-
Question 1
Incorrect
-
A 65-year-old woman with a past medical history of polycythemia rubra vera complains of increasing fatigue and low-grade fever for the past three weeks. Upon blood tests, she is diagnosed with acute myeloid leukemia. Which of the following types of immune cells are produced from myeloid progenitors?
Your Answer: Plasma cells
Correct Answer: Macrophages
Explanation:Haematopoiesis: The Generation of Immune Cells
Haematopoiesis is the process by which immune cells are produced from haematopoietic stem cells in the bone marrow. These stem cells give rise to two main types of progenitor cells: myeloid and lymphoid progenitor cells. All immune cells are derived from these progenitor cells.
The myeloid progenitor cells generate cells such as macrophages/monocytes, dendritic cells, neutrophils, eosinophils, basophils, and mast cells. On the other hand, lymphoid progenitor cells give rise to T cells, NK cells, B cells, and dendritic cells.
This process is essential for the proper functioning of the immune system. Without haematopoiesis, the body would not be able to produce the necessary immune cells to fight off infections and diseases. Understanding haematopoiesis is crucial in developing treatments for diseases that affect the immune system.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 2
Incorrect
-
A 47-year-old woman presents to the Emergency Department with pleuritic chest pain and dyspnoea. Upon examination, an area of painful swelling is found in her right calf, indicating a possible deep vein thrombosis. Her Wells' score is calculated to be 4.2. The patient's vital signs are as follows:
Blood pressure: 105/78 mmHg
Pulse: 118 bpm
Temperature: 37.1ºC
Respiratory rate: 20/min
A CT pulmonary angiography confirms the presence of a right pulmonary embolism. What medication is most likely to be prescribed to this patient?Your Answer: Warfarin
Correct Answer: Rivaroxaban
Explanation:Rivaroxaban is a direct inhibitor of factor Xa, which is the correct answer. Pulmonary emboli can be caused by various factors, and symptoms include chest pain, dyspnoea, and haemoptysis. Factor Xa inhibitors, such as rivaroxaban, have replaced warfarin as the first-line treatment for stroke prevention in patients with atrial fibrillation.
Dabigatran is a direct thrombin inhibitor and has a different mechanism of action compared to rivaroxaban. It is commonly used for venous thromboembolism prophylaxis after total knee or hip replacement surgery.
Dalteparin is a type of low molecular weight heparin (LMWH) and has a different mechanism of action compared to factor Xa inhibitors. It is used for prophylaxis against venous thromboembolism in patients who are immobile or have recently had surgery.
Fondaparinux is an indirect inhibitor of factor Xa and is not the correct answer. It is used for the treatment of deep-vein thrombosis, pulmonary embolism, and acute coronary syndrome.
Direct oral anticoagulants (DOACs) are medications used to prevent stroke in non-valvular atrial fibrillation (AF), as well as for the prevention and treatment of venous thromboembolism (VTE). To be prescribed DOACs for stroke prevention, patients must have certain risk factors, such as a prior stroke or transient ischaemic attack, age 75 or older, hypertension, diabetes mellitus, or heart failure. There are four DOACs available, each with a different mechanism of action and method of excretion. Dabigatran is a direct thrombin inhibitor, while rivaroxaban, apixaban, and edoxaban are direct factor Xa inhibitors. The majority of DOACs are excreted either through the kidneys or the liver, with the exception of apixaban and edoxaban, which are excreted through the feces. Reversal agents are available for dabigatran and rivaroxaban, but not for apixaban or edoxaban.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 3
Incorrect
-
A 65-year-old man visits his doctor complaining of fatigue and weight loss that has persisted for the past year. He has also been experiencing fevers and night sweats lately. During the physical examination, the doctor observes that the patient has bruises on his shins and forearms and hepatosplenomegaly. The doctor orders blood tests.
Hemoglobin: 100 g/L
White blood cells: 18.0 x 109/L
Neutrophils: 10.0 x 109/L
The patient is referred to the hospital, where a bone marrow biopsy is performed, and he is subsequently treated with imatinib.
Based on the most probable diagnosis, which of the following cell types is also likely to be elevated?Your Answer: Plasma cells
Correct Answer: Eosinophils
Explanation:The origin of eosinophils is from common myeloid progenitor cells. A patient with neutrophilia and low haemoglobin is likely to have chronic myeloid leukaemia (CML). CML is characterized by increased levels of all cells derived from the myeloid lineage, including basophils, monocytes, and eosinophils. The bone marrow biopsy is diagnostic for CML and typically shows the t(9;22) chromosomal translocation, also known as the Philadelphia chromosome. Imatinib, an inhibitor of the BCR-ABL fusion protein created with this translocation, is a common treatment for CML. Cells derived from common lymphoid progenitor cells are not affected in CML.
