-
Question 1
Incorrect
-
A 14-year-old boy comes to the clinic complaining of ear pain. He mentions having some crusty discharge at the entrance of his ear canal when he woke up this morning. He denies any hearing loss, dizziness, or other symptoms. He swims twice a week. Upon examination, he has no fever. The auricle of his ear appears red, and pressing on the tragus causes discomfort. Otoscopy reveals an erythematous canal with a small amount of yellow discharge. The superior edge of the tympanic membrane is also red, but there is no bulging or fluid in the middle ear. Which bone articulates with the bone that is typically seen pressing against the tympanic membrane?
Your Answer: Malleus
Correct Answer: Incus
Explanation:The middle bone of the 3 ossicles is known as the incus. During otoscopy, the malleus can be observed in contact with the tympanic membrane and it connects with the incus medially.
The ossicles, which are the 3 bones in the middle ear, are arranged from lateral to medial as follows:
Malleus: This is the most lateral of the ossicles. The handle and lateral process of the malleus attach to the tympanic membrane, making it visible during otoscopy. The head of the malleus connects with the incus. The term ‘malleus’ is derived from the Latin word for ‘hammer’.
Incus: The incus is positioned between and connects with the other two ossicles. The body of the incus connects with the malleus, while the long limb of the bone connects with the stapes. The term ‘incus’ is derived from the Latin word for ‘anvil’.Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 2
Correct
-
A premature baby is born and the anaesthetists are struggling to ventilate the lungs because of insufficient surfactant. How does Laplace's law explain the force pushing inwards on the walls of the alveolus caused by surface tension between two static fluids, such as air and water in the alveolus?
Your Answer: Inversely proportional to the radius of the alveolus
Explanation:The Relationship between Alveolar Size and Surface Tension in Respiratory Physiology
In respiratory physiology, the alveolus is often represented as a perfect sphere to apply Laplace’s law. According to this law, there is an inverse relationship between the size of the alveolus and the surface tension. This means that smaller alveoli experience greater force than larger alveoli for a given surface tension, and they will collapse first. This phenomenon explains why, when two balloons are attached together by their ends, the smaller balloon will empty into the bigger balloon.
In the lungs, this same principle applies to lung units, causing atelectasis and collapse when surfactant is not present. Surfactant is a substance that reduces surface tension, making it easier to expand the alveoli and preventing smaller alveoli from collapsing. Therefore, surfactant plays a crucial role in maintaining the proper functioning of the lungs and preventing respiratory distress. the relationship between alveolar size and surface tension is essential in respiratory physiology and can help in the development of treatments for lung diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 3
Incorrect
-
An 80-year-old woman presents to the emergency department with a 2-day history of severe abdominal pain, accompanied by nausea and vomiting. Upon examination, she has a distended abdomen that is tender to the touch, and bowel sounds are infrequent. Her medical history includes a hysterectomy and cholecystectomy. A CT scan is ordered, which reveals a bowel obstruction at the L1 level. What is the most likely affected area?
Your Answer: Transverse colon
Correct Answer: Duodenum
Explanation:The 2nd segment of the duodenum is situated at the transpyloric plane, which corresponds to the level of L1 and is a significant anatomical reference point.
The Transpyloric Plane and its Anatomical Landmarks
The transpyloric plane is an imaginary horizontal line that passes through the body of the first lumbar vertebrae (L1) and the pylorus of the stomach. It is an important anatomical landmark used in clinical practice to locate various organs and structures in the abdomen.
Some of the structures that lie on the transpyloric plane include the left and right kidney hilum (with the left one being at the same level as L1), the fundus of the gallbladder, the neck of the pancreas, the duodenojejunal flexure, the superior mesenteric artery, and the portal vein. The left and right colic flexure, the root of the transverse mesocolon, and the second part of the duodenum also lie on this plane.
In addition, the upper part of the conus medullaris (the tapered end of the spinal cord) and the spleen are also located on the transpyloric plane. Knowing the location of these structures is important for various medical procedures, such as abdominal surgeries and diagnostic imaging.
Overall, the transpyloric plane serves as a useful reference point for clinicians to locate important anatomical structures in the abdomen.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 4
Correct
-
An 85-year-old woman visits her doctor with a complaint of worsening breathlessness in the past 6 months. She has been smoking 10 cigarettes a day for the last 40 years. The doctor suspects that she may have chronic obstructive pulmonary disease. What is one of the mechanisms by which smoking damages the lungs and leads to emphysema?
Your Answer: Inactivation of alpha-1 antitrypsin
Explanation:The function of alpha-1 antitrypsin is to inhibit elastase. However, smoke has a negative impact on this protein in the lungs, resulting in increased activity of elastases and the breakdown of elastic tissue, which leads to emphysema.
Contrary to popular belief, smoke actually activates polymorphonuclear leucocytes, which contributes to the development of emphysema.
Mucous gland hyperplasia, basal cell metaplasia, and basement membrane thickening are all examples of how smoke affects the lungs to cause chronic bronchitis, not emphysema.
