is 38°C, heart rate is 80 bpm, blood pressure is 118/76 mmHg, and respiratory rate is 16. A high pitched rub is audible during systole, and when asked to take a deep breath, she reports more pain on inspiration. The ECG shows ST elevation in both anterior and inferior leads. What is the most probable diagnosis?

      Your Answer:

      Correct Answer: Pericarditis

      Explanation:

      Common Heart Conditions

      Pericarditis is a heart condition that is often triggered by a heart attack or viral infections like Coxsackie B. Patients with pericarditis usually have a history of flu-like symptoms. One of the most common symptoms of pericarditis is widespread ST elevation on the ECG, which is characterized by upward concavity.

      Alcoholic cardiomyopathy is another heart condition that can cause heart failure. Patients with this condition may experience symptoms like shortness of breath, fatigue, and swelling in the legs and ankles.

      Angina is a type of chest pain that can be stable or unstable depending on whether it occurs at rest or during physical activity. Stable angina is usually triggered by physical exertion, while unstable angina can occur even when a person is at rest.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 22 - Which one of the following statements relating to the pharmacology of warfarin is...

    Incorrect

    • Which one of the following statements relating to the pharmacology of warfarin is false?

      Your Answer:

      Correct Answer: Warfarin has a large volume of distribution

      Explanation:

      To impair fibrin formation, warfarin impacts the carboxylation of glutamic acid residues in clotting factors 2, 7, 9, and 10. Factor 2 has the lengthiest half-life of around 60 hours, so it may take up to three days for warfarin to take full effect. Warfarin is protein-bound, resulting in a small distribution volume.

      Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects

      Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.

      Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.

      Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.

      In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 23 - A 25-year-old man experiences a blunt head trauma and presents with a GCS...

    Incorrect

    • A 25-year-old man experiences a blunt head trauma and presents with a GCS of 7 upon admission. What is the primary factor influencing cerebral blood flow in this scenario?

      Your Answer:

      Correct Answer: Intracranial pressure

      Explanation:

      Cerebral blood flow can be impacted by both hypoxaemia and acidosis, but in cases of trauma, the likelihood of increased intracranial pressure is much higher, particularly when the Glasgow Coma Scale (GCS) is low. This can have a negative impact on cerebral blood flow.

      Understanding Cerebral Blood Flow and Angiography

      Cerebral blood flow is regulated by the central nervous system, which can adjust its own blood supply. Various factors can affect cerebral pressure, including CNS metabolism, trauma, pressure, and systemic carbon dioxide levels. The most potent mediator is PaCO2, while acidosis and hypoxemia can also increase cerebral blood flow to a lesser degree. In patients with head injuries, increased intracranial pressure can impair blood flow. The Monro-Kelly Doctrine governs intracerebral pressure, which considers the brain as a closed box, and changes in pressure are offset by the loss of cerebrospinal fluid. However, when this is no longer possible, intracranial pressure rises.

      Cerebral angiography is an invasive test that involves injecting contrast media into the carotid artery using a catheter. Radiographs are taken as the dye works its way through the cerebral circulation. This test can be used to identify bleeding aneurysms, vasospasm, and arteriovenous malformations, as well as differentiate embolism from large artery thrombosis. Understanding cerebral blood flow and angiography is crucial in diagnosing and treating various neurological conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 24 - A 59-year-old woman presents to a respiratory clinic with worsening breathlessness and a...

    Incorrect

    • A 59-year-old woman presents to a respiratory clinic with worsening breathlessness and a recent diagnosis of pulmonary hypertension. The decision is made to initiate treatment with bosentan. Can you explain the mechanism of action of this medication?

      Your Answer:

      Correct Answer: Endothelin antagonist

      Explanation:

      Bosentan, a non-selective endothelin antagonist, is used to treat pulmonary hypertension by blocking the vasoconstrictive effects of endothelin. However, it may cause liver function abnormalities, requiring regular monitoring. Endothelin agonists would worsen pulmonary vasoconstriction and are not suitable for treating pulmonary hypertension. Guanylate cyclase stimulators like riociguat work with nitric oxide to dilate blood vessels and treat pulmonary hypertension. Sildenafil, a phosphodiesterase inhibitor, selectively reduces pulmonary vascular tone to treat pulmonary hypertension.

      Understanding Endothelin and Its Role in Various Diseases

      Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.

      Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.

      In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 25 - During a tricuspid valve repair, the right atrium is opened after establishing cardiopulmonary...

    Incorrect

    • During a tricuspid valve repair, the right atrium is opened after establishing cardiopulmonary bypass. Which of the following structures is not located within the right atrium?

      Your Answer:

      Correct Answer: Trabeculae carnae

      Explanation:

      The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 26 - A 60-year-old woman who was discharged from the hospital 3 days ago presents...