Haematopoiesis: The Generation of Immune Cells
Haematopoiesis is the process by which immune cells are produced from haematopoietic stem cells in the bone marrow. These stem cells give rise to two main types of progenitor cells: myeloid and lymphoid progenitor cells. All immune cells are derived from these progenitor cells.
The myeloid progenitor cells generate cells such as macrophages/monocytes, dendritic cells, neutrophils, eosinophils, basophils, and mast cells. On the other hand, lymphoid progenitor cells give rise to T cells, NK cells, B cells, and dendritic cells.
This process is essential for the proper functioning of the immune system. Without haematopoiesis, the body would not be able to produce the necessary immune cells to fight off infections and diseases. Understanding haematopoiesis is crucial in developing treatments for diseases that affect the immune system.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 4
Incorrect
-
A 28-year-old male is undergoing chemotherapy for testicular cancer and has been prescribed cisplatin. What is the mechanism of action of this medication?
Your Answer: Inhibition of ribonucleotide reductase
Correct Answer: Causes cross-linking of DNA
Explanation:Cisplatin causes DNA cross-linking, leading to apoptosis in cancer cells. It is commonly used in chemotherapy for various cancers. Methotrexate inhibits dihydrofolate reductase, which is not the mechanism of cisplatin. Hydroxyurea inhibits ribonucleotide reductase and is used to treat different diseases. Docetaxel prevents microtubule depolymerization and is used for breast cancer treatment. Fluorouracil blocks thymidylate synthase during S phase, leading to cell cycle arrest and apoptosis, but it is not the mechanism of cisplatin.
Cytotoxic agents are drugs that are used to kill cancer cells. There are several types of cytotoxic agents, each with their own mechanism of action and potential adverse effects. Alkylating agents, such as cyclophosphamide, work by causing cross-linking in DNA. However, they can also cause haemorrhagic cystitis, myelosuppression, and transitional cell carcinoma. Cytotoxic antibiotics, like bleomycin and anthracyclines, degrade preformed DNA and stabilize DNA-topoisomerase II complex, respectively. However, they can also cause lung fibrosis and cardiomyopathy. Antimetabolites, such as methotrexate and fluorouracil, inhibit dihydrofolate reductase and thymidylate synthesis, respectively. However, they can also cause myelosuppression, mucositis, and liver or lung fibrosis. Drugs that act on microtubules, like vincristine and docetaxel, inhibit the formation of microtubules and prevent microtubule depolymerisation & disassembly, respectively. However, they can also cause peripheral neuropathy, myelosuppression, and paralytic ileus. Topoisomerase inhibitors, like irinotecan, inhibit topoisomerase I, which prevents relaxation of supercoiled DNA. However, they can also cause myelosuppression. Other cytotoxic drugs, such as cisplatin and hydroxyurea, cause cross-linking in DNA and inhibit ribonucleotide reductase, respectively. However, they can also cause ototoxicity, peripheral neuropathy, hypomagnesaemia, and myelosuppression.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 5
Incorrect
-
As a medical student on a general surgical team, I am currently treating an 82-year-old female who is scheduled for a mastectomy due to breast cancer. Can you inform me of the most prevalent form of breast cancer?
Your Answer: Invasive lobular carcinoma
Correct Answer: Invasive ductal carcinoma
Explanation:Breast Cancer Pathology: Understanding the Histological Features
Breast cancer pathology involves examining the histological features of the cancer cells to determine the underlying diagnosis. The invasive component of breast cancer is typically made up of ductal cells, although invasive lobular cancer may also occur. In situ lesions, such as DCIS, may also be present.
When examining breast cancer pathology, several typical changes are seen in conjunction with invasive breast cancer. These include nuclear pleomorphism, coarse chromatin, angiogenesis, invasion of the basement membrane, dystrophic calcification (which may be seen on mammography), abnormal mitoses, vascular invasion, and lymph node metastasis.
To grade the primary tumor, a scale of 1-3 is used, with 1 being the most benign lesion and 3 being the most poorly differentiated. Immunohistochemistry for estrogen receptor and herceptin status is routinely performed to further understand the cancer’s characteristics.
The grade, lymph node stage, and size are combined to provide the Nottingham prognostic index, which helps predict the patient’s prognosis and guide treatment decisions. Understanding the histological features of breast cancer is crucial in determining the best course of treatment for patients.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 6
Incorrect
-
Which one of the following statements about blood clotting is false?