COPD, or chronic obstructive pulmonary disease, can be caused by a variety of factors. The most common cause is smoking, which can lead to inflammation and damage in the lungs over time. Another potential cause is alpha-1 antitrypsin deficiency, a genetic condition that can result in lung damage. Additionally, exposure to certain substances such as cadmium (used in smelting), coal, cotton, cement, and grain can also contribute to the development of COPD. It is important to identify and address these underlying causes in order to effectively manage and treat COPD.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 5
Correct
-
Brenda is a 36-year-old woman who presents with tachypnoea. This occurred whilst she was seated. Her only medical history is asthma for which she takes salbutamol. On examination, her respiratory rate is 28 breaths/minute, heart rate 100bpm, Her chest is resonant on percussion and lung sounds are normal. Her chest X-ray is normal. You obtain her arterial blood gas sample results which show the following:
pH 7.55
PaCO2 4.2 kPa
PaO2 10 kPa
HCO3 24 mmol/l
What could have caused the acid-base imbalance in Brenda's case?Your Answer: Panic attack
Explanation:Although panic attacks can cause tachypnea and a decrease in partial pressure of carbon dioxide, the acid-base disturbance that would result from this situation is not included as one of the answer choices.
Respiratory Alkalosis: Causes and Examples
Respiratory alkalosis is a condition that occurs when the blood pH level rises above the normal range due to excessive breathing. This can be caused by various factors, including anxiety, pulmonary embolism, CNS disorders, altitude, and pregnancy. Salicylate poisoning can also lead to respiratory alkalosis, but it may also cause metabolic acidosis in the later stages. In this case, the respiratory centre is stimulated early, leading to respiratory alkalosis, while the direct acid effects of salicylates combined with acute renal failure may cause acidosis later on. It is important to identify the underlying cause of respiratory alkalosis to determine the appropriate treatment. Proper management can help prevent complications and improve the patient’s overall health.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 6
Incorrect
-
A 57-year-old man comes to his GP complaining of worsening shortness of breath during physical activity over the past year. He has never smoked and reports no history of occupational exposure to asbestos, dust, or fumes. His BMI is calculated to be 40 kg/m². Upon examination, there is decreased chest expansion bilaterally, but the lungs are clear upon auscultation. The GP orders spirometry, which reveals a decreased expiratory reserve volume.
Can you provide the definition of this particular lung volume?Your Answer: The volume remaining in the lungs at the end of a normal tidal expiration
Correct Answer: Maximum volume of air that can be expired at the end of a normal tidal expiration
Explanation:The expiratory reserve volume refers to the maximum amount of air that can be exhaled after a normal breath out. It is important to note that this volume can be reduced in conditions that limit lung expansion, such as obesity and ascites. Obesity, in particular, can cause a restrictive pattern on spirometry, where the FEV1/FVC ratio is ≥0.8. Other restrictive lung conditions include idiopathic pulmonary fibrosis, pleural effusion, ascites, and neuromuscular disorders that limit chest expansion. On the other hand, obstructive disorders like asthma and COPD lead to a FEV1/FVC ratio of <0.7, limiting the amount of air that can be exhaled in one second. It is essential to understand the different lung volumes and capacities, including inspiratory reserve volume, tidal volume, expiratory reserve volume, residual volume, inspiratory capacity, vital capacity, functional residual capacity, and total lung capacity. Understanding Lung Volumes in Respiratory Physiology In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured. Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml. Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration. Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV. Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume. Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 7
Correct
-
A 19-year-old male presents to the emergency department with complaints of breathing difficulty. Upon examination, his chest appears normal, but his respiratory rate is 32 breaths per minute. The medical team suspects he may be experiencing a panic attack and subsequent hyperventilation. What impact will this have on his blood gas levels?
Your Answer: Respiratory alkalosis
Explanation:The patient is experiencing a respiratory alkalosis due to their hyperventilation, which is causing a decrease in carbon dioxide levels and resulting in an alkaline state.
Respiratory Alkalosis: Causes and Examples
Respiratory alkalosis is a condition that occurs when the blood pH level rises above the normal range due to excessive breathing. This can be caused by various factors, including anxiety, pulmonary embolism, CNS disorders, altitude, and pregnancy. Salicylate poisoning can also lead to respiratory alkalosis, but it may also cause metabolic acidosis in the later stages. In this case, the respiratory centre is stimulated early, leading to respiratory alkalosis, while the direct acid effects of salicylates combined with acute renal failure may cause acidosis later on. It is important to identify the underlying cause of respiratory alkalosis to determine the appropriate treatment. Proper management can help prevent complications and improve the patient’s overall health.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 8
Incorrect
-
A 7-year-old boy is brought to the clinic by his father, who is worried about his son's hearing. The father has noticed that his son frequently asks him to repeat himself and tends to turn up the volume on the TV. During Weber's test, the patient indicates that the sound is louder on the right side. What conclusion can be drawn from this finding?
Your Answer: Conductive hearing loss of left ear.
Correct Answer: Can not tell which side is affected.
Explanation:The Weber test alone cannot determine which side of the patient’s hearing is affected. The test involves placing a tuning fork on the forehead and asking the patient to report if the sound is symmetrical or louder on one side. If the sound is louder on the left side, it could indicate a conductive hearing loss on the left or a sensorineural hearing loss on the right. To obtain more information, the Weber test should be performed in conjunction with the Rinne test, which involves comparing air conduction and bone conduction.
Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness
Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.
Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.
The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.
Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 9
Correct
-
A 65-year-old man is having a coronary artery bypass surgery. Which structure would typically need to be divided during the median sternotomy procedure?
Your Answer: Interclavicular ligament
Explanation:During a median sternotomy, the interclavicular ligament is typically cut to allow access. However, it is important to avoid intentionally cutting the pleural reflections, as this can lead to the accumulation of fluid in the pleural cavity and require the insertion of a chest drain. The pectoralis major muscles may also be encountered, but if the incision is made in the midline, they should not need to be formally divided. It is crucial to be mindful of the proximity of the brachiocephalic vein and avoid injuring it, as this can result in significant bleeding.
Sternotomy Procedure
A sternotomy is a surgical procedure that involves making an incision in the sternum to access the heart and great vessels. The most common type of sternotomy is a median sternotomy, which involves making a midline incision from the interclavicular fossa to the xiphoid process. The fat and subcutaneous tissues are then divided to the level of the sternum, and the periosteum may be gently mobilized off the midline. However, it is important to avoid vigorous periosteal stripping. A bone saw is used to divide the bone itself, and bleeding from the bony edges of the cut sternum is stopped using roller ball diathermy or bone wax.
Posteriorly, the reflections of the parietal pleura should be identified and avoided, unless surgery to the lung is planned. The fibrous pericardium is then incised, and the heart is brought into view. It is important to avoid the left brachiocephalic vein, which is an important posterior relation at the superior aspect of the sternotomy incision. More inferiorly, the thymic remnants may be identified. At the inferior aspect of the incision, the abdominal cavity may be entered, although this is seldom troublesome.
Overall, a sternotomy is a complex surgical procedure that requires careful attention to detail and a thorough understanding of the anatomy of the chest and heart. By following the proper techniques and precautions, surgeons can safely access the heart and great vessels to perform a variety of life-saving procedures.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 10
Incorrect
-
A 55-year-old woman comes to your clinic seeking help to quit smoking. She has been using nicotine patches for 6 months but has not been successful in her attempts. You decide to prescribe bupropion.
What is a typical side effect of bupropion?Your Answer: Osteoporosis
Correct Answer: Gastrointestinal disturbance
Explanation:Side Effects of Buproprion
Buproprion is a medication that can cause aggression and hallucination in some patients. However, the more common side effects are gastrointestinal disturbances such as diarrhoea, nausea, and dry mouth. These side effects are often experienced by patients taking buproprion. It is important to be aware of the potential side effects of any medication and to speak with a healthcare provider if any concerns arise. Additional information on buproprion and its potential side effects can be found in the electronic Medicines Compendium and Medicines Complete.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 11
Correct
-
A 58-year-old man comes to the GP complaining of wheezing, coughing, and shortness of breath. He has a smoking history of 35 pack-years but has reduced his smoking recently.
The GP orders spirometry, which confirms a diagnosis of chronic obstructive pulmonary disease. The results also show an elevated functional residual capacity.
What is the method used to calculate this metric?Your Answer: Expiratory reserve volume + residual volume
Explanation:Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 12
Correct
-
A 55-year-old Caucasian man presents to the ENT clinic with complaints of gradual hearing loss over the past year. He reports having to turn up the volume on his television to the maximum to hear it comfortably. There are no associated symptoms such as tinnitus or dizziness, and the patient has no significant medical history.
Upon examination, a Weber and Rinne test reveal conductive hearing loss in the left ear. Otoscope examination shows no signs of middle ear effusion or tympanic membrane involvement in either ear. A pure tone audiometry confirms conductive hearing loss in the left ear, with a Carhart's notch present.
The physician diagnoses the patient with otosclerosis and discusses treatment options.
What is the underlying pathology of otosclerosis?Your Answer: Replacement of normal bone by vascular spongy bone
Explanation:Otosclerosis is a condition where normal bone is replaced by spongy bone with a high vascularity. This leads to progressive conductive hearing loss, without any other neurological impairments. The replacement of the normal endochondral layer of the bony labyrinth by spongy bone affects the ability of the stapes to act as a piston, resulting in the conduction of sound from the middle ear to the inner ear being affected. Caucasians are most commonly affected by this condition.
Benign paroxysmal positional vertigo (BPPV) is caused by the dislodgement of otoliths into the semicircular canals. This condition results in vertiginous dizziness upon positional changes, but does not affect auditory function.
Meniere’s disease is caused by endolymphatic hydrops, which is the accumulation of fluid in the inner ear. The pathophysiology of this condition is not well understood, but it leads to vertigo, tinnitus, hearing loss, and aural fullness.
Cholesteatoma is caused by the accumulation of desquamated, stratified squamous epithelium. This leads to the formation of a mass that can gradually enlarge and erode the ossicle chain, resulting in conductive hearing loss.
Presbycusis is a type of sensorineural hearing loss that occurs as a result of aging. The degeneration of the organ of Corti is one of the underlying pathological mechanisms that causes this condition. This leads to the destruction of outer hair cells and a decrease in hearing sensitivity.