    Incorrect

    • A 60-year-old woman who was discharged from the hospital 3 days ago presents to the emergency department with complaints of chest tightness and severe shortness of breath. While being evaluated, the patient suddenly becomes unresponsive and experiences cardiac arrest. Despite receiving appropriate life-saving measures, there is no return of spontaneous circulation and the patient is declared dead. Upon autopsy, a slit-like tear is discovered in the anterior wall of the left ventricle.

      What factors may have contributed to the cardiac finding observed in this patient?

      Your Answer:

      Correct Answer: Coronary atherosclerosis

      Explanation:

      Left Ventricular Free Wall Rupture Post-MI

      Following a myocardial infarction (MI), the weakened myocardial wall may be unable to contain high left ventricular (LV) pressures, leading to mechanical complications such as left ventricular free wall rupture. This occurs 3-14 days post-MI and is characterized by macrophages and granulation tissue at the margins. Patients are also at high risk of papillary muscle rupture and left ventricular pseudoaneurysm. The patient’s autopsy finding of a slit-like tear in the anterior LV wall is consistent with this complication.

      Coronary atherosclerosis is the most likely cause of the patient’s MI, as it is a common underlying condition. Prolonged alcohol consumption and recent viral infection can lead to dilated cardiomyopathy, while recurrent bacterial pharyngitis can cause inflammatory damage to both the myocardium and valvular endocardium. Repeated blood transfusion is not a known risk factor for left ventricular free wall rupture.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 27 - A 68-year-old woman has a left ankle ulcer that has been present for...

    Incorrect

    • A 68-year-old woman has a left ankle ulcer that has been present for nine months. She had a DVT in her right leg five years ago. Upon examination, there is a 6 cm diameter slough-based ulcer on the medial malleolus without cellulitis. What investigation is required before applying compression bandaging?

      Your Answer:

      Correct Answer: Ankle-brachial pressure index

      Explanation:

      Venous Ulceration and the Importance of Identifying Arterial Disease

      Venous ulcerations are a common type of ulcer that affects the lower extremities. The underlying cause of venous congestion, which can promote ulceration, is venous insufficiency. The treatment for venous ulceration involves controlling oedema, treating any infection, and compression. However, compressive dressings or devices should not be applied if the arterial circulation is impaired. Therefore, it is crucial to identify any arterial disease, and the ankle-brachial pressure index is a simple way of doing this. If indicated, one may progress to a lower limb arteriogram.

      It is important to note that there is no clinical sign of infection, and although a bacterial swab would help to rule out pathogens within the ulcer, arterial insufficiency is the more important issue. If there is a clinical suspicion of DVT, then duplex (or rarely a venogram) is indicated to decide on the indication for anticoagulation. By identifying arterial disease, healthcare professionals can ensure that appropriate treatment is provided and avoid potential complications from compressive dressings or devices.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 28 - A 55-year-old Hispanic man visits his GP for a blood pressure check-up. As...

    Incorrect

    • A 55-year-old Hispanic man visits his GP for a blood pressure check-up. As he experienced ankle swelling with amlodipine, the GP recommends trying bendroflumethiazide. Can you explain the mechanism of action of this diuretic?

      Your Answer:

      Correct Answer: Inhibits the sodium-chloride transporter

      Explanation:

      Thiazides and thiazide-like drugs, such as indapamide, work by blocking the Na+-Cl− symporter at the beginning of the distal convoluted tubule, which inhibits sodium reabsorption. Bendroflumethiazide is a thiazide diuretic that prevents the absorption of sodium and chloride by inhibiting the sodium-chloride transporter, resulting in water remaining in the tubule through osmosis. Mannitol is an osmotic diuretic that is used to reduce intracranial pressure after a head injury. Spironolactone is an aldosterone antagonist, while furosemide acts on the thick ascending loop of Henle to prevent the reabsorption of potassium, sodium, and chloride. Acetazolamide is a carbonic anhydrase inhibitor that is used to treat acute angle closure glaucoma.

      Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.

      Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.

      It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 29 - Which one of the following structures lies deepest in the popliteal fossa? ...

    Incorrect

    • Which one of the following structures lies deepest in the popliteal fossa?

      Your Answer:

      Correct Answer: Popliteal artery

      Explanation:

      Starting from the surface and moving towards the depths, the common peroneal nerve emerges from the popliteal fossa adjacent to the inner edge of the biceps tendon. Subsequently, the tibial nerve runs alongside the popliteal vessels, first posteriorly and then medially. The popliteal vein is situated above the popliteal artery, which is the most internal structure in the fossa.

      Anatomy of the Popliteal Fossa

      The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.

      The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.

      Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 30 - During the repair of an atrial septal defect, the surgeons notice blood leakage...

    Incorrect

    • During the repair of an atrial septal defect, the surgeons notice blood leakage from the coronary sinus. What is the largest tributary of the coronary sinus?

      Your Answer:

      Correct Answer: Great cardiac vein

      Explanation:

      The largest tributary of the coronary sinus is the great cardiac vein, which runs in the anterior interventricular groove. The heart is drained directly by the Thebesian veins.

      The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (3/7) 43%
Passmed