Your Answer: Protein C is a vitamin K dependent substance
Correct Answer: Administration of aprotinin during liver transplantation surgery prolongs survival
Explanation:Aprotinin, which decreases bleeding by inhibiting fibrinolysis, was taken off the market in 2007 due to its link to higher mortality rates. Vitamin K-dependent protein C may actually increase the risk of thrombosis in the initial stages of warfarin treatment.
The Coagulation Cascade: Two Pathways to Fibrin Formation
The coagulation cascade is a complex process that leads to the formation of a blood clot. There are two pathways that can lead to fibrin formation: the intrinsic pathway and the extrinsic pathway. The intrinsic pathway involves components that are already present in the blood and has a minor role in clotting. It is initiated by subendothelial damage, such as collagen, which leads to the formation of the primary complex on collagen by high-molecular-weight kininogen (HMWK), prekallikrein, and Factor 12. This complex activates Factor 11, which in turn activates Factor 9. Factor 9, along with its co-factor Factor 8a, forms the tenase complex, which activates Factor 10.
The extrinsic pathway, on the other hand, requires tissue factor released by damaged tissue. This pathway is initiated by tissue damage, which leads to the binding of Factor 7 to tissue factor. This complex activates Factor 9, which works with Factor 8 to activate Factor 10. Both pathways converge at the common pathway, where activated Factor 10 causes the conversion of prothrombin to thrombin. Thrombin hydrolyses fibrinogen peptide bonds to form fibrin and also activates factor 8 to form links between fibrin molecules.
Finally, fibrinolysis occurs, which is the process of clot resorption. Plasminogen is converted to plasmin to facilitate this process. It is important to note that certain factors are involved in both pathways, such as Factor 10, and that some factors are vitamin K dependent, such as Factors 2, 7, 9, and 10. The intrinsic pathway can be assessed by measuring the activated partial thromboplastin time (APTT), while the extrinsic pathway can be assessed by measuring the prothrombin time (PT).
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 7
Correct
-
A 70-year-old male with a 50 pack year history of smoking complains of dyspnoea, cough and facial swelling that has been worsening for the past 8 weeks. The symptoms are aggravated by leaning forward. Venous collaterals are observed on the anterior chest wall during examination.
What is the probable diagnosis?Your Answer: Superior vena cava obstruction
Explanation:When bronchogenic carcinoma leads to SVC obstruction, patients usually experience dyspnea, cough, and swelling of the face.
Understanding Superior Vena Cava Obstruction
Superior vena cava obstruction is a medical emergency that occurs when the superior vena cava, a large vein that carries blood from the upper body to the heart, is compressed. This condition is commonly associated with lung cancer, but it can also be caused by other malignancies, aortic aneurysm, mediastinal fibrosis, goitre, and SVC thrombosis. The most common symptom of SVC obstruction is dyspnoea, but patients may also experience swelling of the face, neck, and arms, headache, visual disturbance, and pulseless jugular venous distension.
The management of SVC obstruction depends on the underlying cause and the patient’s individual circumstances. Endovascular stenting is often the preferred treatment to relieve symptoms, but certain malignancies may require radical chemotherapy or chemo-radiotherapy instead. Glucocorticoids may also be given, although the evidence supporting their use is weak. It is important to seek advice from an oncology team to determine the best course of action for each patient.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 8
Incorrect
-
A 67-year-old woman presents to haematology with fevers, tiredness, and unexplained weight loss. She has painless cervical lymphadenopathy on examination. The haematologist suspects follicular lymphoma and orders a lymph node biopsy to confirm the diagnosis. Which translocation is expected to be detected through cytogenetics?
Your Answer: Translocation t(9;22)
Correct Answer: Translocation t(14;18)
Explanation:Genetics of Haematological Malignancies
Haematological malignancies are cancers that affect the blood, bone marrow, and lymphatic system. These cancers are often associated with specific genetic abnormalities, such as translocations. Here are some common translocations and their associated haematological malignancies:
– Philadelphia chromosome (t(9;22)): This translocation is present in more than 95% of patients with chronic myeloid leukaemia (CML). It results in the fusion of the Abelson proto-oncogene with the BCR gene on chromosome 22, creating the BCR-ABL gene. This gene codes for a fusion protein with excessive tyrosine kinase activity, which is a poor prognostic indicator in acute lymphoblastic leukaemia (ALL).
– t(15;17): This translocation is seen in acute promyelocytic leukaemia (M3) and involves the fusion of the PML and RAR-alpha genes.
– t(8;14): Burkitt’s lymphoma is associated with this translocation, which involves the translocation of the MYC oncogene to an immunoglobulin gene.