Understanding Otosclerosis: A Progressive Conductive Deafness
Otosclerosis is a medical condition that occurs when normal bone is replaced by vascular spongy bone. This condition leads to a progressive conductive deafness due to the fixation of the stapes at the oval window. It is an autosomal dominant condition that typically affects young adults, with onset usually occurring between the ages of 20-40 years.
The main features of otosclerosis include conductive deafness, tinnitus, a normal tympanic membrane, and a positive family history. In some cases, patients may also experience a flamingo tinge, which is caused by hyperemia and affects around 10% of patients.
Management of otosclerosis typically involves the use of a hearing aid or stapedectomy. A hearing aid can help to improve hearing, while a stapedectomy involves the surgical removal of the stapes bone and replacement with a prosthesis.
Overall, understanding otosclerosis is important for individuals who may be at risk of developing this condition. Early diagnosis and management can help to improve hearing and prevent further complications.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 13
Incorrect
-
You are on call for the pediatric ward at night and are urgently called to a child who is choking on a piece of hot dog visible in their oropharynx. The child is in extremis with saturations of 87% and there is no effective cough.
What is the most appropriate immediate management for this pediatric patient?Your Answer: Cricothyroidotomy
Correct Answer: Back blows
Explanation:Resuscitation Council (UK) Recommendations for Choking Emergencies
When faced with a choking emergency, the Resuscitation Council (UK) recommends a specific course of action. If the patient is able to cough effectively, encourage them to do so. If not, but they are conscious, try five back blows followed by five abdominal thrusts (Heimlich manoeuvre) and repeat if necessary. However, if the patient becomes unconscious, begin CPR immediately. It is important to note that a finger sweep is no longer recommended as it can push the obstruction further into the airway. Additionally, high flow oxygen is necessary for breathing, but nasopharyngeal airways will not help in this situation. Removal with forceps is also not recommended as it can be hazardous. If the Heimlich manoeuvre fails, a cricothyroidotomy should be considered. While this procedure is recommended in the US and UK, it is not encouraged in some countries like Australia due to the risk of internal injury from over-vigorous use.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 14
Incorrect
-
A 65-year-old man presents with respiratory symptoms and is referred to his primary care physician for pulmonary function testing. The estimated vital capacity is 3.5 liters. What does the measurement of vital capacity involve?
Your Answer: Tidal volume + Functional residual capacity
Correct Answer: Inspiratory reserve volume + Tidal volume + Expiratory reserve volume
Explanation:Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 15
Correct
-
A 33-year-old male presents to the ED with coughing and wheezing following an episode of alcohol intoxication. Upon examination, decreased breath sounds are noted on one side. Imaging reveals a foreign body obstructing an airway structure. What is the most probable location for this foreign body to be lodged?
Your Answer: Right mainstem bronchus
Explanation:It is rare for a foreign object to become lodged in the left mainstem bronchus due to its greater angle compared to the right mainstem bronchus. A tracheal obstruction would cause reduced breath sounds bilaterally, not just on one side. The right superior lobar bronchus is also unlikely to be affected due to its angle and direction. Therefore, foreign bodies typically get stuck in the right mainstem bronchus in adults because of its wider diameter and lesser angle.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 16
Incorrect
-
A 50-year-old female presents to her GP with complaints of shortness of breath and weakness during mild-moderate exercise. She reports that these episodes have been getting progressively worse and now often result in dizziness. The patient has no significant medical history but was a previous smoker for 15 years, smoking 15 cigarettes per day. Spirometry testing reveals a restrictive lung pattern. What is the most probable diagnosis?
Your Answer: Chronic obstructive pulmonary disease (COPD)
Correct Answer: Myasthenia gravis
Explanation:Myasthenia gravis can result in a restrictive pattern of lung disease due to weakness of the respiratory muscles, which causes difficulty in breathing air in. Asthma and COPD are incorrect as they cause an obstructive pattern on spirometry, with asthma being characterized by small bronchiole obstruction from inflammation and increased mucus production, and COPD causing small airway inflammation and emphysema that restricts outward airflow. Alpha-1 antitrypsin deficiency also leads to an obstructive pattern, as it results in pulmonary tissue degradation and panlobular emphysema.
Understanding the Differences between Obstructive and Restrictive Lung Diseases
Obstructive and restrictive lung diseases are two distinct categories of respiratory conditions that affect the lungs in different ways. Obstructive lung diseases are characterized by a reduction in the flow of air through the airways due to narrowing or blockage, while restrictive lung diseases are characterized by a decrease in lung volume or capacity, making it difficult to breathe in enough air.
Spirometry is a common diagnostic tool used to differentiate between obstructive and restrictive lung diseases. In obstructive lung diseases, the ratio of forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) is less than 80%, indicating a reduced ability to exhale air. In contrast, restrictive lung diseases are characterized by an FEV1/FVC ratio greater than 80%, indicating a reduced ability to inhale air.
Examples of obstructive lung diseases include chronic obstructive pulmonary disease (COPD), chronic bronchitis, and emphysema, while asthma and bronchiectasis are also considered obstructive. Restrictive lung diseases include intrapulmonary conditions such as idiopathic pulmonary fibrosis, extrinsic allergic alveolitis, and drug-induced fibrosis, as well as extrapulmonary conditions such as neuromuscular diseases, obesity, and scoliosis.
Understanding the differences between obstructive and restrictive lung diseases is important for accurate diagnosis and appropriate treatment. While both types of conditions can cause difficulty breathing, the underlying causes and treatment approaches can vary significantly.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 17
Correct
-
A patient is being anaesthetised for a minor bowel surgery. Sarah, a second year medical student is present and is asked to assist the anaesthetist during intubation. The anaesthetist inserts a laryngoscope in the patient's mouth and asks Sarah to identify the larynx.
Which one of the following anatomical landmarks corresponds to the position of the structure being identified by the student?Your Answer: C3-C6
Explanation:The larynx is located in the front of the neck, specifically at the level of the vertebrae C3-C6. This area also includes important anatomical landmarks such as the Atlas and Axis vertebrae (C1-C2), the thyroid cartilage (C5), and the pulmonary hilum (T5-T7).
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 18
Correct
-
A 6-month-old infant is brought to the paediatrician due to increased work of breathing. The infant was born at term and via spontaneous vaginal delivery 6 months ago.
During the examination, the paediatrician observes moderate subcostal and intercostal recession and notes that the infant appears tachypnoeic. The infant's temperature is 38.9ºC, and a chest x-ray is ordered, which reveals some consolidation in the right lower zone. Broad-spectrum antibiotics are initiated.
Upon reviewing the infant's oxygen dissociation curve, the paediatrician notes a leftward shift relative to the standard adult curve. What is the cause of this appearance in the infant's oxygen dissociation curve?Your Answer: Foetal haemoglobin (HbF)
Explanation:The factor that shifts the oxygen dissociation curve to the left is foetal haemoglobin (HbF). This is because HbF has a higher affinity for oxygen than adult haemoglobin, haemoglobin A, which allows maternal haemoglobin to preferentially offload oxygen to the foetus across the placenta.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 19
Incorrect
-
A 36-year-old man presents to his GP with symptoms of vertigo. He reports that he has been experiencing constant dizziness for the past 2 days, which has prevented him from going to work. He also reports hearing difficulties and tinnitus in his right ear, as well as nausea and difficulty with balance. He notes that these symptoms are not related to changes in position. He has no significant medical history, except for a recent bout of flu that resolved on its own.
During the examination, the man is observed to sway to the right while attempting to walk in a straight line. He also has a positive head thrust test to the right side. A complete neurological examination is performed, and aside from mild sensorineural hearing loss in the right ear, his neurological function is normal.
Which structures are most likely involved in this man's condition?Your Answer: Vestibular nerve alone
Correct Answer: Vestibular nerve and labyrinth
Explanation:The patient is displaying symptoms of labyrinthitis, which affects both the vestibular nerve and labyrinth, resulting in vertigo and hearing impairment. In contrast, pure vestibular neuritis only causes vestibular symptoms without affecting hearing. Benign paroxysmal positional vertigo (BPPV) involves otolith displacement and is triggered by head position changes, which is not the case for this patient’s constant vertigo. Facial nerve palsy primarily causes facial drooping and does not affect hearing or vestibular function, making it an unlikely diagnosis for this patient.
Understanding Viral Labyrinthitis
Labyrinthitis is a condition that affects the membranous labyrinth, which includes the vestibular and cochlear end organs. It can be caused by a viral or bacterial infection, or it may be associated with systemic diseases. Viral labyrinthitis is the most common form of the condition.
It’s important to distinguish labyrinthitis from vestibular neuritis, which only affects the vestibular nerve and doesn’t cause hearing impairment. Labyrinthitis, on the other hand, affects both the vestibular nerve and the labyrinth, resulting in both vertigo and hearing loss.
The condition typically affects people between the ages of 40 and 70 and is characterized by an acute onset of symptoms, including vertigo, nausea and vomiting, hearing loss, and tinnitus. Patients may also experience gait disturbance and fall towards the affected side.
Diagnosis is based on a patient’s history and examination, which may reveal spontaneous unidirectional horizontal nystagmus towards the unaffected side, sensorineural hearing loss, and an abnormal head impulse test.
While episodes of labyrinthitis are usually self-limiting, medications like prochlorperazine or antihistamines may help reduce the sensation of dizziness. Understanding the symptoms and management of viral labyrinthitis can help patients seek appropriate treatment and manage their condition effectively.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 20
Incorrect
-
A woman in her 30s is stabbed in the chest to the right of the manubriosternal angle. Which structure is least likely to be injured in this scenario?
Your Answer: The trachea
Correct Answer: Right recurrent laryngeal nerve
Explanation:The right vagus nerve gives rise to the right recurrent laryngeal nerve at a more proximal location, which then curves around the subclavian artery in a posterior direction. Therefore, out of the given structures, it is the least susceptible to injury.
The mediastinum is the area located between the two pulmonary cavities and is covered by the mediastinal pleura. It extends from the thoracic inlet at the top to the diaphragm at the bottom. The mediastinum is divided into four regions: the superior mediastinum, middle mediastinum, posterior mediastinum, and anterior mediastinum.