– t(11;14): Mantle cell lymphoma is associated with the deregulation of the cyclin D1 (BCL-1) gene.
– t(14;18): Follicular lymphoma is associated with increased BCL-2 transcription due to this translocation.
Understanding the genetic abnormalities associated with haematological malignancies is important for diagnosis, prognosis, and treatment.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 9
Incorrect
-
A 28-year-old woman presents to the haematology clinic after experiencing 2 DVTs within a year. She mentions that her mother passed away at the age of 50 due to a pulmonary embolism. Her full blood count appears normal, but her coagulation screen suggests a coagulopathy.
What is the underlying pathological mechanism of the probable diagnosis?Your Answer: Antithrombin III deficiency
Correct Answer: Activated protein C resistance
Explanation:The presence of factor V Leiden mutation leads to resistance to activated protein C.
The most probable cause of the patient’s recurrent DVTs and family history of thrombo-embolic events is factor V Leiden, which is the most common inherited thrombophilia. This mutation results in activated protein C resistance, as activated factor V is not inactivated as efficiently by protein C.
Antiphospholipid syndrome is an acquired thrombophilia that can cause both arterial and venous thromboses, and may present with thrombocytopenia. However, the patient’s positive family history and normal full blood count make this diagnosis less likely than factor V Leiden.
Protein C deficiency, protein S deficiency, and antithrombin III deficiency are all inherited thrombophilias, but they are less prevalent in the population compared to factor V Leiden. Therefore, they are less likely to be the underlying cause of the patient’s symptoms.
Understanding Factor V Leiden
Factor V Leiden is a common inherited thrombophilia, affecting around 5% of the UK population. It is caused by a mutation in the Factor V Leiden protein, resulting in activated factor V being inactivated 10 times more slowly by activated protein C than normal. This leads to activated protein C resistance, which increases the risk of venous thrombosis. Heterozygotes have a 4-5 fold risk of venous thrombosis, while homozygotes have a 10 fold risk, although the prevalence of homozygotes is much lower at 0.05%.
Despite its prevalence, screening for Factor V Leiden is not recommended, even after a venous thromboembolism. This is because a previous thromboembolism itself is a risk factor for further events, and specific management should be based on this rather than the particular thrombophilia identified.
Other inherited thrombophilias include Prothrombin gene mutation, Protein C deficiency, Protein S deficiency, and Antithrombin III deficiency. The table below shows the prevalence and relative risk of venous thromboembolism for each of these conditions.
Overall, understanding Factor V Leiden and other inherited thrombophilias can help healthcare professionals identify individuals at higher risk of venous thrombosis and provide appropriate management to prevent future events.
Condition | Prevalence | Relative risk of VTE
— | — | —
Factor V Leiden (heterozygous) | 5% | 4
Factor V Leiden (homozygous) | 0.05% | 10
Prothrombin gene mutation (heterozygous) | 1.5% | 3
Protein C deficiency | 0.3% | 10
Protein S deficiency | 0.1% | 5-10
Antithrombin III deficiency | 0.02% | 10-20 -
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 10
Incorrect
-
Which of the following is a primary lymphatic organ?
Your Answer:
Correct Answer: Thymus
Explanation:The lymphatic system is composed of lymph vessels, primary lymphatic organs, and secondary lymphatic organs. The thymus and red bone marrow, which are responsible for lymphocyte formation and maturation, are considered primary lymphatic organs. These organs contain pluripotent cells that give rise to mature immunocompetent B cells and pre-T cells. To become mature T cells, pre-T cells must migrate to the thymus.
Secondary lymphatic organs include lymph nodes, the spleen, tonsils (adenoids), mucosa-associated lymphoid tissue (MALT), and Peyer’s patches. These organs filter lymphocytes and activate them to mount an immune response.
The Thymus Gland: Development, Structure, and Function
The thymus gland is an encapsulated organ that develops from the third and fourth pharyngeal pouches. It descends to the anterior superior mediastinum and is subdivided into lobules, each consisting of a cortex and a medulla. The cortex is made up of tightly packed lymphocytes, while the medulla is mostly composed of epithelial cells. Hassall’s corpuscles, which are concentrically arranged medullary epithelial cells that may surround a keratinized center, are also present.
The inferior parathyroid glands, which also develop from the third pharyngeal pouch, may be located with the thymus gland. The thymus gland’s arterial supply comes from the internal mammary artery or pericardiophrenic arteries, while its venous drainage is to the left brachiocephalic vein. The thymus gland plays a crucial role in the development and maturation of T-cells, which are essential for the immune system’s proper functioning.
-
This question is part of the following fields:
- Haematology And Oncology
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)