The superior mediastinum is the area between the manubriosternal angle and T4/5. It contains important structures such as the superior vena cava, brachiocephalic veins, arch of aorta, thoracic duct, trachea, oesophagus, thymus, vagus nerve, left recurrent laryngeal nerve, and phrenic nerve. The anterior mediastinum contains thymic remnants, lymph nodes, and fat. The middle mediastinum contains the pericardium, heart, aortic root, arch of azygos vein, and main bronchi. The posterior mediastinum contains the oesophagus, thoracic aorta, azygos vein, thoracic duct, vagus nerve, sympathetic nerve trunks, and splanchnic nerves.
In summary, the mediastinum is a crucial area in the thorax that contains many important structures and is divided into four regions. Each region contains different structures that are essential for the proper functioning of the body.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 21
Incorrect
-
A 72-year-old man is admitted to the hospital with symptoms of the flu, confusion, and vomiting. His finger prick glucose levels are within normal range. The physician suspects that the patient's living conditions, which include poor housing and lack of support at home, may have contributed to his symptoms.
What physiological response is expected in this patient?Your Answer: A rightward shift of the oxygen dissociation curve
Correct Answer: An increased affinity of haemoglobin for oxygen
Explanation:Methaemoglobin causes a leftward shift of the oxygen dissociation curve, indicating an increased affinity of haemoglobin for oxygen. This results in reduced offloading of oxygen into the tissues, leading to decreased oxygen delivery. It is important to understand the oxygen-dissociation curve and the effects of carbon monoxide poisoning, which causes increased oxygen binding to methaemoglobin. A rightward shift of the curve indicates increased oxygen delivery to the tissues, which is not the case in methaemoglobinemia.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 22
Incorrect
-
A 65-year-old man is having a left pneumonectomy for bronchogenic carcinoma. When the surgeons reach the root of the lung, which structure will be situated furthest back in the anatomical plane?
Your Answer: Pulmonary artery
Correct Answer: Vagus nerve
Explanation:At the lung root, the phrenic nerve is situated in the most anterior position while the vagus nerve is located at the posterior end.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 23
Incorrect
-
A 35-year-old patient has been experiencing breathing difficulties for the past year. He finds it challenging to climb small hills, has developed a persistent cough, and has had two chest infections that were treated effectively by his doctor. He has never smoked, and his mother had comparable symptoms when she was his age. Based on his spirometry results, which indicate an FEV1/FVC ratio of 60%, his doctor suspects that his symptoms are caused by a genetic disorder. What is the molecular mechanism that underlies his probable condition?
Your Answer: Increased production of neutrophil elastase
Correct Answer: Failure to break down neutrophil elastase
Explanation:The patient’s medical history suggests that they may be suffering from alpha-1 antitrypsin deficiency.
When there is a shortage of alpha-1 antitrypsin, neutrophil elastase is not inhibited and can break down proteins in the lung interstitium. Although neutrophil elastase is a crucial part of the innate immune system, its unregulated activity can lead to excessive breakdown of extracellular proteins like elastin, collagen, fibronectin, and fibrin. This results in reduced pulmonary elasticity, which can cause emphysema and COPD.
Alpha-1 antitrypsin (A1AT) deficiency is a genetic condition that occurs when the liver does not produce enough of a protein called protease inhibitor (Pi). This protein is responsible for protecting cells from enzymes like neutrophil elastase. A1AT deficiency is inherited in an autosomal recessive or co-dominant manner and is located on chromosome 14. The alleles are classified by their electrophoretic mobility, with M being normal, S being slow, and Z being very slow. The normal genotype is PiMM, while heterozygous individuals have PiMZ. Homozygous PiSS individuals have 50% normal A1AT levels, while homozygous PiZZ individuals have only 10% normal A1AT levels.
A1AT deficiency is most commonly associated with panacinar emphysema, which is a type of chronic obstructive pulmonary disease (COPD). This is especially true for patients with the PiZZ genotype. Emphysema is more likely to occur in non-smokers with A1AT deficiency, but they may still pass on the gene to their children. In addition to lung problems, A1AT deficiency can also cause liver issues such as cirrhosis and hepatocellular carcinoma in adults, and cholestasis in children.
Diagnosis of A1AT deficiency involves measuring A1AT concentrations and performing spirometry to assess lung function. Management of the condition includes avoiding smoking and receiving supportive care such as bronchodilators and physiotherapy. Intravenous alpha1-antitrypsin protein concentrates may also be used. In severe cases, lung volume reduction surgery or lung transplantation may be necessary.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 24
Correct
-
A 20-year-old man presents to the emergency department with diabetic ketoacidosis. After early treatment, an arterial blood gas is taken, which shows the following results.
ABG result - temperature 35.0 ºC:
pH 7.30 (7.35 - 7.45)
PaCO2 3.5 kPa (4.7 - 6.0)
PaO2 10 kPa (11 - 13)
HCO3- 16 mEq/L (22 - 26)
Na+ 138 mmol/L (135 - 145)
K+ 3.3 mmol/L (3.5 - 5.0)
What physiological change is occurring in this patient?Your Answer: Metabolic acidosis is causing a decreased affinity of haemoglobin for oxygen
Explanation:In acidosis, the oxyhaemoglobin dissociation curve shifts to the right, indicating a decrease in affinity of haemoglobin for oxygen. This is due to an increase in the number of [H+] ions, reflecting greater metabolic activity. Low [H+] levels cause a shift to the left. The low HCO3- in this patient can be explained by metabolic acidosis, but it does not cause a shift in the oxyhaemoglobin dissociation curve. Hypokalaemia may be a result of treatment for diabetic ketoacidosis, but it does not cause a shift in the oxygen dissociation curve. When temperature increases, the oxyhaemoglobin dissociation curve also shifts to the right, causing a decrease in haemoglobin affinity for oxygen. Hypothermia causes a shift to the left, indicating an increased affinity of haemoglobin for oxygen.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 25
Incorrect
-
A father brings his 9-year-old daughter to your general practice, as he is worried about her hearing. He notices that he has to repeat himself when talking to her, and thinks she is often 'in her own little world'. During the examination, the Rinne test is positive on the left and negative on the right. What conclusions can be drawn from this?
Your Answer: Sensorineural hearing loss on the right.
Correct Answer: Can not tell if both sides are affected.
Explanation:The Rinne and Weber tests are used to diagnose hearing loss. The Rinne test involves comparing air and bone conduction, with a positive result indicating a healthy or sensorineural loss and a negative result indicating a conductive loss. The Weber test involves placing a tuning fork on the forehead and determining if the sound is symmetrical or louder on one side, with a conductive loss resulting in louder sound on the affected side and a sensorineural loss resulting in louder sound on the non-affected side. When used together, these tests can provide more information about the type and affected side of hearing loss.
Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness
Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.
Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.
The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.
Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 26
Correct
-
Which of the following physiological changes does not take place after a tracheostomy?
Your Answer: Work of breathing is increased.
Explanation:HFNC is a popular option for weaning ventilated patients as it reduces work of breathing and humidified air helps to reduce mucous viscosity.
Anatomy of the Trachea
The trachea, also known as the windpipe, is a tube-like structure that extends from the C6 vertebrae to the upper border of the T5 vertebrae where it bifurcates into the left and right bronchi. It is supplied by the inferior thyroid arteries and the thyroid venous plexus, and innervated by branches of the vagus, sympathetic, and recurrent nerves.
In the neck, the trachea is anterior to the isthmus of the thyroid gland, inferior thyroid veins, and anastomosing branches between the anterior jugular veins. It is also surrounded by the sternothyroid, sternohyoid, and cervical fascia. Posteriorly, it is related to the esophagus, while laterally, it is in close proximity to the common carotid arteries, right and left lobes of the thyroid gland, inferior thyroid arteries, and recurrent laryngeal nerves.
In the thorax, the trachea is anterior to the manubrium, the remains of the thymus, the aortic arch, left common carotid arteries, and the deep cardiac plexus. Laterally, it is related to the pleura and right vagus on the right side, and the left recurrent nerve, aortic arch, and left common carotid and subclavian arteries on the left side.
Overall, understanding the anatomy of the trachea is important for various medical procedures and interventions, such as intubation and tracheostomy.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 27
Incorrect
-
A 25-year-old man with a history of asthma since childhood visited his doctor for his routine check-up. He is planning to go on a hiking trip with his friends in a month and wants to ensure that it is safe for him. Can you describe the scenarios that accurately depict the hemoglobin saturation of blood and the ability of body tissues to extract oxygen from the blood in response to different situations?
Your Answer: If the hiking involves areas of relatively high altitude the hemoglobin saturation of blood after flowing through body tissues will be higher
Correct Answer: If the man is not able to breathe properly and, his blood carbon dioxide level increases, this will cause his body tissues to extract more oxygen from his blood
Explanation:Hypercapnia causes a shift in the oxygen dissociation curve to the right. This means that for the same partial pressure of oxygen, the hemoglobin saturation will be less. Other factors that can cause a right shift in the curve include high altitudes, anaerobic metabolism resulting in the production of lactic acid, physical activity, and an increase in temperature. These shifts allow the body tissues to extract more oxygen from the blood, resulting in a lower hemoglobin saturation of the blood leaving the body tissues. Carbon dioxide is also known to produce a right shift in the curve, further contributing to this effect.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 28
Incorrect
-
Which one of the following statements relating to the root of the spine is false?
Your Answer: The roots and trunks of the Brachial plexus lie posterior to the subclavian artery on the first rib
Correct Answer: The subclavian artery arches over the first rib anterior to scalenus anterior
Explanation:The suprapleural membrane, also known as Sibson’s fascia, is located above the pleural cavity. The scalenus anterior muscle is positioned in front of the subclavian vein, while the subclavian artery is situated behind it.
Thoracic Outlet: Where the Subclavian Artery and Vein and Brachial Plexus Exit the Thorax
The thoracic outlet is the area where the subclavian artery and vein and the brachial plexus exit the thorax and enter the arm. This passage occurs over the first rib and under the clavicle. The subclavian vein is the most anterior structure and is located immediately in front of scalenus anterior and its attachment to the first rib. Scalenus anterior has two parts, and the subclavian artery leaves the thorax by passing over the first rib and between these two portions of the muscle. At the level of the first rib, the lower cervical nerve roots combine to form the three trunks of the brachial plexus. The lowest trunk is formed by the union of C8 and T1, and this trunk lies directly posterior to the artery and is in contact with the superior surface of the first rib.
Thoracic outlet obstruction can cause neurovascular compromise.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 29
Incorrect
-
A 65-year-old woman comes to the clinic complaining of fever and productive cough for the past two days. She spends most of her time at home watching TV and rarely goes outside. She has no recent travel history. The patient has a history of gastroesophageal reflux disease but has not been compliant with medication and follow-up appointments. Upon physical examination, crackles are heard on the left lower lobe, and her sputum is described as 'red-currant jelly.'
What is the probable causative organism in this case?Your Answer: Streptococcus pneumoniae
Correct Answer: Klebsiella pneumoniae
Explanation:The patient’s history of severe gastro-oesophageal reflux disease (GORD) suggests that she may have aspiration pneumonia, particularly as she had not received appropriate treatment for it. Aspiration of gastric contents is likely to occur in the right lung due to the steep angle of the right bronchus. Klebsiella pneumoniae is a common cause of aspiration pneumonia and is known to produce ‘red-currant jelly’ sputum.
Mycoplasma pneumoniae is a cause of atypical pneumonia, which typically presents with a non-productive cough and clear lung sounds on auscultation. It is more common in younger individuals.
Burkholderia pseudomallei is the causative organism for melioidosis, a condition that is transmitted through exposure to contaminated water or soil, and is more commonly found in Southeast Asia. However, given the patient’s sedentary lifestyle and lack of travel history, it is unlikely to be the cause of her symptoms.
Streptococcus pneumoniae is the most common cause of pneumonia, but it typically produces yellowish-green sputum rather than the red-currant jelly sputum seen in Klebsiella pneumoniae infections. It also presents with fever, productive cough, and crackles on auscultation.
Understanding Klebsiella Pneumoniae
Klebsiella pneumoniae is a type of bacteria that is commonly found in the gut flora of humans. However, it can also cause various infections such as pneumonia and urinary tract infections. It is more prevalent in individuals who have alcoholism or diabetes. Aspiration is a common cause of pneumonia caused by Klebsiella pneumoniae. One of the distinct features of this type of pneumonia is the production of red-currant jelly sputum. It usually affects the upper lobes of the lungs.
The prognosis for Klebsiella pneumoniae infections is not good. It often leads to the formation of lung abscesses and empyema, which can be fatal. The mortality rate for this type of infection is between 30-50%.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 30
Incorrect
-
An 80-year-old man has been referred to the respiratory clinic due to a persistent dry cough and hoarse voice for the last 5 months. He reports feeling like he has lost some weight as his clothes feel loose. Although he has no significant past medical history, he has a 30-pack-year smoking history. During the examination, left-sided miosis and ptosis are noted. What is the probable location of the lung lesion?
Your Answer: Perihilar region
Correct Answer: Lung apex
Explanation:The patient’s persistent cough, significant smoking history, and weight loss are red flag symptoms of lung cancer. Additionally, the hoarseness of voice suggests that the recurrent laryngeal nerve is being suppressed, likely due to a Pancoast tumor located in the apex of the lung. The presence of Horner’s syndrome further supports this diagnosis. Mesothelioma, which is more common in patients with a history of asbestos exposure, typically presents with shortness of breath, chest wall pain, and finger clubbing. A hamartoma, a benign tumor made up of tissue such as cartilage, connective tissue, and fat, is unlikely given the patient’s red flags for malignant disease. Small cell carcinomas, typically found in the center of the lungs, may present with a perihilar mass and paraneoplastic syndromes due to ectopic hormone secretion. Lung cancers within the bronchi can obstruct airways and cause respiratory symptoms such as cough and shortness of breath, but not hoarseness.
Lung Cancer Symptoms and Complications
Lung cancer is a serious condition that can cause a range of symptoms and complications. Some of the most common symptoms include a persistent cough, haemoptysis (coughing up blood), dyspnoea (shortness of breath), chest pain, weight loss and anorexia, and hoarseness. In some cases, patients may also experience supraclavicular lymphadenopathy or persistent cervical lymphadenopathy, as well as clubbing and a fixed, monophonic wheeze.
In addition to these symptoms, lung cancer can also cause a range of paraneoplastic features. These may include the secretion of ADH, ACTH, or parathyroid hormone-related protein (PTH-rp), which can cause hypercalcaemia, hypertension, hyperglycaemia, hypokalaemia, alkalosis, muscle weakness, and other complications. Other paraneoplastic features may include Lambert-Eaton syndrome, hypertrophic pulmonary osteoarthropathy (HPOA), hyperthyroidism due to ectopic TSH, and gynaecomastia.
Complications of lung cancer may include hoarseness, stridor, and superior vena cava syndrome. Patients may also experience a thrombocytosis, which can be detected through blood tests. Overall, it is important to be aware of the symptoms and complications of lung cancer in order to seek prompt medical attention and receive appropriate treatment.
-
This question is part of the following fields:
- Respiratory System
-
00
Correct
00
Incorrect
00
:
00
:
0
00
Session Time
00
:
00
Average Question Time (
Secs)